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We analyze approximate approaches to the modeling of the thermomechanical behavior of physically

nonlinear materials under harmonic loading. The approaches are based on various

harmonic-linearization schemes and the concept of complex moduli. Mechanical and mathematical

features of various schemes are considered. Some modifications of the model are proposed to account for

various aspects of material behavior under harmonic loading. The problems of vibration and dissipative

heating of physically nonlinear bodies are formulated. The main thermomechanical characteristics are

analyzed for some classes of problems.
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Introduction. Many structural elements and technological objects experience cyclic deformation during use or
treatment [2, 3, 30–32, 61]. Loads are sometimes so high that the deformation process becomes nonlinear and mechanical
elements may suffer low-cycle fatigue. Apart from purely mechanical fatigue failure, polymeric products may undergo thermal
failure, i.e., softening or even melting due to vibrational heating, which is because of high hysteresis losses and low heat
conductivity [32, 59, 60].

In the cases mentioned, modeling the thermomechanical behavior of nonlinearly dissipative materials is one of the
major tasks to be accomplished in evaluating the durability or working characteristics of cyclically deformed bodies.

There are currently two approaches to solve such problems. One employs the constitutive equations valid for arbitrary
or, at least, rather wide classes of loading histories. Quasistatic problems for inelastic bodies, specifically beams and plates, were
addressed in [77, 81, 82]; and vibration problems for viscoplastic structures in [66, 73, 78, 79].

This approach was used to solve problems for thin-walled structural members (mainly beams) in a practically important
formulation that allows for the elastoviscoplasticity and geometrical nonlinearity of the material. Such formulations in
combination with well-tested computational schemes allow us to analyze mechanical effects of the interaction of physical and
geometrical nonlinearities, specifically snap buckling of initially curved elements [92] and chaotic motions in such elements
under harmonic loading [42, 89].

By using exact models under harmonic loading, we can study a number of effects accompanying vibrations such as snap
buckling, drift of average plastic strain, dynamic buckling, chaotic motions, etc. Study of such processes is difficult because of
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the severe requirements to the time integration schemes for Cauchy problems. This is due to the stiffness of nonlinear systems
describing the plastic transition of the material and the local instability of solutions within internal boundary layers associated
with snap buckling of preliminary or plastically curved thin-walled elements [92]. The corresponding findings are generalized in
the reviews [67, 83].

The second approach is based on approximate models for specific deformation histories. One of the most important
cases is periodic processes excited by harmonic loading. The idea of simplification can be clearly demonstrated by an example of
linearly viscoelastic materials. In the case of harmonic deformation, all basic types of constitutive equations—integral
(hereditary) or differential—have an algebraic form written in terms of complex stress and strain amplitudes. The relationship
between these quantities is expressed in terms of complex moduli [26, 91].

At least two circumstances stimulated efforts to generalize this model to physically nonlinear materials. One is its
simplicity due to the absence of the time factor and the other is physical. In some practically important cases, such as
internal-friction theory [25, 35–37], the reaction of the material at the frequency of excitation is of primary interest.

In nonlinear damped mechanical systems, single-frequency vibrations occur under moderate loads at resonances. The
effective solution of such problems is based on methods of nonlinear mechanics [2].

To study single-frequency vibrations, it is convenient to use the harmonic-linearization method. As applied to
continuum mechanics, this method is most fully expounded in [34, 51, 61].

Despite the fact that the single-frequency approximation based on harmonic linearization is well grounded in nonlinear
mechanics [2, 38], its practical accuracy should be additionally analyzed for specific classes of problems in the mechanics of
nonlinear dissipative media.

The basic question is: Which harmonic-linearization scheme provides the highest accuracy of specific stress–strain
characteristics for various classes of nonlinear materials?

The most convincing and justified answer to this question can be obtained by a direct comparison of exact and
approximate analyses. The exact analysis is based on the initial inelastic model, and the approximate analysis on its harmonically
linearized modification.

Such a comparative analysis was performed in [33] in solving the stress-concentration problem for an elastoplastic
cylinder with a cut. Essentially, the approximate model developed there is as follows: consider a body’s element within which
the hysteresis stress–strain loop is stable under proportional or nearly proportional loading. The governing relations are two
equations relating the amplitudes of elastic and plastic strains with the stress amplitudes. The equation parameters are specified
based on uniaxial cyclic curves. The maximum stress amplitudes near a cut calculated exactly and by the finite-element method
(FEM) are in good agreement.

For elastoplastic bodies, the equations relating the stress and strain amplitudes are independent of the time base of the
cycle. They are in particular valid for harmonic loading. For viscoelastic and viscoplastic materials, the amplitude equations
should be specified for each specific time base.

The amplitude equations may be different, depending on the norm in which the exact equations are approximated on the
class of cyclic, specifically harmonic histories. Within the framework of the classical harmonic-linearization approach, V. A.
Pal’mov [34] used approximation in the Hilbert space. The linearizing operator has the form of the differential Voight model,
and the norms in which the stiffness and dissipative characteristics of elastoplastic media are approximated are close to the stored
and dissipated energies.

A similar scheme and also Galerkin’s time scheme were applied to nonlinearly viscoelastic materials in [39, 52–54] and
generalized in [51, 61]. The difference between these schemes is in the structure of the final amplitude equations. The Voigt
linearization leads to relations similar to the linear viscoelastic equations for harmonic processes (correspondence principle).
They are known [26] to be formulated in terms of complex moduli. Thus, the harmonic-linearization scheme leads to a
linear–nonlinear analogy. Galerkin’s scheme includes weaker constraints than the harmonic-linearization scheme. The
corresponding amplitude equations are more general, yet more complex. They contain much more material characteristics.

It is natural to associate the norm in which the complete inelastic operator is approximated with features of the problem.
These may be the degree of nonlinearity, the required accuracy of nonlinear stress–strain characteristics responsible for the
load-bearing capacity of the structure or the strength of the material, the simplicity of the simplified formulation, etc.

The papers [41, 57, 63, 64] were the first to compare the capabilities of various harmonic-linearization schemes as
applied to forced vibrations of nonlinear oscillators as simple resonant systems. The data obtained made it possible to choose the
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most accurate harmonic-linearization scheme for nearly simple deformation processes described by generalized flow models

such as Bodner–Partom [69], Walker [5], etc.

Later, the simplified model corresponding to this scheme was extended to a wide class of problems on forced stationary

vibrations and vibrational heating of spatial and thin-walled elements of homogeneous and piecewise-homogeneous structures.

The present review is intended to discuss and generalize the results obtained.

1. Harmonic Deformation of Nonlinearly Dissipative Materials: Monoharmonic Approximation. Consider

cyclically stable materials for which the reaction of the stress �( )t to cyclic isothermal strain �( )τ , −∞≤ ≤τ t, � �( ) ( )τ τ+ =T is a

time function of period T. Let us expand the functions �( )t and �( )t into trigonometric series:

( ) ( )� � � � � �t t t n t n tn n

n

= + ′ − ′′ + ′ − ′′
=

1 1
3 5

cos sin cos sin
, ,

ω ω ω ω
...

∞

∑ , (1.1)

( ) ( )� � � � � �t t t n t n tn n

n

= + ′ − ′′ + ′ − ′′
=

1 1
3 5

cos sin cos sin
, ,

ω ω ω ω
...

∞

∑ , (1.2)

where ′�n , ′′�n , and ′�n , ′′�n , n = 1, 3, 5, ..., are the stress and strain amplitudes, and � and � are the average stress and strain

components, respectively.

The amplitudes ′�n , ′′�n and ′�n , ′′�n are time independent in the case of steady periodic vibration and are functions of

period number in the case of transient. Then the properties of the material are completely characterized by the relationship

between the amplitudes of stress harmonics and strain amplitudes.

