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Abstract
The fifth generation (5G) networks are characterized with ultra-dense deployment of base stations with limited footprint. 
Consequently, user equipment’s handover frequently as they move within 5G networks. In addition, 5G requirements of 
ultra-low latencies imply that handovers should be executed swiftly to minimize service disruptions. To preserve security and 
privacy while at the same time maintaining optimal performance during handovers, numerous schemes have been developed. 
However, majority of these techniques are either limited to security and privacy or address only performance aspect of the 
handover mechanism. As such, there is need for a novel handover authentication protocol that addresses security, privacy and 
performance simultaneously. This paper presents a machine learning protocol that not only facilitates optimal selection of 
target cell but also upholds both security and privacy during handovers. Formal security analysis using the widely adopted 
Burrows–Abadi–Needham (BAN) logic shows that the proposed protocol achieves all the six formulated under this proof. 
As such, the proposed protocol facilitates strong and secure mutual authentication among the communicating entities before 
generating the shares session key. The derived session key protected the exchanged packets to avert attacks such as forgery. 
In addition, informal security evaluation of the proposed protocol shows that it offers perfect forward key secrecy, mutual 
authentication any user anonymity. It is also demonstrated to be robust against attacks such as denial of service (DoS), man-
in-the-middle (MitM), masquerade, packet replays and forgery. In terms of performance, simulation results shows that it has 
lower packets drop rate and ping–pong rate, with higher ratio of packets received compared with improved 5G authentica-
tion and key agreement (5G AKA’) protocol. Specifically, using 5G AKA’ as the basis, the proposed protocol reduces the 
handover rate by 94.4%, hence the resulting handover signaling is greatly minimized.
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1 Introduction

Mobility management in wireless networks comprises 
of location management and handover management. The 
handover mechanism is critical for sustaining mobile node 
IP sessions as the user equipment (UE) shifts between points 
of access (APs). Although Mobile Internet Protocol (MIP) 
is the most widely adopted scheme for IP services, it is 
incapable of handling high speeds and frequent changes of 
UE’s movements. Authors in [1] further explain that MIP 

handover leads to high latency and high packet drop rate that 
degrade network performance. To enhance network quality 
and performance in mobile networks, handover management 
is very significant. This is especially for the fifth generation 
(5G) which offers higher data rates, spectrum efficiency, 
energy consumption, quality of experience, massive con-
nectivity and lower latencies compared with fourth genera-
tion (4G) networks [2]. As explained in [3], the deployment 
of heterogeneous networks (HetNets) consisting of ultra-
dense macro and micro cells render handover management 
extremely challenging. As such, seamless handovers still 
remain a mirage in the face of numerous handover protocols 
that have been developed so far.

Authors in [4] attribute this to the handover module of 
the entire handover mechanism. The handover algorithm 
comprises of three phases which include handover trig-
ger, registration and data forwarding. Whereas handover 
trigger involves events that may initiate the handover, the 
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registration phase deals with the selection of the best target 
AP to handover the UE to. On the other hand, data forward-
ing is the redirection of active sessions towards the new 
target AP. Here, triggering handovers too early or too late 
result in handover failures and hence accurate prediction 
of handover trigger timing is vital in the enhancement of 
the handover performance, ensuring seamless transitions 
between APs. As noted in [5], although numerous schemes 
have been developed for optimal selection of APs via pattern 
matching, probability analysis and prediction models, very 
few of them have been dedicated to handover trigger time in 
5G networks such as vehicular networks. When deployed in 
5G scenarios, the conventional MIP is unable to handle both 
UE’s high speeds and directional changes which results in 
service disruptions and performance degradation [6]. This 
is an issue that requires urgent solution to boots both quality 
of service (QoS) and quality experience.

1.1  Intelligent Handover Prediction and Decisions

Accurate handover initiation events predictions are impor-
tant during the trigger phase if ping–pong handovers and 
failures are to be controlled [7]. Since the conventional 
handover trigger relies on fixed network quality thresh-
olds such as received signal strength (RSS) and signal to 
noise ratio (SNR), the entire handover is rendered ineffi-
cient in real-time applications such as vehicular networks 
with dynamic mobility. As pointed out in [1], high vehicular 
mobility coupled with dynamic network topology in 5G net-
works degrades the performance of conventional mobility 
management protocols. Consequently, seamless wireless 
communications over these networks is still quite challeng-
ing. The incorporation of many radio access technologies 
in cellular networks imply that the UEs must flexibly select 
the radio technology to connect to based on location and 
availability. This calls for intelligence and autonomy of the 
UEs so as to select only the best technology for the com-
munication process.

To prevent service disruptions occasioned by long hando-
ver latencies, numerous intelligent-based models have been 
developed for the estimation and prediction of the handover 
ahead of time [8]. This facilitates early resource allocation, 
and artificial neural networks (ANN) have been heavily 
deployed in these predictions [9]. However, most of these 
intelligent-based models are executed offline and have high 
computational complexity. In addition, authors in [3] dis-
cuss that although handover is one of the most cumbersome 
key performance indicators in cellular networks, majority of 
past research work has focused on predicting handovers for 
individual UEs. These individual predictions are complex 
to implement in real networks with massive cells and users. 
As explained in [10], handovers across networks require 
upholding of QoS, lower costs and consolidated billing to be 

put into consideration. In addition, pro-active preparations 
must be carried out to address ideal target discovery issues 
during 5G handovers. Authors in [11] point out that massive 
random deployment of small cells in 5G networks render 
network management and handover parameters optimization 
very cumbersome.

1.2  Challenges in Conventional 5G Handovers

Most of the current 5G handover schemes are reactive and 
hence incurs long latencies which reduce QoS and Quality 
of Experience (QoE) [12]. The handover completion time 
ranges from several hundred milliseconds [13] to 4 s [14]. 
In these handover protocols, performance degradation is 
required to trigger the handover and hence lacks advance 
dynamic resource allocations. In addition, many of them 
rely on only one metric such as Received Signal Strength 
Indicator (RSSI) and require changes to the underlying cel-
lular network or UE. The reliance on only RSSI implies lack 
of comprehensive network, UE or user metrics such as traffic 
load or UE stability and hence perceived QoE of the user 
after the handover is ignored [15]. Despite this discrepancy, 
little efforts have been directed towards the deployment of 
multi-criteria encompassing parameters.

Long latencies during handover result in service disrup-
tions and to address this, authors in [16] call for the develop-
ment of an efficient mobility management protocol. In addi-
tion, an efficient scheme for the determination of the most 
ideal wireless network among the available ones has been 
advocated in [17]. Considering 5G vehicle ad hoc networks 
(VANETs), the rapid vehicle mobility between APs intro-
duces some challenges towards seamless connectivity with 
access routers. Authors in [16] identify accurate mobility 
management scheme capable of predicting vehicle mobil-
ity and network quality as a viable solution. Apart from 
performance issues, security and privacy are other issues 
that require to be addressed in highly dynamic 5G networks. 
However, requirements for ultra-low latency communica-
tions and high connection densities render the design of 
secure and efficient handover authentication protocols quite 
tricky. In some instances, the massive UE devices with con-
current active connections may initiate access requests or 
handovers, which call for the execution of secure and effi-
cient access authentications before call admission. The 3rd 
Generation Partnership Project (3GPP) has defined 5G’s 
improved Authentication and Key Agreement (5G-AKA’) 
for handover authentication [18]. However, this protocol is 
susceptible to de-synchronization, replay attacks, jamming 
attacks and lacks perfect forward secrecy.

For access authentication, full Evolved Packet System 
Authentication and Key Agreement (EPS-AKA) must be 
executed between each UE and the network. Unfortunately, 
the EPS-AKA has inherent security, privacy and efficiency 
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issues. The requirement by EPS-AKA that each device 
execute full access authentication process results in heavy 
signaling between UEs and 5G core network key nodes that 
potentially causes long authentication latencies. As pointed 
out in [19], attacks and privacy issues in EPS-AKA include 
packet redirections, MitM, denial of services (DoS) and pri-
vacy leaks. Consequently, the development of secure and 
efficient authentication protocols for these networks is key. 
Authors in [20] explain that cellular network handovers 
must be robust against attacks, which requires proper user 
authentication.

Although many handover authentication techniques have 
been proposed, they have either high handover latencies or 
high computation overheads. As such, there is need for the 
development of efficient handover authentication protocols 
to address these issues. Enhancement of QoS during verti-
cal handovers has been identified in [21] as being extremely 
challenging. To prevent interruptions to the ongoing calls 
and reduce data losses, efficient handover protocols need 
to be developed so as to facilitate seamless connections 
between source and target cells. As explained in [22], seam-
less connectivity can be assured by the incorporation of user 
preferences and network conditions during handover deci-
sions. However, mobility management in the face of service 
continuity maintenance is a very complicated task. In 5G 
roaming scenarios, handover security and efficiency must 
be upheld [23]. However, the current handover authentica-
tion techniques have anonymity, traceability and universality 
issues. In addition, authors in [24] identify long handover 
latencies and the focus on either only security or QoS as 
some of the issues with conventional handover techniques. 
Consequently, the usage of these inefficient schemes in 5G 
handovers increases latencies and degrades performance.

Based on the foregoing discussion, it is clear that most 
of the current handover techniques fail to comprehensively 
incorporate critical environmental factors that influence the 
dynamics of wireless networks. Consequently, majority of 
these schemes are not applicable in 5G and beyond networks 
[25]. On the other hand, mobility management and resource 
utilization have been identified in [26] as the most crucial 
research interest in wireless mobile multimedia networks. 
In addition, authors in [27] stress on the significance of an 
efficient handover scheme for underwater nodes seamless 
communication. In terms of security and privacy, most of 
the current schemes concentrate on performance and ignore 
these two aspects of the handover mechanism.

1.3  Attack Models

In this paper, it is assumed that the communication among 
the various network entities is insecure. It is also assumed 
that an attacker can brute force low entropy ephemerals in 

polynomial time. With these assumptions, the following 
attacks are possible.

• Forgery attacks: The goal of this attack is to eaves-drop 
the communicating channel so as to obtain user equip-
ment (UE) secrets. Using the obtained secrets, an adver-
sary makes an attempt of fooling other network entities 
about its identity. In addition, an attacker may try to forge 
the session key shared among the communicating enti-
ties.

• Packet replay attacks: To carry out this attack, an 
adversary captures current session security parameters, 
modifies them and then re-transmits them in subsequent 
authentication phase. The captured parameters may 
include the identities of communicating parties or secu-
rity tokens incorporated with authentication requests. 
The aim is then to fool the recipient that these security 
parameters are emanating from the impersonated entity.

• Masquerade attacks: the ultimate objective of this attack 
is to impersonate a particular gNB. Afterwards, unsus-
pecting UEs send authentication requests to this fake 
gNB. In the process, UE’s secret parameters are learnt 
that are then used to as vector to launch further attacks 
such as packet replays and redirections.

• MitM attacks: In this attack, an adversary attempts to 
derive new session key based on the security parameters 
captured over the transmission channels. Any success-
ful attack may enable an adversary to interrupt the cur-
rent communication session. In addition, integrity of the 
transmitted data may be compromised should an attacker 
modify the captured security parameters before forward-
ing them to unsuspecting recipient.

• DoS attacks: The aim of this attack is to transmit massive 
captured and pre-stored authentication messages to the 
communication entities. This can effectively overwhelm 
the core network recipients or UEs to an extent that they 
cannot attend to other received authentication requests. 
In worst case scenario, the targeted communicating entity 
can crush, hence denying legitimate entities the requested 
services.

To address these security attacks, the proposed protocol 
incorporated salient security features such as random non-
ces, temporary keys, dynamic ephemerals and session keys. 
This is illustrated in Sect. 1.5 that follows.

1.4  Our Contributions

The contributions of this paper are two-folds: a protocol 
that uses machine learning to adaptively learn the prevail-
ing network conditions and predicting the handover instant is 
developed. Simulation results show that this serves to mini-
mize handover rates, ping pongs, average packet drop rates, 
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and hence lead to a higher number of successfully received 
packets compared to the 5G AKA’ protocol. In terms of 
security during the handover process, the proposed protocol 
offers strong mutual authentication among the communicat-
ing entities before deriving the shared session key among 
them. This is shown to prevent numerous attacks discussed 
in Sect. 1.4 above. The specific contributions of this paper 
include the following:

• We develop an intelligent handover protocol capable of 
predicting the handover instant and target cell so as to 
minimize service disruptions and ping-pong handovers.

• We deploy multi-criteria handover decision encompass-
ing user, network, service and UE requirements so as to 
enhance both QoS and QoE after handover.

• Ephemerals and nonces are utilized to randomize ses-
sion keys and authentication messages to protect against 
security attacks and privacy violations.

• Through the widely adopted Burrows–Abadi–Needham 
(BAN) logic and informal security analysis, we show that 
the proposed protocol is resilient against most of the con-
ventional cellular network attacks.

The rest of this paper is structured as follows: Sect. 2 dis-
cusses related work while part 3 outlines the system model. 
Section 4 presents and discusses the simulation results while 
part 5 concludes the paper and gives future work.

2  Related Work

The usage of intelligent based schemes for performance 
improvements during handovers has attracted great attention 
from both the industry and academia. However, very little 
of these protocols address both performance and security 
issues during the handovers. For instance, authors in [28] 
have developed an RSSI based 5G HetNet handover trigger 
scheme while a two-tier machine learning-based scheme has 
been introduced in [1] for vehicular networks handover man-
agement. Similarly, a machine learning (ML) protocol has 
been presented in [3] while a user preference self-selection 
decision tree based scheme has been developed in [29] for 
handover latency reduction. On the other hand, an ANN 
based handover approach has been introduced in [20] while 
a fuzzy logic (FL) speed adaptive vertical handoff decision 
protocol has been developed in [30]. However, the scheme 
in [30] depends on centralized selection approach and hence 
cannot scale well with increased communication load. 
Authors in [31] have introduced a feed forward ANN based 
handover management technique to enhance QoE while an 
FL multi-terminal based protocol has been presented in [32]. 
Although the scheme in [32] fulfilled user preferences and 
application requirements, it is inapplicable in 5G networks.

A hybrid artificial intelligent handover decision has been 
introduced in [4] to boost QoS while authors in [33] have 
proposed an ANN based handover using RSS for handover 
decision. A multi-layer feed forward ANN handover deci-
sion scheme has been presented in [22] for HetNets while 
authors in [34] have developed a FL based handover tech-
nique coupled with Kalman filter for handover initiation 
reduction. Similarly, a FL based handover decision scheme 
has been presented in [35]. On the other hand, historical 
handover data and K-nearest neighbor (KNN) ML technique 
have been utilized in [10] for handover decision predictions 
while an ML handover decision approach has been devel-
oped in [36] to enhance handovers between micro and 5G 
mmWave bands. However, handovers between 5G base sta-
tions were never considered in [36]. Authors in [37] have 
introduced a neural fuzzy multi parameter-based handover 
decision scheme while a multi-criteria FL based technique 
has been presented in [38]. However, the algorithm in [38] 
never considered SINR. Similarly, a fuzzy logic handover 
algorithm has been developed in [39] while a HetNet ANN 
scheme is presented in [40]. However, the approach in [39] 
failed to incorporate more comprehensive network factors. 
Similarly, an ANN handover decision technique has been 
developed in [41] for reductions of both latencies and fre-
quency of handovers while an ANN handover scheme for 
QoS enhancement, handoff rate and call blocking reductions 
has been introduced in [42].