Monoharmonic approximation is called the sum of the first three terms in expressions (1.1) and (1.2) that determine the

response of the system at the frequency of excitation, with the other terms neglected. Then we have

� � � � � � �( ) cos sin , , ,τ ωτ ωτ= + ′ − ′′ ′ ′′ = const, (1.3)

� � � � � � �( ) cos sin , ( ) , , , , ,τ ωτ ωτ θ τ θ θ= + ′ − ′′ = ′ ′ = −∞≤const τ ≤ t. (1.4)

Here either �( )t or �( )t may be controllable; then the other quantity would be the reaction of the material.

Choosing the strain to be controllable and taking (1.3) and (1.4) into account, we arrive at the constitutive equations for

monoharmonic approximation

( ) ( ) ( )� � � � � � � � � � � � � � �= ′ ′′ ′ = ′ ′ ′′ ′′ = ′′ ′ ′′^
, , , , ^ , , , , ^ , , ,ω ω ω , (1.5)

where
^�, ^ ′� , and ^ ′′� are symmetric tensor functions of the arguments specified in brackets.

By virtue of (1.5), temperature is not considered, whenever possible.

The amplitude equations (1.5) have two interpretations [40]:

(i) There are several ways of deriving the monoharmonic-approximation equations (1.5) from the complete constitutive

equations. The choice of one linearization scheme or another is dictated by the properties of the mechanical system and the

objective of research.

(ii) Relations (1.5) can be specified based on direct experiments, without resort to any complete constitutive equations.

These interpretations were formally analyzed in [51].

2. Harmonic-Linearization Method. Standard Scheme [12, 34, 43, 48, 57]. Let the stress deviator s( )t be a nonlinear

isotropic functional of the complete prehistory of the strain deviator e( ),τ τ−∞< < t,

[ ]s s e( ) ( )t

t

=
=−∞τ

τ . (2.1)

Let us consider harmonic strain histories

e e e( ) cos sin ,τ ωτ ωτ τ= ′ − ′′ −∞< < t, (2.2)

where ′e and ′′e are amplitudes, and ω is frequency.
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To approximate functional (2.1) on the strain histories (2.2), we will use the harmonic-linearization method and the
Voight equation [34, 38]

[ ]s e e
τ

τ ω
=−∞

−≈ ′ + ′′
t

e G G( ) ·2 2 1 , (2.3)

where ′G and ′′G are scalar coefficients, and · /e e=∂ ∂t.
These coefficients are determined from the minimum condition for the root-mean-square error of approximation (1.3)

on the monoharmonic strain histories (1.2)

R G G G G= − ′ − ′′ ⋅ − ′ − ′′ =− −( · ) ( · ) mins e e s e e2 2 2 21 1ω ω , (2.4)

where 〈 〉 = ∫f t
T

f d

T

( ) ( )
1

0

τ τ is averaging over the period T, and a b⋅ is the convolution of two tensors.

Minimizing the function R,

∂ ∂ ′ = ∂ ∂ ′′ =R G R G/ , /0 0 , (2.5)

and resolving these equations for ′G and ′′G , we obtain

′ = 〈 ⋅ 〉 ′′ = 〈 ⋅ 〉G e G ei is e e s e e( ( )) / , ( ( )) · /τ τ ω2 22 2 , (2.6)

where ei is the intensity of shear strain amplitudes, ( )ei
2 2= ′ ⋅ ′ + ′′ ⋅ ′′e e e e / .

The coefficients ′G and ′′G are functions of ′e , ′′e , ω, and θ.
Applying the single-frequency approximation (1.2) s( )t = ′ − ′′s scos sinω ωt t to the stresses and substituting it into

(2.3), we arrive at equations for the amplitudes:

′ = ′ ′ − ′′ ′′ ′′ = ′′ ′ + ′ ′′s e e s e e2 2 2 2G G G G, . (2.7)

Relations (2.7) can be represented in a complex form:

~ ~~s e= 2G , (2.8)

where
~
G G iG= ′+ ′′ is the complex shear modulus; and ~s and ~e are the complex stress and strain amplitudes, ~s s s= ′+ ′′i ,

~e e e= ′+ ′′i .
The dependence of ′G and ′′G on ′e and ′′e in the isotropic tensor-linear functionals (2.1) is realized in terms of a set of

invariants ′ ⋅ ′e e , ′ ⋅ ′′e e , and ′′ ⋅ ′′e e [61].
In the case of proportional (monophase) harmonic deformation, the dependence of ′G and ′′G on ′e and ′′e becomes much

simpler:

′ = ′ ′′ = ′′G G e G G ei i( ), ( ) . (2.9)

The inelastic strains �p are very important for materials described by generalized flow models. This is because a
number of low-cycle fatigue criteria, specifically the Coffin–Manson criterion [75], are formulated in terms of inelastic strain
amplitudes (ranges).

To determine them, the relation for �p is harmonically linearized in addition to Eq. (1.1):

( ) [ ]� �p p

t

t =
=−∞τ

τe( ) . (2.10)

A differential Voigt-type functional is also used for approximation:

[ ]� �p

t

p t t t
τ

τ λ λ ω
=−∞

−≈ = ′ + ′′e e e( ) ^ ( ) ( ) ·( )1 . (2.11)
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By analogy with stresses, we arrive at a complex equation for amplitudes [47, 48]:

~ ~~� p =λe, (2.12)

where
~
λ is the complex plastic coefficient,

~
λ λ λ= ′− ′′i .

It is a matter of direct verification to show that the approximate equations (2.3) in the harmonic-linearization scheme are
equivalent to the complete equation (2.1) for the two quantities Π s and ′Ds:

( )Π s sD= 〈 ⋅ 〉 = ′ ⋅ ′ + ′′ ⋅ ′′ ′ = 〈 ⋅ 〉 = ′ ⋅ ′′ − ′′ ⋅ ′s e s e s e s e s e s
1

2

1

2
, · ( )e . (2.13)

The former (Π s) may be regarded as a parameter reflecting the period-average or maximum stored energy [55]. In a
steady-state periodic process, ′Ds is equal to the period-average energy dissipation rate [61]. Thus, the standard linearization
scheme leads to a monoharmonic model equivalent to the exact energy model.

3. Modified Harmonic-Linearization Scheme [47, 48]. An analysis of the complex characteristics obtained by the
standard harmonic-linearization scheme shows that the loss moduli ′′G and ′′λ are determined by the period-average dissipation
rate. However, the above energy method of determining ′G and ′λ does not allow calculating the exact amplitudes (ranges) of
stresses and inelastic strains in a cycle.

The accuracy of the calculated stresses s and inelastic strains �p can be increased by using a different approach to the
determination of the moduli ′G and ′λ . For simplicity, we will restrict ourselves to the case of proportional loading. Let us
determine the amplitudes of the deviatoric stresses, total and inelastic strains

∆
∆

∆
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and the corresponding intensities

s ei i i
p p p2 2 21

8

1

8

1

8
= ⋅ = ⋅ = ⋅∆ ∆ ∆ ∆ ∆ ∆s s e e, , ε � � . (3.2)

Consider cyclic diagrams designed by the exact model,

( ) ( )s s e ei i i i
p

i
p

i= =, , ,ω ε ε ω . (3.3)

Each of them is the dependence of the amplitude of reaction intensity on the intensity of stationary excitation at
prescribed frequency.

In view of (2.10) and (2.12), such diagrams obtained by the approximate model have the form

| | | |^ ~
, ^ ~

s G e ei i i
p

i= =2 ε λ . (3.4)

In essence, the modification of the model is as follows. The expressions for ′′G and ′′λ remain the same:

( ) ( )〈 ′〉 = 〈 ⋅ 〉 = ′′ = ′′D G e e G e ei i i is e· , ,ω ω ω λ ω , (3.5)

where G is the shear modulus.
The moduli ′G and ′λ are calculated from the condition that the approximate model exactly satisfies the corresponding

cyclic diagrams ŝ si i≡ and ε̂ εi
p

i
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( ) ( ) ( ) ( )′ = − ′′
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− ′′












 , (3.6)

where ( )si
2 2= ′ ⋅ ′ + ′′ ⋅ ′′s s s s / .
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Thus, according to (3.5) and (3.6), the complex characteristics of monoharmonic approximation are determined from
the equations

| | | |~
, ,

~
,G

s

e
G

e e

G

G

i

i i

i
p

i

= ′′ = 〈 ⋅ 〉 = ′′ =
′′

2

1
2ω

λ
ε

λs e (3.7)

and reflect the essence of the modified harmonic-linearization model.

4. Mathematical Aspects. Let the stress s( )t and inelastic strain �p t( ) on arbitrary histories e( )τ , −∞< <τ t, be

defined by

[ ] ( ) ( )[ ]s s e e( ) ( ) , ,t t t
t

p p

t

= = −∞< <∞
=−∞ =−∞τ τ

τ τ� � . (4.1)

Consider the approximation of these functionals on harmonic histories:

( )e e( ) Re ~ cos sinτ ωτ ωτωτ= = ′ − ′′e e ei . (4.2)

We will restrict ourselves to the oscillating components s( )t and �p t( ) defined by (4.1).

Denote by S a set of T-periodic functions s( )t , s s( ) ( )t t T= + , defined by (4.1). According to [51], the energies Π s and
′Ds defined by (2.13) are assumed to be nonnegative: Π s ≥ 0, ′ ≥Ds 0.

Let us define energy norms in the space S:

| | | | ( ) ( ) , | | | | ( ) ·( )s t t dt s t t dt
s s

T

D

T

Π = ⋅ = ⋅∫ ∫′s e s e

0 0

, (4.3)

and the Hilbert norm | | | | ( )s tL2
2= 〈 〉s .

Relation (2.4) is the requirement that the difference s s( ) ^( )t t− be minimum in the norm of the space L2 . Equation (2.5)

following from (2.4), (2.6) means zero differences of stresses in energy norms (4.3).
To analyze the inelastic strain using generalized flow models, we will consider the following equation rather than

Eq. (2.1):

( )s( ) ( ) ( )t G t tp= −2 � � (4.4)

and the flow rule (2.10). Let us introduce the integrals

Πε ε= ⋅ ′ =− ⋅∫ ∫� �p

T

p

T

t t dt D t t dt( ) ( ) , ( ) ·( )e e

0 0

(4.5)

and establish whether they are positive. Convoluting (4.4) term by term with the tensors e( )t and ·( )e t , taking (2.7) into account,
and performing some transformations, we obtain

Πε ε= −
′


 


 ′ = 〈 ⋅ 〉2 1

1

2
2G

G

G
e Di , ·s e . (4.6)

The inequality Πε > 0 follows from the estimate ′ ≤G G for materials with soft nonlinearity, i.e., for most
viscoelastoplastic materials. The right-hand side of the second equality in (4.6) is the period-average dissipation rate. Therefore,

′ ≥Dε 0according to the second law of thermodynamics [62].

Hence, based on (4.5) we can determine the norms in the space of T-periodic functions �p t( ):

Π Πε εε ε
ε ε

= ′ = ′| | | | , | | | |p p
DD . (4.7)
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By analogy with stresses, we establish a zero error of approximation of inelastic strains in quasienergy norms (4.7).
The parameters of the modified model are determined using two norms. Introduce a Banach space of continuous, on

[0; T], functions f t( ) with zero mean and norm

[ ] [ ]
| | ( )| | max ( ) min ( )

; ;
f t f t f tB

T T
= −

0 0
.

It is obvious that the first and third relations in (3.7) are equivalent to

| | ( )| | | | ^( )| | , | | ( )| | | |^ ( )| |s st t t tB B
p

B
p

B= =� � .

The second and fourth equalities in (3.7) follow from the condition of equality of period-average dissipation rates, as in
the standard model. This, according to (4.7), is equivalent to zero deviations of stresses and inelastic strains in dissipative norms

| | ( )| | | | ^( )| | , | | ( )| | | |^ ( )| |s st t t tD D
p

D
p

Ds s′ ′ ′ ′= =� �
ε ε

.

5. Mechanical Features of Various Harmonic-Linearization Schemes. Let us compare the above-mentioned two
harmonic-linearization schemes by an example of the generalized Bodner–Partom flow model [69] with thermal recovery
disregarded.

For the case of shear (torsion), the Bodner–Partom model includes the following equations:
Hooke’s law

( )s G e p= −2 ε , (5.1)

the flow rule

| | | |
· exp , ( )ε εp

n

pD
K D

s

s

s
= −

+





















=0

2
1

2 3
0 0, (5.2)

the equation for the scalar isotropic-hardening parameter K

( ) ( )· · ,K m K K W K Kp= − =1 1 00 , (5.3)

the evolution equation for the kinematic-hardening parameter β

| |( ) ( )·
/ · ,β β β= − =m D s s W p

2 1 0 0, (5.4)

where D0 , D1, n, m1, m2 , K 0 , and K1 are the model parameters determined experimentally; and ·
W p is plastic capacity,

· ·W sp p= 2 ε .
Processing the experimental data from [1] for AMg-6 aluminum alloy by the method from [58] produces the following

model parameters:

D0 =104 sec–1, K 0 =323.6 MPa, K1 =647.4 MPa,

n =2.06, m1 =0.182 MPa, m2 =0, G =3.044⋅104 MPa. (5.5)

The cyclic characteristics have been calculated for deformation histories e e t= 0 sin ω .

Figure 5.1 shows a cyclic curve (line 1) for standard monoharmonic approximation | |~ ~s e0 , | | | |~ ~
s G e= 2 0 and the exact

cyclic curve (line 2) ∆s e/ ~2 0 plotted by numerical integration of system (5.1)–(5.4) for frequencyω =2πsec–1. Also, the figure

shows the approximate | |~ ~ε p e0 , | | | |~ ~
ε λp e= 2 0 (line 3) and exact cyclic ∆ε p e/ ~2 0 (line 4) curves for inelastic strain. Curve 5

represents monotonic torsion with constant velocity ·e0 = 0.1 sec–1 (static diagram). It is seen that the standard
harmonic-linearization model produces strongly overestimated amplitudes (ranges) of stresses and inelastic strains. It is obvious
that the cyclic curves generated by the modified model coincide with the exact curves because the latter are incorporated in the

basic relations (3.6) for the components ′G and ′λ of the complex moduli
~
G and

~
λ.
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Figure 5.2 clearly demonstrates the difference between the approximate approaches for e0 =1.8·10–2 and ω =2πsec–1.

Curves 1–3 are the hysteresis loops s versus e for the exact, standard, and modified models, respectively. Figure 5.3 shows

similar loops (ε p versus e) for inelastic strain. When the areas of all the loops are equal (i.e., they are equivalent in dissipation

over the period), the modified and exact models produce equal amplitudes of stress and inelastic strain.

Note that it is very important to associate the coefficient
~
λ with the exact cyclic curve ε p versus e in order to evaluate

low-cycle fatigue based on criteria for amplitudes of inelastic strain such as the Coffin–Manson equation [75] ( )∆ε p
f
bN =const,

where p and b are constants, and N f is the number of cycles to failure.

Figure 5.4a shows the deformation dependences of the moduli ′G e( )0 and ′′G e( )0 at frequency ω =2πsec–1. Curves 1

and 2 represent the modulus ′G calculated by the standard and modified models, respectively. Curve 3 represents the modulus ′′G

identical for both models. The standard model overestimates the cyclic stiffness of the material. It is seen that below the cyclic

plastic limit, eT ≅ 0.003, the material behaves as an elastic body; and when e eT> , the stiffness modulus ′G abruptly decreases

and the loss modulus ′′G abruptly increases with increasing e. The inelastic strain varies nearly linearly: e e ep
T/ 2= − . Thus, the

cyclic behavior of the material is essentially nonlinear.

The mechanical interpretation of the two schemes includes two aspects.