To ensure seamless connectivity, authors in [21] present 
an ANN based handover technique while a smart handover 
protocol based on fuzzy neural network is introduced in [43]. 
To offload tasks between fog nodes and facilitate seamless 
transitions between APs, authors in [44] present a learning-
based handover optimization technique. In [45], an ANN 
based handover prediction model is introduced, although this 
scheme can only handle one-step ahead prediction. In addi-
tion, this approach has not been utilized for RSS prediction 
during handover decision making procedures. Authors in 
[46–49] have deployed neural network approaches for hand-
over decisions. Although these schemes boost efficiency, 
these algorithms are very complicated. Using available 
bandwidth, current RSSI and future RSSI, authors in [50] 
present a FL based handover technique while a self adaptive 
FL based handover scheme is introduced in [51] that was 
shown to have reduced ping-pong handovers and latencies. 
Similarly, a self-selection decision tree using user prefer-
ences is developed in [52] to reduce handover latencies.

A fuzzy logic based handover protocol is presented 
in [53] that was shown to yield better performance than 
RSSI based scheme. On the other hand, predictive RSS 
and dwell time have been utilized for ANN based hando-
ver decision scheme in [54]. However, features that had 
the greatest effects on the handover decision have not 
been elaborated nor has the evaluations been done under 
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vehicular mobility. To accurately predict handover trigger 
time, authors in [16] introduce a neural network based 
technique. On the other hand, authors in [55] have pre-
sented a handover scheme to maximize network utiliza-
tion for seamless connectivity. However, the protocol in 
[55] never considered critical network features such as 
transmission rates. An ANN based technique is presented 
in [26] that facilitated accurate prediction of UE future 
position based on user mobility history.

An early binding update registration method is intro-
duced in [56] for vehicular networks that was shown to 
yield improved handoff latencies and packet loses. How-
ever, this approach exhibits high signaling and communi-
cation overheads. On the other hand, handover techniques 
in [35, 37, 57] fail to consider network selection complex-
ity and have high computation costs. To enhance QoE in 
cognitive 5G networks, authors in [58] presented a hando-
ver technique that was shown to have reduced handover 
latency. A multi-criteria ANN handover method is pre-
sented in [25] while a user pattern based neural network 
prediction technique is introduced in [59]. The scheme 
proposed in [50] reduces number of executed handovers 
and enhances QoS while the method in [60] takes into 
consideration UE mobility. However, the protocol in [60] 
takes only the QoS into consideration during handover 
prediction. To offer seamless internet connectivity and 
reduced packet losses, authors in [61] introduce a hando-
ver scheme that also guaranteed session stability.

In summary, most of the intelligent-based handover 
schemes result into high computation costs and are exe-
cuted in an offline manner. As majority of these hando-
ver techniques are based on RSSI, they are incapable of 
choosing the most ideal target cell for handover since per-
ceived QoE of the user after the handover is not taken into 
consideration. In terms of handover security and privacy, 
majority of the protocols discussed above only consider 
performance and ignore these two fundamental issues 
during handovers. Owing to 5G’s ultra-densification, 
group access authentication has been suggested for this 
high number of devices so as to reduce signaling conges-
tions that crop up if each device was to authenticate indi-
vidually [62, 63]. Although group authentication mini-
mizes traffic loads in cellular networks, security problems 
between machine type communication (MTC) devices and 
MTC servers are rarely taken into consideration. Identity 
based direct handover authentication techniques can solve 
this issue [64] but are inefficient due to bilinear pairing 
operations that render them computationally expensive. 
Although block chain based schemes can achieve robust 
authentication [65], they are quite inefficient due to high 
computation and storage costs.

3  System Model

It has been noted that majority of the intelligent handover 
schemes are based on either network parameters or are 
limited to a few handover decision criteria. To address this 
issue, the proposed protocol expanded handover decision 
parameters to incorporate network requirements, user satis-
faction, UE characteristics and service level requirements. 
In this case, the received carrier power represented net-
work requirements; power density, path loss and velocity 
represented UE requirements; traffic intensity and blocking 
probability represented service requirements; while security 
represented user requirements.

In this section, the architecture of the proposed protocol is 
outline and discussed. The proposed system model is divided 
into sub-sections that discuss mathematical preliminaries, 
blocking probability and traffic intensity derivations, power 
metrics determination, artificial neural network, back propa-
gation, handover decision, and handover authentication.

3.1  Mathematical Preliminaries

During back propagation, the following six mathematical 
definitions hold:

Definition 1 Taking m, k and n as the input layer, hidden 
layer and output layer neurons respectively, then the back 
propagation neural network (BPNN) model is constructed 
using the Log-sigmoid transfer function as shown in (1).

Definition 2 Taking Ēi as the expected values of the network 
FOMs results and Ōi as the corresponding output values 
computed by the ANN respectively, the error function is 
computed as shown in (2)

Definition 3 Using the error back propagation algorithm and 
this error function, the weights value of the ANN are con-
tinuously controlled by the error feedback. Taking y as the 
neural network output, Nt as the neuron threshold, Af as the 
activation function, Xj as the jth input layer node, Yj as the 
jth hidden layer node, Oj as the jth output layer node, E as 
the error function and setting neurons input vector as X = (x1, 
x2, x3,……,xm), weights value corresponding to this vector 
in the input neuron is W = (w1,w2,w3,……,wm). Then setting 
network weights to (Wij,Tij), the following BP formulations 
apply:

(1)f (x) =
1

1 + e−x

(2)
E =

∑

i

�

Ei − Oi

�2

2
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Definition 4 Using parameters initialized in Definition 3, the 
outputs of the hidden layer node ( yi ), output of the output 
layer node ( Ol ) and the error of the output layer node ( E) are 
given by (5), (6) and (7) respectively:

Definition 5 The aim of BPNN during training and learning 
is to minimize error E. Consequently, weight adjustment of 
the BPNN and the negative gradient of E are in proportional 
relationship as in (8). On the other hand, the gradient of the 
error function of the hidden layer node is computed as in (9) 
while the gradient of the node error function of the output 
layer is given in (10):

Definition 6 In the proposed protocol, three statistical esti-
mators were utilized to evaluate its performance. These 
mesures were the mean square error (MSE), the coeffi-
cient of determination (R2) and the root mean square error 
(RMSE). Here, RMSE value of zero signifies perfect per-
formance while the closer to 1 the R2 of the linear regres-
sion line between predicted values of the ANN model and 
the required output is, the better the ANN model fits to the 
actual data. Taking N as the total number of points to be 
predicted, Þ as the predicted value, ƙ as the observed value 
and Ǭ as the average of the observed values, then:

(3)Af (x) =

{

1, x ≥ 0

−1, x < 0

(4)y = Af

(

m
∑

i=1

wixi
− Nt

)

(5)yi = Af

(

∑

j

wijxj
− Nti

)

= Af (celli)

(6)Ol = Af

(

∑

j

Tijxj − Ntl

)

= Af (celll)

(7)E =
1

2

∑

l

(tl − Ol)

(8)
�E

�Tli
=

m
∑

k=1

�E

�ok

�ok

�Tli
=

�E

�ol

�ol

�Tli

(9)
�E

�wli

∑

l

∑

i

�E

�ol

�ol

�yi

�yi

�wij

(10)
�E

�Ntl

=

m
∑

k=1

�E

�ok

�ok

�Ntl

=
�E

�ol

�ol

�Ntl

3.2  Blocking Probability and Traffic Intensity

The Erlang C formula was adopted due to its ability of 
implementing call queuing instead of dropping them when 
all resources are in use. Here, calls are put in a waiting queue 
until network resources are available or queue timer expires. 
Its modeling required the number of channels available and 
traffic offered to group as shown in Fig. 1.