First, the stress amplitude in the standard model is the coefficient of the principal harmonic in the Fourier series of the

function s( )t . The stress amplitude in the modified model, however, is assumed equal to the exact stress amplitude and carries

information on all the Fourier harmonics.

Second, the cyclic diagram si versus ei in the standard model represents the principal harmonic of the stress amplitude,

whereas the analogous curve in the modified model coincides with the experimental curve from [28].

Note also that the differences between the two schemes established above do not give a comprehensive idea of the

accuracy of monoharmonic approximation in general and of each of the schemes in particular. Such an idea can be gained by

comparing the solutions of specific classes of problems obtained based on the exact and each of the approximate models.

6. Generalization of the Approximate Model to Nonstationary Harmonic Deformation [43, 44, 47, 97]. Relations

(3.6) and (3.7) determine the parameters of the modified model for stationary vibrations. Let us consider the case where the

intensity amplitudes vary during cycle stabilization under harmonic loading. According to the harmonic-linearization method,

the complex amplitudes of the strain, inelastic strain, and stress deviators are related in the Nth cycle via the complex shear

modulus
~
GN ,

~
G G iGN N N= ′ + ′′ , and the inelasticity coefficient

~
λ N ,

~
λ λ λN N Ni= ′ − ′′ ,

~ ~ ~ , ~ ~ ~ , , , ,s e eN N N N
p

N NG N= = =2 1 2 3� λ � , (6.1)

where, as before,
~
GN and

~
λ N for proportional loading are functions of the strain intensity, frequency of vibrations, and

temperature

950
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For the standard model, the components of the complex characteristics
~
GN and

~
λ N are defined by
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where ( ) ( )
( )

〈 ⋅ 〉 = ⋅
−
∫N

N T

NT

T
dt

1

1

.

For the modified model, the complex moduli are calculated by formulas (3.6) and (3.7). For example, in the Nth
strain-controlled cycle, the imaginary parts of the moduli are defined by

e eN = 0 ,

〈 ′〉 = 〈 ⋅ 〉 = 〈 ⋅ 〉 = ′′ = ′′D G e e GN
p

N N N Ns s e· ·� ω ωλ0
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0
2 ,

| | | |s

e
G

e

N
N

N
p

N
0 0

2= =~
,

~ε
λ , (6.4)

where| | ( ) | | ( )~
,

~/ /
G G GN N N N N N= ′ + ′′ = ′ + ′′2 2 1 2 2 2 1 2λ λ λ .

In the modified monoharmonic-approximation (MHA) model, the moduli ′GN and ′λ N are determined from the cyclic

diagrams (3.3). Let s s eiN iN= ( , )0 ω and ε ε ωiN
p

iN
p

e= ( , )0 be generalized diagrams that express the dependence of the

amplitudes of stress and inelastic-strain intensities on the intensity e0 in the Nth cycle. Obviously, for cyclically stable materials,

the relations s e s eiN i( ) ( )0 0→ and ε εiN
p

i
p

e e( ) ( )0 0→ are valid for sufficiently large N.

Typical diagrams for AMg-6 aluminum alloy at f = 1 Hz are shown in Fig. 6.1.
Generalizing Eqs. (3.6) and (3.7), we determine the characteristics in the Nth cycle as follows:
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Thus, the nonstationary model contains 3N functions of ei and ω.
7. Nonlinearly Viscoelastic Oscillator [41, 64]. An important problem used to test various models and solution

methods is a nonlinear oscillator at resonance [2].
Consider a shear oscillator, i.e., a mass M suspended from a nonlinear viscoelastic spring (Fig. 7.1). The mechanical

behavior of the spring is described by the nonlinear model of standard viscoelastic body [26], where the tangential stress s and
shear strain e are related by

s G e e e s G e ev v v v= − = − =2
1

2
2 0 00 1( ), · ( ), ( )

η
, (7.1)

where G0 is the instantaneous modulus, and ev is the viscous strain component. The nonlinear properties of the model are
defined by

G G e e e ev v1 01 0 0 0= − = −exp ( | | ), exp ( · | · | )γ βη η , (7.2)

where G01, η 0 , e0 , ·e0 , γ, and β are the model parameters, and e0 , ·e0 , γ, and β characterize the degree of nonlinearity.
The vibrations of a mass M on a vibration shear isolator of area F and height H (Fig. 7.1) are described by the equation

Mx sF Fs t x x·· sin , ( ) , ·( )+ = = =0 0 0 0 0ω , (7.3)

where s0 is the external shear load divided by the area of the vibration isolator, and ω is the frequency of loading.
In view of (7.1), Eq. (7.3) takes the form

·· ( ) sin , ( ) ·( )*e e e e t e ev+ − = = =ω ω ω0
2

0
2

0 0 0 0, (7.4)

where e x H G F HM= =/ , /2 0
2

0ω , and e s G0 0 02* /= .

Relations (7.1) and (7.4) form a closed-form system of equations for e, s, and ·ev . An approximate formulation for the
single-frequency vibrations of the mass results from applying the harmonic-linearization schemes described above. As a result,
we arrive at the following equations for the amplitude e and phase ϕ of forced steady vibrations:
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where ^ /′ = ′G G G0 and ^ /′′ = ′′G G G0 are the normalized components of the complex shear modulus.

The vibration isolator is made of butyl rubber (+28% of black). Processing the experimental data from [88], we obtain
the following parameters of model (7.1), (7.2):

G0 =3.45⋅107 Pa, G01 =23⋅106 Pa, η 0 =2.462⋅106 Pa⋅sec, e0 =95.8, γ =0.89, ·e0 =327, β =1.12. (7.6)

The solid lines in Fig. 7.2 are the deformation dependences of ′G and ′′G calculated for the parameters (7.6). The open
circles stand for the experimental data. Figures 1 and 2 show the modulus ′G calculated by the standard and modified
linearization schemes. It is seen that the material behaves as a nonlinear body over the entire interval of deformation; and ′G

decreases and ′′G increases with increasing strain.
Figures 7.3 and 7.4 show resonant amplitude–frequency curves for the displacements of the mass and the forces in the

vibration isolator, respectively, under load e0
* = 0.12·10–3. The dashed curves have been calculated by direct numerical

integration of the original equations (7.1) and (7.4) over time by the implicit Euler method. The system of nonlinear equations
generated at each time step was solved by the method of successive iteration with Steffensen–Aitken convergence acceleration
[65]. Curves 1 and 2 refer to the standard and modified approaches. Curve 3 in Fig. 7.3 is the linearly viscoelastic characteristic
( · ).e e0 0 0= =

It is seen that within a certain frequency range the standard model is in good agreement with the exact (numerical)
solution in kinematic quantities, yet is inferior to the modified approach in estimating the maximum displacement of the mass in
the resonance domain. These models yield the upper and lower bounds for the stress amplitudes in the vibration isolator,
respectively. As with the displacements, the modified model produces an exacter value of the maximum stress amplitude.
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By and large, the results demonstrate that both harmonic-linearization schemes supplement each other and, when used
together, allow describing the strain and stress resonance characteristics of vibrating systems containing nonlinearly viscoelastic
vibration isolators.

Calculations show that when loads cause a total strain up to 2%, the contribution of higher harmonics to the total
amplitude of vibrations is no greater than 6%. Thus, the use of the MHA model under the conditions of not very strong
nonlinearity leads to just a minor error.

8. Oscillator with an Element Described by the Generalized Flow Model [63]. Consider a shear oscillator (Fig. 7.1)
whose damping element is described by the system of equations (5.1)–(5.4) with parameters (5.5). The vibration equation still
has the form (7.3).

Figure 8.1 shows the calculated components of the complex modulus for the deformation cycle at frequency f = 243 Hz.
Curves 1 and 2 are the strain-dependences of ′G for the standard and modified models, respectively; curve 3 represents the

modulus ′′G equal for both models; and curve 4 is the diagram ∆e ep ( , )ω .

Figure 8.2 shows the frequency dependences of the amplitudes of the total strain e, plastic strain e p , and stresses at
linear resonance frequency f0 = 243 Hz. Similar curves for inelastic strain and stress are demonstrated in Figs. 8.3 and 8.4.

Curves 1 and 2 correspond to e0
* =0.1⋅10–2 and 0.2⋅10–2, respectively. The solid lines have been obtained by direct integration of

problem (5.1)–(5.4), (7.4) over time. The open circles and triangles stand for the results obtained by the standard and modified
models. The thin lines represent the linearly elastic problem. It is seen that the resonance characteristic is soft due to plasticity.
However, the formation of zones of ambiguity is hampered by the high level of internal energy dissipation.

Since aluminum alloys have very low cyclic hardening, the frequency characteristic for stresses has a plateau in the
plastic domain.

An analysis reveals that the standard model is in good agreement with the exact (numerical) solution in kinematic
characteristics—total and plastic strains. However, it strongly overestimates the stresses.

Denote by f * the frequency at which the strain amplitude peaks at a fixed amplitude of excitation. In particular, for e0
* =

0.1⋅ 10–2 and 0.2⋅ 10–2 we have f1
* = 223 Hz and f2

* = 190 Hz, respectively. For f f> * , the modified model is also in good

agreement with the exact solution. It produces a lower bound for strains, and the standard model an upper bound. For f f< * , the

modified model overestimates the inelastic strains.
Thus, to obtain exacter estimates for both strain and stress characteristics, it is worthwhile to carry out double evaluation

of plastic systems using both linearization schemes.
An analysis shows that an increasing load s0 leads to disturbance of the mainly monoharmonic vibration process

because of increased contribution of subharmonics. In this case, the potentialities of the approximate schemes are exhausted; and
reliable information can be drawn with the help of direct numerical integration of the problem.
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9. Complete Formulation of the Thermomechanic Problem for Physically Nonlinear Bodies. The thermodynamics
of the Bodner–Partom model was developed in [7, 45, 46, 71]. The resulting constitutive equations for entropy and dissipation
rates provide a basis for formulating the thermomechanic problem in [18–20, 22, 44, 49]. It includes:

the representation of the total strain as the sum of elastic, inelastic, and thermal components

� � � �= + +e p θ , (9.1)

the Cauchy relations

( )[ ]ε = ∇ + ∇
1

2
� �

u u
T , (9.2)

the expression for thermal strain

( )�θ

θ

θ

α θ θ= ′ ′∫I

0

d , (9.3)

Hooke’s law for elastic strain

( ) ( )s e= − = −2 3G Kp
V� � � �, tr tr θ , (9.4)

the flow equation

( )· exp ,� �p

n

p
D

J

Z

J
= −



























=0

2 2

2
1

2 3
0 0s , (9.5)

the complete evolution equations of isotropic and kinematic hardening

( ) ( )[ ] ( )· · / ,K m K K W A K K K K K Kp K
rK= − − − =1 1 1 2 1 00 , (9.6)

( ) ( )[ ] ( )· · : / ,/
� � � � �= − − =m D W A K Kp D

rD
2 1 1

1 2
1 0 0u V , (9.7)

the equation of motion

div �− =ρ�··
u 0 , (9.8)
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the nonstationary heat conduction equation (energy equation)

( )c K D k rV V
· · ·θ α θ α θ θ+ − − ′− =3 30 0tr � ∆ , (9.9)

the expression for the dissipation rate

′ = ⋅ − ⋅ −D Kp� � � �· · ·δ, (9.10)

where ( ) ( )Z K D J W Dp p= + = ⋅ = ⋅ = ⋅ = ⋅ =, / , · · , / , / ,/ /
2

1 2 1 22s s u s s s V� � � � � � ⋅u,
�

u is the displacement vector; G and

KV are the shear and bulk moduli; and cV , α 0 , and k are the coefficients of thermal capacity, linear thermal expansion at
reference temperature θ θ= 0 , and thermal conductivity, respectively.

According to [58, 69], D0 , D1, K1, m1, m2 , rK , and rD are temperature-independent coefficients; n, K 0 , K 2 , AK , AD ,
KV , and G are functions of temperature; and δ and � are the thermodynamic displacements conjugate to the thermodynamic
forces K and �, respectively. The evolution equations determining them are given in [7, 45].

Boundary and initial conditions close the formulation of the problem.
10. Approximate Formulation of the Thermomechanics Problem for Physically Nonlinear Bodies. Based on the

MHA schemes proposed in Section 2 and 3, the authors of [44, 49] propose an approximate formulation of the thermomechanic
problem for physically nonlinear bodies. The corresponding formulas are presented below:

~ ~~, ~ ~~s e e= =2G p� λ , (10.1)

~e e e= ′+ ′′i , ~s s s= ′+ ′′i , ~� � �p i= ′+ ′′ , (10.2)

~
G G iG= ′+ ′′ ,

~
λ λ λ= ′+ ′′i , (10.3)

where ~e, ~s, and ~e p are the complex amplitudes of the deviators of total strain, stress, and plastic strain;
~
GN and

~
λ N are the

complex shear modulus and inelasticity coefficient, respectively; and the real and imaginary parts of complex quantities are

denoted by (⋅)′ and (⋅)″, respectively.

The moduli
~
G and

~
λ are functions of the intensity of strain amplitude tensor ei

2 , frequency ω, and, in the general case,

temperature θ:

( ) ( )~ ~
, , ,

~ ~
, ,G G e ei i= =ω θ λ λ ω θ ,

where ei
2 = ′ ⋅ ′ + ′′ ⋅ ′′e e e e .

The real and imaginary parts of the complex moduli are determined by formulas (3.6) and (3.7) using cyclic diagrams
calculated by direct numerical integration of the Bodner–Partom equations for uniaxial tension or shear.

Note that, in the general case, the approximate model can be completely specified based on experimental cyclic
diagrams. The Bodner–Partom model is used here to estimate the accuracy of the approximate approach

The equations of the simplified model (10.1)–(10.3) are supplemented with the complex analog of the vibration
equation

div ~ ~
�+ =ρω2 0

�

u . (10.4)

The approximate formulation of the thermoviscoplastic problem includes the period-average heat-conduction equation
that has the following form if the thermoelastic effects are neglected, 3 0α θKV 〈 〉 ≈tr ·� and 9 0αθK cV V/ ≈ :

c k DV N

·
θ θ− − 〈 ′〉 =∆ 0, (10.5)

where θ is the period-average temperature.
Similarly, averaging the expression for the dissipation rate and neglecting the effect of “cold” work, we obtain

〈 ′〉 = 〈 〉 = 〈 ⋅ 〉D Wp
· ·s e . (10.6)
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The system of equations (10.1)–(10.6) is supplemented with complex analogs of the boundary and initial (for
temperature) conditions.

11. Resonant Vibrations and Dissipative Heating of a Homogeneous Disk. The authors of [19, 20, 22] used the exact
and approximate formulations of thermomechanic problems for physically nonlinear materials (Sections 9 and 10) to study the
resonant vibrations and dissipative heating of a homogeneous disk | |z H≤ , 0< <r R, made of AMg-6 aluminum alloy.

The complex characteristics
~
G and

~
λ of the approximate model were determined, by the second approach, from the

cyclic diagrams s e( , )0 ω and ε ωp
ie( , ) for the strain cycle and s si( , )ω and ε ωp

is( , ) for the stress cycle, since these diagrams

can differ depending on whether the cycle is strain- or stress-controlled. To this end, the Bodner–Partom equations were
numerically integrated for the case of a thin-walled cylinder under cyclic torsion. These diagrams and the dissipation
characteristics found were used to calculate, by formulas (3.6) and (3.7), the real and imaginary parts of the complex moduli,
which are needed to solve problems in approximate formulation.