On the other hand, traffic intensity is linked to the prod-
uct of average call duration and the average number of call 
requests, and is measured in Erlangs. The inputs to the 
modeling process include average call holding time, fixed 
retry probability, and the average number of call requests as 
shown in Fig. 1.

3.3  Power Metrics Determination

Transmitted power, antenna gain of transmitter, antenna gain 
of receiver, signal wavelength, transmitter antenna height, 
subscriber height, reference distance, path losses at reference 
point, distance between the UE and neighboring eNB are the 
inputs to the power metrics modeling process as illustrated 
in Fig. 2. The measurements that are taken include transmit-
ted power, transmitter height, transmitter and receiver gains, 
wavelength of the transmitted signal, path losses at refer-
ence points, transmitter and receiver antenna gains, and the 
distance between the UE and neighboring eNB. The com-
putations performed are that for effective radiated power, 
received carrier power, area of the carrier beam, power den-
sity, path loss, and the effective isotropically radiated power. 
In accordance with the Friis Model, the received carrier 
power is computed in step (9) of Fig. 2. On the other hand, 
power density is derived in phase (12) while the modified 
SUI path Loss derivation is illustrated in step (15). Taking 
into consideration the eNB output power, and eNB transmit-
ter gain in decibels, the effective isotropically radiated power 
(EIRP) was modeled in phase (21).

3.4  Artificial Neural Network

In the proposed protocol, the artificial neural network was 
deployed to facilitate handover decision and selection of the 
most ideal target cell. This was enabled by the measurement 

(11)

(12)

(13)
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of received carrier power (Pr), power density (PD), path loss 
(PL), UE velocity (VUE), traffic intensity (Ac) and block-
ing probability (Pb). The choice of ANN was informed 
by the fact that it generates accurate results for inputs that 
were never seen during training. In addition, ANN offers a 
straightforward representation for a physical implementa-
tion. To facilitate proactive handovers, the tracking area was 
partitioned into three regions: no handover region (NHR) 
which was very close to the base station, low probability 
handover region (LPHR) which lay immediately beyond the 
NHR and high probability handover region (HPHR) which 
was the fat field of the base station antenna. At the NHR, 
signal strength from the serving base station is very strong 
and hence handover was not possible here. However, signal 
strength at the LPHR is fairly weak and the measuring of 
FOMs is initiated here. Whenever the UE enters the HPHR, 
the trained ANN model is employed to determine the instant 
for the handover as well as the target cell to handover the UE 
to. The computations of handover parameters are grouped 
into two as follows: blocking probability and traffic inten-
sity derivations; and power metrics determination as already 
discussed above.

As depicted in Fig. 3, architecture of proposed handover 
protocol utilizing ANN, which consists of three layers. Here, 
the first layer is composed of six input neurons including 
Pr, PD, PL, VUE, Ac and Pb. On the other hand, the hidden 
layer comprised of numerous nodes using hyperbolic tangent 
sigmoid transfer functions, while the output layer was the 
handover decision.

In the proposed multilayer layered feed-forward ANN, 
artificial neurons are organized in layers and their input 
signals are sent forward and then the errors are propagated 

backwards. Each layer consists of neurons connected to its 
adjacent layer neurons with different weights. The ANN 
was trained through supervised technique in which both 
the inputs and output were utilized for handover prediction. 
Here, the inputs included Pr, PD, PL, VUE, Ac and Pb while 
the output was either one (triggers handover) or zero (no 
handover initiated). Basically, this involved the comparison 
of the obtained output with the target output of the input 
pattern such that if there is any difference between the com-
puted output and target output, then the error is back propa-
gated to input layer as shown in Fig. 3. this constituted the 
mean square error (MSE) of the network. The back propaga-
tion network (BPN) is deployed to reduce this error in the 
hidden layers.

3.5  Back Propagation Algorithm

During back propagation (BP), the network architecture and 
connection weights are updated to improve performance. 
This is accomplished via three steps: forward the input sig-
nals, calculate and propagate error backwards, and update 
the weights. In this protocol, the neuron weights of each 
layer are determined based on theoretical values of the 
maximum transmission power, minimum path loss, power 
density, traffic intensity, UE’s velocity, and blocking prob-
ability. Whenever the UE enters LPHR, the actual values of 
these parameters are computed based on their mathematical 
models. These computed values are then input to the pre-
trained ANN architecture. The predicted values of Pr, PD, 
PL, VUE, Ac and Pb at the hysteresis regions of each of the 
neighbouring cells are obtained and finally the cell with the 

Fig. 1  Blocking probability and 
traffic intensity computations INPUT:   Number of channels available, traffic offered to group, Average call holding time, 

fixed retry probability, the average number of call requests  
OUTPUT: Call blocking probabilities, Traffic intensities, service request input rate 
 
BEGIN: 
/*Blocking probability  */ 

1. Instantiate number of channels available, N 
2. Initialize traffic offered to group, A 
3. Derive the probability that a customer has to wait for service, Pc 

=

∑ +

 

/*Traffic intensity */ 
4. Measure the average call holding time, ℎ 
5. Measure fixed retry probability,  
6. Measure average number of call requests,  
7. Compute traffic intensity,  

=  
8. Derive service request input rate,  

=  

END 
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INPUT: Transmitted power, antenna gain of transmitter, antenna gain of receiver, signal wavelength, transmitter antenna height, 
subscriber height, reference distance, path losses at reference point, distance between the UE and neighboring eNB. 
OUTPUT:  Received power, power density, path loss, effective isotropically radiated power 

BEGIN: 
/*Received carrier power*/ 

1. Measure transmitted power, 
2. Measure transmitter antenna gain, 
3. Measure receiver antenna gain, 
4. Measure wavelength of the transmitted signal, 
5. Measure transmitter antenna height, ℎ
6. Measure distance between the UE and neighboring eNB, 
7. Measure path loss at reference point, ( ) & ( )( )

8. Compute effective radiated power, 

9. Derive the received carrier power,  /* Friis Model */ 

/*Power density*/ 
10. Initialize subscriber height, ℎ
11. Compute area of the carrier beam, 

12. Derive power density,  /* EIRP-Subscriber height Model */ 

=
+ (ℎ − ℎ ) )

/*Path loss*/ 
13. Initialize  , , path loss exponent, , free space path loss, , receiver antenna correction factor, 
14. Instantiate slope correction factor, , reference distance  , shadowing correction factor, , frequency correction factor, 
15. Compute SUI path loss 

( )

16. Derive free-space path loss,  FSPL /* Modified SUI Model */ 

( )( ) ( )( ) ( )

/* Effective isotropically radiated power */ 
17. Instantiate eNB output power, 
18. Initialize combiner, filter or isolator loss, 
19. Instantiate eNB transmitter antenna feeder or connector loss, 
20. Initialize eNB transmitter gain (dBi), 
21. Derive the effective isotropically radiated power,  /* Lossless Model */ 

END 

Fig. 2  Power metrics computations

Fig. 3  Network training Model 
diagram
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highest cell candidacy value (CCV) is chosen as the target 
cell for the UE.

Figure  4 shows the BP algorithm using parameters 
defined above. In BPNN, MSE and gradient descent algo-
rithm are employed to update the connection weights of the 
network and this continuous modification of weight values 
ad offset values render the real network output closer to the 
expected one. The construction of the ANN model required 
the input layer and handover parameters, the design of the 
hidden layer, and the design of the output layer. At the input 
layer, Pr, PD, PL, VUE, Ac and Pb are used for the setting 
of BPNN input layer neurons and the training and learning 
process parameters of subsequent neural network data. To 
ensure that the proposed protocol made effective handover 
strategy using multiple attributes, predictions were made on 
the values of the input parameters at the hysteresis region.

Then using these predicted FOM values at the hysteresis 
regions, the current and neighbouring cells are evaluated 
whenever the UE is in the HPHR such that the optimum cell 
is selected for the handover mechanism. As such, six neuron 
nodes are set at the input layer of the respective BPNN mod-
els of the current as well as neighboring cells. The six input 
layer neuron nodes represent Pr, PD, PL, VUE, Ac and Pb 
corresponding to each potential target cell. During hidden 
layer design, the number of neural nodes in the input layer n, 
the number of neural nodes in the output layer m, and a num-
ber between 1 and 10 were employed to compute the number 
of hidden layer neuron nodes in accordance with (14):

Although high number of hidden layer neurons execute 
unlimited numerical approximation on a nonlinear function 
with arbitrarily small error precision, a very high number 
for l increases both computational complexity and costs in 
addition to susceptibility to over-fitting. On the other hand, a 
small value of l increases errors that affect the performance 
of ANN. As such, an appropriate value of l is crucial for 

(14)l =
√

n + m + a

lowering computational complexity and enhancement of 
training convergence speed. After numerous experimenta-
tions during training, six neurons in the hidden layer were 
found to yield minimal value of the mean square error 
(MSE) function. Finally, the output layer design involved 
the FOMs from the current as well as neighboring cells col-
lected by the UE which were then input to their respective 
models.

Essentially, the output layer gave the handover decision 
value which was a binary signal that lay between 0 and1. 
Here, 1 denoted urgently required handover while 0 repre-
sented no handover is needed. The linear function is selected 
as transfer function for output layer. Afterwards, network 
training was executed to yield numerical approximations and 
predictions, outputting their respective predictions of the 
value of handover factor. The computed handover factors 
computed in the current cell as well as neighboring cells 
are then compared and the best of them all is chosen as the 
target cell for the UE. As such, for each ANN model cor-
responding to the current as well as neighboring cells, the 
number of neurons in output layer is set to one. Therefore, 
the ‘6,6,1’ model was adopted in this paper, implying six 
neurons for both input and hidden layers, and one neuron 
for the output layer.

3.6  Handover Decision

In the proposed protocol, the first step is the measurement 
of the handover figures of merit (FOMs) for current cell as 
well as neighbor cells FOMs as shown in Fig. 5. In the sec-
ond step, these FOMs are buffered in the handover decision 
matrix (HDM). To train the BPNN, Levenberg Marquardt 
(LM) back propagation algorithm was selected since it is 
the fastest and repetitive neural network algorithm. During 
BPNN training using Pr, PD, PL, VUE, Ac and Pb of the 
current and neighboring cells, appropriate sample data were 
taken and partitioned into seven groups (corresponding to 
current cell and its six neighbors) as a reference sample of 

Fig. 4  Back propagation algo-
rithm INPUT: Expected output, number of layers, number of nodes

OUTPUT: Error of the input FOMs, Cout, error for the output layer node, network error 

BEGIN: 
1) Construct BPNN model through log-sigmoid transfer function
2) Initialize the expected output, Eout

3) Read number of layers and nodes 
4) Apply input FOMs to the ANN and initialize the weights 
5) Forward-feed the ANN and compute output Cout of each node 
6) Compute error of the input FOMs 
7) Calculate the error for the output layer node 
8) IF Cout != Eout THEN:  
9) Compute network error 
10) Update the weights from the output layer to the hidden layer 
11) ENDIF 

END 
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the BPNN ‘6,6,1’ model for learning. Next, the seven BPNN 
models were trained and after all of them attained the cor-
responding MSE standard, real data about Pr, PD, PL, VUE, 
Ac and Pb were collected in the cellular network.

Thereafter, these real data items were input to the BPNN 
models corresponding to the seven cells that have been 
trained so that each of them can obtain their respective cell 
candidacy value (CCV) through prediction. This was fol-
lowed by the comparison of the seven CCV prediction val-
ues which facilitated the selection of the cell corresponding 
to the highest value as the target cell to handover the UE 
to. As shown in step 14, the largest CCV is compared with 
the handover factor such that if this value is more than the 
current cell’s CCV and handover factor, then the handover 
protocol is initiated. In real life scenarios where the seven 
cells are integrated, whenever the UE shifts to a different 
location within the tracking area, the six FOMs will change 
depending on the prevailing network and traffic conditions. 
As such, data need to be collected continuously to attain 
seamless handovers. Consequently, the steps in the protocol 
of Fig. 5 need to be repeated to facilitate multiple decisions 
so as to adapt to the dynamic cellular network environment.

3.7  Handover Authentication

The network entities involved during the handover 
authentication process included the UEs, gNB, Access 
and Mobility Management Function (AMF) and the 

Authentication Server Function (AUSF) and the deployed 
notations are shown in Table 1. It is assumed that the air 
interface is insecure and hence the data and signaling 
exchanged between UEs and the gNB are susceptible to 
numerous security and privacy attacks.

The proposed handover authentication protocol con-
sists of two major phases: the initialization phase and 
the mutual authentication phases as shown in Fig. 6. The 
procedures required to actualize these two phases are dis-
cussed in great details in the following sub-sections.

Initialization phase: during initialization phase, each 
UE has a pre-shared private identity ƥ and secret key ɧ. 
These two parameters are only known by each UE and 
AMF. Each UE has a private gNB identity ɠ and gNB 
secret key Ȥ, kept secret between gNB and AMF. The ses-
sion duration threshold ∆ƭ is introduced to prevent against 
message replays and DoS attacks. Here, ∆ƭ is only known 
by gNB and AMF and can only be changed by AMF. In 
addition, each gNB has a unique base station key identifier 
Ʀ for Ȥ and a unique key identifier for ɧ. These two identi-
fiers are updated only after every successful key agreement 
and authentication process. Moreover, each UE is assigned 
two one way key derivation functions,  KDF1 and  KDF2, 
known only by UEs and AMF. The proposed protocol also 
makes use of an encryption function ƺ chosen between 
each UE and AMF. As shown in Fig., the first step is the 
initialization of ∆ƭ and ƺ followed by the assignment of 
 KDF1 and  KDF2 to the UEs in step 2. Thereafter, ƥ, ɧ, Ȥ, 

Fig. 5  Proposed handover deci-
sion protocol INPUT:  Total number of points to be predicted (N), FOMs 

OUTPUT: MSE, RMSE, CCV, ANN internal correlations 

BEGIN: 
1) Take sample FOMs data & partition it into seven groups 
2) Train seven BPNN model & measure MSE 
3) ∑  

4) Compute ∑  

5) Measure current cell and neighbor cells handover FOMs Pr, PD, PL, VUE, Ac & Pb 
6) Buffer obtained parameters in the handover decision matrix (HDM) 
7) Send the six FOMs to the input layer neurons of the BPNN model represented by seven 

cells 
8) Execute numerical calculations & approximations based on prior reference values and 

expected values 
9) Compute neural network internal correlations corresponding to each cell’s weights 
10) Predict each cell’s candidacy value (CCV) & buffer them in HDM 
11) Execute numerical comparisons of the seven predicted CCVs 
12) Compare best CCV with handover factor 
13) IF current cell has best CCV THEN: Shift to step (1) 
14) ELSE IF  best CCV > handover factor  and current cell’s CCV  THEN: 
15) Select cell with best CCV as the target cell 
16) Initiate UE handover
17) ELSE: Shift to step (1) 
18) ENDIF 
19) ENDIF 

END
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ɠ are computed and pre-shared in step 3 and this marks 
the end of phase one.