The cyclic diagrams for AMg-6 alloy at f = 230 Hz are shown in Fig. 11.1. Curves 1 and 2 correspond to the modified
approach (strain (hard) and stress (soft) cycles, respectively), and curves 3 correspond to the standard approach (strain cycle). As
is seen, the curves for strain- and stress-controlled cycles of loading differ insignificantly, which confirms the adequacy of the
well-known Serensen–Gusenkov–Makhutov hypothesis.

The values of ′G G/ and ′′G G/ calculated by the modified scheme at f = 230 Hz for a cyclic steady-state deformation
process are presented in Table 1. The loading conditions at the lateral surface r = R of the disk can be written in exact and
approximate formulations as follows:

σ σ ω σrr rz

z

H
t=− =0 0sin , , ~ ,σ σ σrr rzi

z

H
=− =0 0, (11.1)

where σ0 is the load parameter.
The methods of numerical solution of the problem in exact, (9.1)–(9.10), and approximate, (10.1)–(10.6), formulations

are similar to the approaches developed in [18–20, 22, 56].
The disk is characterized by the following geometrical parameters: H = 0.2·10–2 m, R = 0.2 m. The first resonant

frequency of the disk is fr = 246 Hz; it corresponds to the first bending mode. The ambient temperature and the heat-transfer
factor are θc =20 °C, α = 30 W/m2 °C.

The objective of the analysis is to evaluate the capabilities of the approximate approach to solve axisymmetric dynamic
thermoviscoplastic problems.

The exact and approximate models are compared by the following characteristics: intensities of amplitudes of total

shear strains ei , inelastic strains ei
p

, tangential stresses si , period-average dissipation rate ′D , maximum stored energy W, and

volume-average values 〈 ′〉D V and 〈 〉W of ′D andW. The exact and approximate expressions for these characteristics are given in
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Table 2, ~*a a ia= ′− ′′ , ∆ ( ) max( )( ) min( )( )⋅ = ⋅ − ⋅
T T

t t . All the characteristics, except for those averaged over the volume, have been

calculated at the point r =0, z H= for f = 230 Hz and σ0 =50 MPa.
The calculated results are presented in Table 3: exact results in row 1; approximate results based on cyclic diagrams 1–3

(Fig. 11.1) in rows 2–4, respectively; and results obtained by the standard model for stress-controlled cycle of loading in row 5.
The range of axial displacement ∆u z is also calculated at the point r = 0, z = H.

For convenience of comparative analysis, we will identify the approximate models with row numbers in Table 3.
By and large, all approximate models demonstrate very high accuracy of calculating the maximum stress/strain

characteristics and integral energy characteristics. All the models, except for model 3, overestimate the intensity of plastic strain.
From this point of view, model 3 is preferable for low-cycle fatigue based on the Coffin–Manson criterion. This same model
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TABLE 1

ei, % ′G G/ ′′G G/

0.0 1.0 0.0

0.20 1.0 0.0

0.25 1.0 0.0

0.30 0.942 0.139

0.35 0.824 0.245

0.40 0.717 0.298

0.60 0.438 0.330

0.70 0.358 0.316

0.80 0.300 0.298

0.90 0.255 0.280

1.00 0.221 0.263

1.20 0.171 0.234

1.40 0.138 0.209

1.60 0.114 0.189

1.80 0.096 0.172
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Exact formulation Approximate formulation

e e e

e e e

s

i ij ij

i
p

ij
p

ij
p

=






=






1

8

1

8

1 2

1 2

∆ ∆

∆ ∆

/

/

,

,

i ij ij

ij ij
p

T

V

s s

D
T

e dt

D
V

=






′ =

〈 ′〉 = ′

∫

1

8

1

1

1 2

0

∆ ∆
/

,

· ,σ

D dv

W
K

s s

G

W
V

Wdv

V

T

kk

V

ij ij

V

V

,

max ,

.

∫

= +












〈 〉 =

σ2

18 4

1
∫

( )

( )

e e e

e e e

i ij ij

i
p

ij
p

ij
p

=






=






1

2

1

2

1 2

1 2

~ ~ ,

~ ~

*
/

*
/

( )

,

~ ~ ,

Im ~ ~ ,

*
/

*

s s s

D s e

D
V

i ij ij

ij ij

V

=






′ =

〈 ′〉 =

1

2

2
1

1 2

ω

′

= +












〈 〉 =

∫ D dv

W
K

s s

G

W
V

V

kk kk

V

ij ij

V

,

~ ~ ~ ~

,
* *σ σ

18 4

1
Wdv

V

.∫

TABLE 3

Model si, MPa ei, % ei

p
, % ′D , MW/m3 〈 ′〉D V , MW/m3

W, MJ/m2 〈 〉W V , MJ/m2 ∆uz ⋅10, m

1 201.9 0.876 0.576 2072.0 44.6 0.982 0.200 0.188

2 235.1 0.840 0.535 1964.0 46.9 1.342 0.242 0.193

3 200.2 0.926 0.621 2290.0 44.6 0.973 0.204 0.184

4 208.3 0.911 0.601 2293.0 45.3 1.050 0.212 0.186

5 207.0 0.726 0.508 1916.0 37.8 1.040 0.181 0.160



gives the best estimates for volume-average dissipation, stored energy, and displacements. Therefore, this model, which
corresponds to the modified scheme with strain-controlled cyclic loading, will be used below to compare the exact and
approximate approaches.

The spatial distributions of field quantities are compared in the section z = H of the disk (Figs. 11.2 and 11.3). The
triangles and circles stand for the exact amplitudes of loads σ0 =50 MPa and σ0 =75 MPa; and solid lines a and b represent the
approximate solutions for the same loads.

Figure 11.2 shows the vibration mode of the disk. The maximum transverse displacements are observed at the middle of
the disk. Despite the presence of large inelastic strains, the radial distribution of displacements is nearly elastic. The results
produced by the exact and approximate models are in good agreement.

Figure 11.3a shows the intensities ei , ei
p

, and si (curves 1–3, respectively); and Fig. 11.3b shows the distributions of ′D

and W (curves 1 and 2, respectively) obtained in solving the problem in approximate formulation. As is seen, the approximate
and exact results are in good agreement. Both models predict the formation of a zone of inelastic deformation at the middle of the
disk and elastic deformation of its boundary zones. As a result, the stress distribution has a plateau at the middle with values close
to the cyclic yield point. The distribution of the maximum stored energy W has a similar form.

Figure 11.4 shows the amplitude–frequency characteristics for the deflection u z (curve 1), the intensity of tangential

stresses si (curve 2), inelastic strains ei
p

(curve 5), and temperatures θ (curve 4). Curve 1 refers to the left-hand axis, and curves

2–4 to the right-hand axis. The thin lines represent linearly elastic characteristics. Comparing the curves, we identify the main
viscoplastic effects: finite resonant amplitudes, soft characteristics, plateau-like frequency dependence of stress intensity, and
inelastic strains and dissipative heating in a finite frequency range.

12. Resonant Vibrations and Dissipative Heating of a Laminated Disk [99]. To evaluate the capabilities of the
MHA model as applied to piecewise-homogeneous bodies, let us turn to the flexural vibrations and dissipative heating of a
three-layer disk | |z H≤ , 0≤ ≤r R, excited at its edges by a harmonic axisymmetric load. The middle layer | |z h≤ 1 and face layers
h z H1 ≤ ≤| | are made of dissimilar viscoplastic materials and are in perfect thermal and mechanical contact.
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The geometrical parameters of the three-layer disk are: R = 0.175 m, H =0.2·10–2 m, h1 = 0.1·10–2 m. The resonance
frequency of the disk in the first axisymmetric bending mode is fr = 248 Hz. The excitation frequency f is also equal to 248 Hz.
The temperature θ0 is equal to 20 °C. The domain of interest was partitioned into a fine finite-element mesh. A typical mesh
contains 140 quadrangles and 469 nodal points.