Mutual authentication: during handover mutual authen-
tication, the UEs, gNBs, AMF and AUSF and AMF vali-
date each other's identity. The process begins by having 
the SgNB broadcast an identity request message ϻ to the 
UE and start its timer ƭ (step 4). Each UE then generate 
nonce η followed by the computation of encryption key ς 
(step 5). Using ς, ɠ, ƥ and η are encrypted before sending 
this message together with ƴ to the gNB (step 6):

UE →gNB: AcReq: {ς (ɠ, ƥ, η)||ƴ}

Upon receiving these parameters, the gNB gener-
ate nonce ß and proceeds to compute its encryption key 
Ƃ (step 7) before using this key to encrypt the message 
received from the UE, AUSF identity ǥ and nonce ß (step 
8).

Afterwards, the encrypted message and Ʀ are sent to the 
AMF:

gNB →AMF: AgReq: {Ƃ({ς(ɠ, ƥ, η)||ƴ},ǥ, ß)||Ʀ}

To prevent DoS attacks and message replays, the wait-
ing time for receiving access request message ƭ is checked 
against the set threshold ∆ƭ (step 9) such that if it is more, 
then the gNB executes subsequent operations, otherwise the 

AMF sends gNB authentication data request AuthReq to the 
AUSF (step 10) together with its identity ǥ*:

AMF →AUSF: AuthReq:{Ƃ({ς(ɠ, ƥ, η)||ƴ},ǥ, ß||Ʀ||ǥ*}

On receiving these parameters, the AUSF computes 
Ƃ* using the received Ʀ value (step 11) before decrypting 
the received message to obtain ǥ (step 12). In step 13, the 
extracted AUSF identity is validated such that if it is invalid, 
the authentication is aborted, otherwise UE encryption key 
ς* is re-computed and deployed to decrypt {ς(ɠ, ƥ, η)} in 
step 15. Next, the AUSF generates nonce Ƚ and derives Ʀ* 
(step 16). In step 17, ƴ* is re-computed which is then fol-
lowed by the computation of gNB temporary key ʛ, IK and 
CK (step 18). In step 19, the session key KUE

AMF
 is derived 

followed by the generation of the key list Ϙ for all gNB 
controlled UEs (step 20). Next, the AUSF message authen-
tication code ϼ, AUSF authentication token ѱ, and AUSF 
authentication response ҜAUSF are computed (step 21). This 
is followed by the generation of gNB authentication vector ʋ 
(step 22) before sending {ʋ, Ϙ} together with gNB authenti-
cation data response AuthRes to the AMF in step 23:

AUSF →AMF: AuthRes: {ʋ, Ϙ}

After receiving these security parameters, the AMF gen-
erates nonce ʆ before computing its message authentication 

Table 1  Notations and their descriptions

Symbol Description Symbol Description

ƥ UE private identity AuthFail Authentication failure message
ɧ UE secret key AuthSucc Authentication success message
Ȥ Private group identity ʋ gNB authentication vector
ɠ gNB secret key η UE nonce
∆ƭ Session duration threshold ʆ AMF nonce
Ʀ gNB key identifier for Ȥ ß gNB nonce
ʛ gNB temporary key Ƃ gNB encryption key
ƴ key identifier for ɧ ǥ Authentication server function (AUSF) identity
KDF1,  KDF2 UE one way key derivation functions ʩ1, ʩ2, ʩ3, ʩ4, ʩ5 Security function specified by 3GPP
KDF3 AUSF one way key derivation function IK Integrity key
ƺ Encryption function CK Cipher key
ϻ Identity request message KAMF Session key
UE User equipment Ω AMF identity
gNB 5G Node B Ϙ gNB UE key list
SgNB Source gNB ς UE encryption key
TgNB Target gNB ϼ AMF message authentication code
AcReq UE Access request Ħ AMF message authentication code
AgReq gNB Aggregate access request Ф AUSF identity
AuthReq gNB authentication data request ћ Authentication management field
AuthRes gNB authentication data response ѱ AUSF authentication token
ʧ AMF authentication request ҜAUSF AUSF authentication response
ƍ gNB authentication response ҜUEi Authentication response generated by ith UE
ȵ UE authentication response
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code Ħ and authentication request ʧ (step 24). In step 25, ʧ is 
sent to the gNB which then broadcasts it to all UEs attached 
to it (step 26):

AMF →gNB: {ʧ}
gNB →All UEs:{ʧ)

Upon receipt of ʧ, each UE re-generate Ƃ* and ϼ* (step 
27) before decrypting ʧ to extract Ƚ, ʆ and ß (step 28). This 
is followed by the verification of the received ϼ such that if 
it is invalid, the request is flagged as malicious and aborted 
(step 29). Next, each UE re-computes ʛ* and Ħ* (step 31) 
before validating the received Ħ such that it is invalid, the 
request is flagged as malicious and aborted (step 32). In step 

34, the UEs re-compute session key K∗SN
AMF

 , Ʀ* and ƴ* before 
computing UE authentication response ȵ (step 35). In step 
36, the UE sends ȵ to the gNB:

UE →gNB: {ȵ}

Immediately after receiving this parameter, the gNB com-
putes its authentication response ƍ (step 37) before sending 
it to the AMF (step 38):

gNB →AMF: {ƍ}

Upon receiving ƍ, the AMF validates it against ҜUEn such 
that if it is invalid, authentication failure message AuthFail 

Fig. 6  Proposed handover 
authentication protocol
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is sent to the gNB (step 39). However, if it is valid, the 
AMF sends authentication success message AuthSucc to the 
AUSF and gNB (step 40). After successful mutual handover 
authentication, each UE and the AMF share a session key 
KUE
AMF

 (step 41) for subsequent data exchanges.

Moreover, upon receiving authentication acknowledge-
ment message, both AUSF and each UE update the gNB 
key identifier for Ȥ as well as key identifier for ɧ (step 42).

4  Results and Analysis

This section presents the simulation results as well as the 
evaluation results based on security, privacy and perfor-
mance. The sub-Sect. 4.1 presents and discusses security 
evaluation of the proposed protocol while sub-Sect.4.2 pre-
sents and discusses the performance analysis of the proposed 
protocol. As discussed in sub-Sect. 4.1, formal verification 
involved formulation of six security goals that served to 
show that the proposed protocol offers strong mutual authen-
tication among communicating entities before generating 
shared session key. On the other hand, informal security 
analysis involved formulation of nine theorems whose proofs 
demonstrated that the proposed protocol was robust against 
attack models discussed in Sect. 1.4 above.

4.1  Security Evaluation

To demonstrate the security features of the proposed pro-
tocol, the most widely adopted Burrows–Abadi–Needham 
(BAN) logic is employed. In addition, informal security 
analysis of the proposed protocol is carried out to show the 
resilience of the proposed protocol against conventional cel-
lular network attacks.

4.1.1  Formal Security Analysis

This evaluation involved some BAN logic rule which 
included the fresh-promotion rule (FPR), message-mean-
ing rule (MMR), message-meaning rule with shared secret 
(MMR-SS), nonce verification rule (NVR), jurisdiction rule 
(JR), decomposition rule (DR) and composition rule (CR) 
as shown in Table 2 below.

The main goal of the security component of the proposed 
protocol is to execute key agreement and mutual authentica-
tion among the UE, SgNB, TgNB, AMF and AUSF. These 
security goals are mathematically represented as shown in 
Table 3 that follows.

Here, Goal-1 and Goal-2 denote identity to the AMF, 
Goal-3 and Goal-4 indicate that the session key KUE

AMF
 is 

UE
K∗UE
AMF

↔ AMF

established between AUSF and the UE, Goal-5 and Goal-6 
denote mutual authentication between AUSF and UE, where 
Ƚ is deployed to compose session key KUE

AMF
 . Since AcReq, 

AgReq, and AuthRes do not offer logical properties of the 
BAN logic, they are excluded. The next task is to idealiza-
tion of the proposed protocol.

Msg 1: gNB authentication data request message.
AUSF ⊲ {{{ɠ, ƥ, η}ɧ, ƴ, ǥ, ß}Ȥ, Ʀ, ǥ*} from AMF.
Msg 2: gNB authentication request message.
UE ⊲{{Ω, ϼ, ʆ, Ƚ}ʛ,{Ф, Ƚ, ћ}Ȥ,{Ƚ, ʆ, ß}ʛ from AMF.
Msg 3: gNB authentication response message.
AUSF/AMF ⊲{ɠ, ƥ, Ƚ}ɧ from UE.
In the proposed protocol, the following assumptions are 

made:
It is further assumed that the security channel between 

AMF and AUSF has been established such that beacon 
exchange between these two 5G elements is secured. There-
after, BAN logic rules and assumptions are applied to the 
idealized protocol as follows:

Based on Msg 1 and S3, MMR is deployed to derive.

Stage 1: AUSF|≡ UE|~ {ɠ, ƥ, η}ɧ, ƴ, ǥ, ß
According to stage 1 and S8, the NVR is applied to yield.
Stage 2: AUSF|≡ UE|≡ ǥ, therefore Goal-1 is attained.
Based on Msg 2, DR is applied to obtain.
Stage 3: UE ⊲{Ω, ϼ, ʆ, Ƚ}ʛ

Table 2  BAN logic rules

Rule Description

A|≡#(C)

A|≡#(C,D)
Fresh-promotion rule(FPR)

Message-meaning rule (MMR)

Message-meaning rule with a 
shared secret(MMR-SS)

A|≡#(C),P|≡B|∼C

A|≡B|≡C
Nonce verification rule (NVR)

A|≡B⇒C,A|≡B|≡C

A|≡C
Jurisdiction rule (JR)

Decomposition rule (DR)

A|≡C,A|≡D

A|≡(C,D)
Composition rule (CR)

Table 3  Proposed protocol 
security goals

SNo Goal

Goal-1 AUSF|≡ UE|≡ ǥ
Goal-2 UE|≡ AMF | ≡ ʆ
Goal-3 AUSF|≡ Ƚ
Goal-4 UE|≡ Ƚ
Goal-5 AUSF|≡ UE|≡ Ƚ
Goal-6 UE|≡ AUSF|≡ Ƚ
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Stage 4: UE ⊲{Ф, Ƚ, ß, ћ}Ȥ
Stage 5: UE ⊲{Ƚ, ʆ, ß}ʛ.
Based on Stage 5 and S9, MMR is applied to yield.
Stage 6: UE|≡ AMF|~ Ƚ, ʆ, ß
According to stage 6 and S7, the NVR is utilized to 
obtain.
Stage 7: UE|≡ AMF|≡ ʆ, and hence Goal-2 is achieved
Based on stage 4 and S1 the MMR is deployed to yield.
Stage 8: UE|≡ AUSF|~ Ф, Ƚ,ß, ћ
According to stage 8 and S7, the NVR is applied to get
Stage 9: UE|≡ AUSF|≡ Ƚ, thus Goal-3 is attained
Based on stage 9 and S6, the JR is used to derive.
Stage 10: UE|≡ Ƚ, hence Goal-4 is attained
According to Msg 6 and S4, the MMR is employed to 
yield.
Stage 11: AUSF|≡ UE|~ ɠ, ƥ, Ƚ
Based on stage 11 and S5, the NVR is deployed to obtain.
Stage 12: AUSF|≡ UE|≡ Ƚ, therefore Goal-5 is attained.

Based on S5, Goal-6 is attained, and hence all the six 
security goals of the proposed protocol have been achieved. 
Consequently, the proposed protocol ensures strong and 
secure mutual authentication of the communicating entities 
before the onset of payload exchanges.

4.1.2  Informal Security Analysis

In this section, we show that the proposed protocol is robust 
against conventional cellular networks attacks Dos, packet 
replays, MitM, eavesdropping, forgery and masquerade. In 
addition, we show that this protocol offers mutual authenti-
cation, user anonymity and perfect forward secrecy as dis-
cussed below.

Theorem 1 The proposed protocol is resilient against for-
gery attacks

Proof —To thwart these attacks, UE private identity ƥ is 
encrypted using secret key ɧ before being sent to the gNB 
and hence the gNB is unable to establish the real identities 
of the UEs. In addition, each UE is able to derive session 
key KUE

AMF
 by itself in conjunction with AMF and AUSF. The 

involvement of network elements AMF and AUSF implies 
that an UE is unable to fool these network entities using 
other UE's identity since these identities are validated. Each 
UE has secret key ɧ that is used to generate the session key 
shared with the AUSF and AMF. Consequently, no UE can-
not derive valid session key for another UE and assume its 
identity to intercept exchanged packets between this UE and 
the AMF.

Theorem 2 The proposed protocol is robust against packet 
replay attacks.

Proof Proof—in the proposed protocol, random nonces were 
deployed to thwart any packet replays. During the generation 
of AgReq, nonce η and ƴ are utilized in which η is indepen-
dently generated while ƴ is refreshed by each UE after every 
successful authentication. Additionally, nonce ß and Ʀ are 
utilized to derive AgReq where ß is generated by gNB and 
Ʀ is dynamically refreshed by each UE after every success-
ful authentication. Moreover, nonces ʆ and Ƚ independently 
generated by the AMF and AUSF respectively are deployed 
in the derivation of the rest of the authentication messages. 
As such, replay attacks against AUSF and UE is infeasible.

Theorem 3 Eavesdropping attacks are adequately thwarted 
in the proposed protocol.

Proof The proposed protocol deployed random nonces and 
secret keys which are encrypted using secret ɧ, Private gNB 
identity Ȥ and gNB temporary key ʛ before being trans-
mitted over communication channels. Since all encryption 
keys for private and sensitive data are never sent over air 
interface, an adversary is unable to gain access to these keys 
through wiretapping over the channels.

Theorem 4 The proposed scheme is resilient against mas-
querade attacks.