Figure 12.1 allows us to assess the accuracy of the approximate model. The circles and triangles stand for the nodal
intensity of stresses and inelastic strains calculated by the exact model for σ0 = 70 MPa. It is seen that the amplitudes of

intensities of stresses and inelastic strains calculated by the exact model fit well the diagrams s ei i( )and e ei
p

i( )obtained by the

approximate model for a strain cycle.
The exact and approximate results are compared by the same characteristics as in Section 11 (Table 2). All the

characteristics, except for those averaged over the volume, are calculated at the point r = 0, z H= for f = 248 Hz andσ0 =70 MPa.
The results are presented in Table 4. The first and second rows contain the exact and approximate solutions,

respectively. The data are in good agreement.
The radial distributions of field quantities are compared in the section z = H (Fig. 12.2) and the thickness distributions at

the disk center, r = 0 (Fig. 12.3). The solid lines represent the approximate results and the symbols stand for the exact solution.
Lines 1 and the diamonds refer to the displacement ranges u z ; lines 2 and the open squares to the intensities of amplitudes of total

strain deviators ei ; lines 3 and the full squares to the intensities of amplitudes of inelastic strain ei
p

; lines 4 and the triangles to the

intensities of amplitudes of stress deviators si ; curve 5 and the open circles to the period-average dissipation rate ′D , and lines 6

and the full circles to the temperature increment θ θ− 0 .
An analysis of Fig. 12.2 reveals that the distributions of field quantities are determined by a vibration mode

characteristic of the resonance in the first axisymmetric bending mode, for which the maximum displacements and total and
inelastic strains are observed at the middle of the disk. The radial distribution of displacements is nearly elastic, despite large
inelastic strains. At the middle of the disk, the stress distribution has a plateau with a stress level close to the cyclic yield point.
The exact and approximate solutions and also the solution for a homogeneous disk are in good agreement [19, 22].
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TABLE 4

Model si, MPa ei, % ei

p
, % ′D , MW/m3 〈 ′〉D V , MW/m3

W , MJ/m2 〈 〉W V ,
MJ/m2

∆uz ⋅10,
m

Exact 203.4 0.875 0.575 2276.0 61.9 1.048 0.284 0.141

Approximate 199.7 0.898 0.599 2348.7 57.4 0.967 0.259 0.147



The nonuniformity of the stress–strain state is illustrated in Fig. 12.3. Since the fields are symmetric about the median

surface, only half the distribution is shown: ei and ei
p

for negative values of z, and si and ′D for positive. The thickness

distribution of temperature is asymmetric for the chosen boundary conditions and is shown completely.
In contrast to the deformation characteristics, the intensity of stresses is characterized by a discontinuity at the interface.

However, this discontinuity in the distribution ′D is much weaker because of the high uniformity of deformation distributions.
As in Fig. 12.2, the exact and approximate data are in good agreement.

Figure 12.4 shows the amplitude–frequency characteristics for u z , ei , ei
p

, si , and D′ and also the

temperature–frequency characteristic. The curves are numbered as in Figs. 12.2 and 12.3. The thin lines represent linearly elastic
characteristics. The quadrangles stand for the exact values of the above-mentioned quantities at the frequency of linear
resonance. These data are in good agreement with the approximate results.

The amplitude–frequency characteristics have the following features determined by the viscoplastic behavior of the
disk: finite resonant amplitudes, soft nonlinearity, and strong frequency dependence of stress intensity. Moreover, plastic
deformation and, consequently, vibrational heating occur within a finite range of frequencies near resonance.

The conclusion that the exact and approximate results are in good agreement is supported by the solutions of plane and
axisymmetric problems [6, 8, 12, 21, 47, 48, 96–98].

Thus, the above formulations can be used in low-cycle fatigue analysis of structural members by introducing either
Coffin–Manson-type criteria or the evolution equations for damage parameters.
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13. Generalized Approximate Model of Microplastic, Macroinelastic Behavior. The authors of [15] proposed a
generalized model that allows us, based on the concept of complex moduli, to uniquely describe the cyclic properties of the
material in both microplastic and macroinelastic domains.

The amplitude dependence of complex characteristics can be specified in two ways: (i) based on experimental results
from studies of dynamic properties in the microplastic and macroinelastic domains and (ii) based on the general relations of
multimodal viscoplasticity [7, 46], with one or several lower modes corresponding to microplastic deformation and higher
modes to macroinelastic deformation.

To specify these characteristics for the case of microplasticity, we can use the experimental data from [27, 29] on the
dependence of the loss angle and absorption factor on load. In processing the data obtained from tension–compression
experiments, it is assumed that the bulk modulus KV is a real constant. In this case, Poisson’s ratio is a complex characteristic
( ~ν ν ν ν= = ′− ′′i ).

Figure 13.1 demonstrate the generalized shear characteristics for two materials: 12KhN3A steel (curve 1) and AMg-6
aluminum alloy (curve 2) for frequency f = 250 Hz. In the figure, the curves of ′G ei( )and ′′G ei( )for microplastic (dashed lines)
and macroinelastic (solid lines) domains are joined near the cyclic yield point e ei iT= ≈ 0.3%. As a result, the generalized
dependences ′G ei( ) and ′′G ei( ) are represented by curves 1a and 1b, consisting of dashed and solid sections, for steel and by
similar curves 2a and 2b for aluminum alloy. Dash-and-dot curves 2b and 1b corresponding to macrolosses in the transition
domain are replaced with higher microplastic damping.

The curves of ′G practically coincide (to within graphical accuracy) with the curves plotted regardless of
microplasticity. The curves of ′′G differ essentially. In the macroinelastic case, ′′ ≡G 0 for e ei iT< . In the generalized model,

′′ ≠G 0 in the same domain because of microplastic intrinsic losses.
Though the transition domain is, apparently, of complex structure and has not been studied well enough, the piecewise

approximation of the amplitude dependence of the characteristics is used for simplicity (Fig. 13.1). Their common feature is
abrupt increase in intrinsic losses for e ei iT> .

The capabilities of the model are illustrated by an example of flexural vibrations of a three-layer beam (0≤ ≤x L,
| |z Hs< / 2, where Hs is the total thickness (H h h hs = + +1 2 3 , where h1, h2 , and h3 are the layer thicknesses)). Here L=0.76 m,

H hs y= =0.3⋅10–1 m, h h1 3= =0.3⋅10–2 m, and h2 =0.24⋅10–1 m.

Vibrations are excited by moments applied at the ends x L= 0, ,

M
H

t M tx
xx s=− =−

σ
ω ω

0 2

06
sin sin ,

where σxx
0 is the load parameter.

The middle layer of the beam is made of steel, and the face layers of aluminum alloy. Their characteristics are
represented in Fig. 13.1. The frequency of the first symmetric linearly elastic resonance of the beam is fr1 = 252 Hz.
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Figure 13.2 shows the resonant amplitude–frequency characteristics for the intensity of shear stresses at the point

x =0.38 m, z =0.15⋅10–1 m (the point of maximum intensity in the AMg-6 layer) for different values (in MPa) of σxx
0 .

The authors of [15] introduced the concept of conditional critical load, which determines microplastic–macroinelastic

transition. It is a load σ σxx T
0 = * under which the intensity of amplitudes of inelastic strains reaches a level determined by some

tolerance. It is equal to 0.2%, by analogy with the technical theory of plasticity.
This quantity can be used to evaluate fatigue strength and thermal state in the domain of transition from high-cycle to

low-cycle fatigue.
It was established that the critical load for the aluminum layer corresponding to the tolerance for the intensity of

macroinelastic strains is σT
* =1.5 MPa. Thus, the curve for σxx

0 =1.0 MPa still refers to the microplastic domain. For σ σxx T
0 > * ,

macroinelasticity becomes the dominant nonlinear factor. Therefore, at the resonant frequency, the curves for σxx
0 = 2.5, 10,

50 MPa have a plateau-like form, typical for plastic materials, with s si T
max ≈ , where sT is the cyclic limit of inelasticity in

torsion.

Each layer can be characterized by an individual critical load σTN
* , where N is the layer number. However, they appear

practically equal because of the small thickness of external layers and close deformation limits of inelasticity. For other geometry
and other materials, the critical loads may be different.

Let us consider the damping characteristics of a beam with microplastic losses taken into account. Figure 13.3
demonstrates how the level of loading of the three-layer beam affects the maximum stationary redundant temperature of
vibrational heating for two excitation frequencies: f = 252 Hz (curve 1) and f = 1 Hz (curve 2). As expected, the levels of heating
are equal at resonance under lower levels of loading than those in the case of quasistatic vibrations. However, in the latter case,
the heating temperature increases abruptly after the critical load is exceeded, by analogy with the absorption factor.

14. Cyclic Deformation of Bodies with Stress Concentrators. The exact and approximate analyses of bodies with
stress concentrators, in particular internal defects are compared in [9, 11, 13, 50, 90]. It was established that the stress and strain
concentration factors calculated using the exact and approximate models are in good agreement.

The authors of the cited publications assessed reversible and irreversible temperature effects at internal and surface
concentrators in inelastic bodies and discussed the possibilities of using them to identify damages.

An unexpected result was that there is no local vibrational heating near the cut despite the high level of stress/strain
concentration. This is due to the high thermal diffusivity of metals. Recent studies indicate that the effects of local heating are
better manifested in polymeric bodies [59, 74]. A theoretical analysis reveals that such effects also occur in metal bodies at
ultrasonic frequencies of loading.

15. Thin-Walled Elements. The physical MHA equations mentioned above were used in [10, 23, 24, 96] to construct
an approximate dynamic thermomechanical model of thin-walled elements, based on the Kirchhoff–Love hypotheses.
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It turned out that both local and integral stress/strain and thermal characteristics obtained by the exact and approximate
models are in good agreement.

Recently much attention has been given to new principles of controlling the vibrations of structural members, in
particular thin-walled members [95]. The authors of [16, 17] generalized the results mentioned above to thin-walled members
containing both passive metal layers and active piezoelectric layers. The paper [14] substantiated a linear control law of electric
potential with a complex control factor that allows suppressing completely the resonant vibration of the beam. In this case,
dissipative heating is not due to the dissipation of mechanical energy but rather due to the dielectric losses in piezoactive layers.

16. Allowing for Damageability. An important effect that accompanies cyclic deformation and characterizes the state
of the material is damage [87].

Damage incorporated into the constitutive equations considered above increases the rates of both elastic and inelastic
strains; though the latter is more important for plastic metals. In the generalized flow models, the isotropic damage parameter Ω,
0 1≤ ≤Ω , is introduced into the flow equation (9.5) as a softening parameter that decreases resistance to inelastic deformation.
This is done by replacing the hardening parameter Z in Eq. (9.5) by Z( )1−Ω [69]. According to [86], the critical level of damage
causing failure of metals ranges from 0.15 to 0.85.

Bodner and Chen [70] proposed the following equation for isotropic damage under multiaxis stress:

·
ln · , ( )Ω

Ω
Ω Ω=



 


 ≈

+
p

H
Q

p

p1
0 0

1

, (16.1)

where the generalized stress ·
Q is defined [80] by

( )·
Q A B CIeff

z
= + ++σ σ1 1 , (16.2)

where σ1
+ is the maximum principal tensile stress; σeff = ( ) /3 2

1 2J ; I1 is the first invariant of the stress tensor; and p, H, A, B, C,

and z are material constants, A + B + C = 1.
The authors of [70] demonstrated that the replacement Z Z→ −( )1 Ω in combination with Eqs. (16.1) and (16.2) provides

good fit to experimental data.
In monoharmonic approximation, damage is allowed for by including the parameter Ω in the set of arguments of the

complex shear modulus. For some materials such as rock, a similar dependence can also be considered for the bulk modulus. For
proportional loading, we obtain

( ) ( )~ ~
, , , , ,G G e K KV V= =ω θ θΩ Ω . (16.3)

Equation (16.1) remains the same. However, the parameter Ω is regarded as averaged over the period of vibrations,
Ω Ω→ 〈 〉 .
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The effective stress in (16.2) may be replaced by its amplitude analog:

( )·
Q A Bs CIi

z= + ++σ1 1 . (16.4)

17. Disproportionate Cyclic Loading. Extensive experimental data show that the dependence of material functions
only on the intensity of strain or stress adequately describes the behavior of materials that are subject to proportional (simple)
loading. Models of inelasticity are generalized to the case of disproportionate loading by introducing new parameters and
complicating the flow rule. In particular, the flow rule (9.5) in the Bodner–Partom model is modified as follows [69]:

· ( )ε λ λij
p

ij ijs g Fn= + , (17.1)

where nij is a tensor normal to the stress deviator sij ; F is a dimensionless function of hardening parameters; and g ( )λ is the
Heaviside function that is equal to 1 in the inelastic domain.

The tensor nij is a deviator and is expressed in terms of the components of the deviator of total strain rate

( )n e e u uij ij kl kl ij= − ⋅ ′ ′· · , (17.2)

where ′uij determines the direction of the tensor sij , ′ =u s sij ij ij/| | .
The tensor nij is nonzero only in the case of disproportionate loading.
Success in the approximation of experimental data strongly depends on the choice of additional scalar or tensor

measures of disproportionate loading. The possibilities arising here were tested in [68, 72, 76, 84, 85, 93, 94] for various models
of plasticity and viscoplasticity. Let us consider, within the framework of the monoharmonic-deformation model, the phase
difference between two components of the strain tensor.

Consider the MHA relation (1.4). In the Cartesian coordinate system Ox x x1 2 3 for ε ij =0, we have

| | ( )ε ε ω ϕij ij ijt t i j( ) ~ cos , , , ,= + =1 2 3, (17.3)

where ϕ ij are phases, cos /|~ | , sin /|~ |ϕ ε ε ϕ ε εij ij ij ij ij ij= ′ = ′′ .
Selecting the phase ϕ11 of the component ε11 as reference and using (17.3) for the phase difference ψ ϕ ϕmn mn= − 11

between the components ε mn and ε11, we obtain

| || |sin
·

~ ~ ~ψ
ω

ε ε

ε ε ω
ε ε ε ε

εmn
mn

mn

mn mn=
〈 〉

=
′′ ′ − ′ ′′2 211

11

11 11

| || |mn

m n~ , , , ,
ε11

1 2 3= .

It is obvious that when loading is proportional, i.e., ′′ = ′ε ηεmn mn , η = const, we have sin ψmn = 0. If the phase shift is
equal to 90°, then sin ψmn =1. Five values of sin ψmn provide a complete set of phase differences of strain components.

Mechanical considerations suggest that any parameter of disproportion A does not depend on the reference phase ϕ 11,
i.e., satisfies the identity A Amn mn( ) ( )ψ ψ ϕ≡ + 11 , where ϕ11 is an arbitrary perturbation of the reference phase ϕ 11.

The following five difference parameters satisfy this condition:

( ) ( ) ( ) ( )S = − − − −sin ,sin ,sin ,sin ,sinψ ψ ψ ψ ψ ψ ψ ψ ψ12 13 13 23 23 22 22 33 ( ){ }33 12−ψ ,

and

( ) | || |sin ~ ~ψ ψ
ε ε ε ε

ε ε
lk pq

pq lk lk pq

lk pq

− =
′ ′′ − ′ ′′

.

To generalize the concept of complex moduli to the case of disproportionate loading and to allow for the effect of
additional cyclic hardening, an additional set of parameters S are included in the set of arguments of complex moduli:
~ ~

( , , , )G G e Si= ω θ . The same set of parameters S can also be introduced into Eqs. (16.1), (16.3), and (16.4) of the damage model to

allow for the effects of disproportionate loading on fatigue strength.
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