Proof The aim of this attack is for an adversary to mas-
querade as a particular gNB so that unsuspecting UEs can 
establish connections with it, hence facilitating the capture 
of transmitted messages. Consequently, packet redirection 
and replays are possible. In addition, the captured UE cre-
dentials can be deployed for impersonation purposes. In the 
proposed protocol, AUSF identity ǥ* is encapsulated with 
other security parameters before being encrypted using Ƃ. 
This encryption key Ƃ is derived using secret identifier Ȥ and 
Ʀ, and is then encapsulated in AgReq before being sent from 
the gNB to the AMF. Afterwards, AMF appends its identity 
ǥ* to AgReq before forwarding it to AUSF. Thereafter, the 
AUSF decrypts the received message to obtain ǥ which is 
then compared with ǥ* received from AMF. Provided that ǥ 
and ǥ* are identical, the AUSF trusts that the access network 
that the gNB and UE want to connect to is the intended one. 
Since Ȥ is secret and only known to gNB and AUSF, any 
adversary is unable to forge or replay ǥ to deceive the gNB 
and obtain user information without secret key Ȥ. Moreover, 
an adversary cannot impersonate any UE to connect with 
legitimate gNB since the UE's private identity ƥ and gNB 
secret key ɠ are encrypted and encapsulated in AgReq where 
the AUSF can check if the connected UE is legitimate.
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Theorem 5 The proposed protocol offers perfect key secrecy.

Proof In the proposed protocol, session key KUE
AMF

 is negoti-
ated between UEs and gNB and the AMF/AUSF. The com-
putation of this session key requires ɧ among other param-
eters, but since ɧ is only known to the UEs and AUSF, no 
any other party is able to derive a valid KUE

AMF
 for subsequent 

authentication process.

Theorem 6 The proposed scheme provides strong mutual 
authentication among communicating entities.

Proof In the proposed protocol, trust among gNB, AUSF 
and AMF is established through the verification of ϼ (step 
29) and Ħ (step 32). On the other hand, the AMF authen-
ticates the gNB through the validation of received ƍ (step 
39). This is because ϼ, Ħ and ƍ are derived using parameters 
that are only known to the UE, AMF and AUSF. In addition, 
ʆ and Ƚ are encrypted using Ƃ which is secretly computed 
using secret identifier Ȥ that is infeasible for an attacker to 
obtain. Consequently, only legitimate UE, gNB and AMF 
can derive and validate Ħ and ƍ.

Theorem 7 MitM attacks are effectively prevented in the 
proposed protocol.

Proof The derivation of new session key K∗UE
AMF

 by the UE 
and AMF/AUSF was only possible after successful mutual 
authentication among these 5G network elements. This was 
the key deployed for the encryption of exchanged packets 
between the UE and other network elements. As such, the 
transmitted data were protected from eavesdropping attacks 
and hence attackers are unable to mount MitM attacks to 
interrupt the current communication session. It has also been 
shown above that integrity and authentication of critical 
messages is assured through mutual authentication accom-
plished among the UE, AMF and AUSF based on message 
authentication codes (MAC).

Theorem  8 User anonymity is upheld in the proposed 
scheme.

Proof The privacy of the UE users was assured through 
encryption of the UE's identity during the authentication 
process. The UE's private identity ƥ and gNB secret key 
ɠ are encrypted using ς generated using secret key ɧ and 
key identifier ƴ. As such, without ɧ, an attacker is unable 
to decrypt the message to obtain ƥ and ɠ that may facilitate 
further attacks such as DoS and message replay attacks. To 
derive encryption keys ς and Ƃ, the UE must send ƴ and Ʀ 
to the AUSF. Upon receipt of these parameters, the AUSF 
extracts corresponding keys and identify the gNB control-
ling the UE. The dynamic refreshment of ƴ and Ʀ after every 

successful mutual authentication implies that an attacker is 
unable to associate the new values to any particular UE or 
gNB which would facilitate UE tracing.

Theorem 9 DoS attacks are effectively thwarted in the pro-
posed protocol.

Proof The goal of this attack is for an attacker to transmit 
massive pre-stored ƥ to overwhelm the core network ele-
ments. To protect against these attacks, the UE or AUSF 
sets session duration threshold ∆ƭ to facilitate authentica-
tion process execution by the gNB upon receiving AgReq 
without further waiting. As such, even if some network ele-
ments such as AUSF and AMF are under active attack, the 
UE authentication process will still go on. In the proposed 
protocol, the UE's identity ƥ and ɠ are encrypted using 
ς and hence even if an adversary captures ƥ, it cannot be 
enciphered to replay without ɧ. Moreover, since messages 
AgReq and AcReq construction incorporate random nonces 
and encryption keys ς and Ƃ, AUSF can check and block 
these replayed messages.

4.2  Performance Evaluation

In this section, simulation results of the proposed proto-
col are presented and discussed. In sub-Sect. 4.2.1, BPNN 
empirical training data, BPNN training error curves and 
model fit are presented and discussed. On the other hand, 
sub-Sect. 4.2.1 presents and discusses the proposed proto-
col’s packet delivery ratio, cell candidacy, ping pong rates 
and handover rates.

4.2.1  BPNN Training Results

The MATLAB R2016b simulation tool was employed as a 
platform to execute the proposed protocol using simulation 
parameters in Table 4. As shown in Table 4, a combined 
random direction (RD) and random waypoint (RWD) were 
deployed. As already discussed above, for the ANN-FL 
handover decision process, six parameters were employed 
which included received carrier power, blocking probability, 
UE velocity, power density, path loss and traffic intensity. 

Table 5 shows the membership functions for the fuzzified 
input variables. As shown in Table 5, each of the member-
ship functions of low, medium and high were each decom-
posed into lower bound (LB) and upper bound (UB) cor-
responding to the lower and upper concentric circles of the 
partitioned tracking area.

These empirical values from the seven cells were uti-
lized as benchmark to make some range of fluctuations for 
supervised ANN learning. During simulations, the first step 
involves six reference FOMs values from the seven cells 
which are normalized as neural network sample training 
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parameters before being input to the BPNN model. This 
is followed by excitation functions of the BPNN are set 
between input layer, hidden layer and output layer which 
was set as logsig node transfer function and purelin node 
transfer function for parameter transfer and network training. 
Thereafter, initialization parameters for the BPNN are set. 
These include neural network iteration number or epochs, 
and predicted values expected error threshold or goal. After 
a number of experimentations, epochs number of 5500, tar-
get MSE of the training network expected prediction value 
of 0.00062 and a learning rate of 0.05 were found to opti-
mum. Upon setting these initial parameters, BPNN train-
ing and learning process was started before the model was 
deployed for handover decision.

BPNN training error: the BPNN training error curves 
consisting of train, validation and test curves of the proposed 
protocol are shown in Fig. 7. The train curve denote the 
performance of the MSE index of the training process for 
each iteration, while the validation curve represent the MSE 
index performance of the cross validation process in each 
iteration. On the other hand, the test curve denotes the MSE 

index of the testing process as expressed for each iteration 
(see Table 6).

In Fig. 7, the test line denotes the BPNN computation 
and final training results while the best dotted line rep-
resents the proposed protocol when the BPNN model is 
trained to the fourteenth generation. Essentially, Fig. 7, 
shows that the proposed protocol executes fourteen itera-
tions to minimize the MSE to allowable range. In so doing, 
it ensures best training results of the BPNN model. It is 
clear from Fig. 7 that the best validation performance 
was 0.00210879 at epoch 14 while the error value obtains 
minimum value 6.26046 ×  10–4 at epoch 14. It was also 
observed that the RMSE was 0.025 at epoch 14, which was 
very small and hence the predictive quality of the ANN 
model was sufficient.

Model fit: Regarding the model fit, Table 7 presents 
the obtained R2 values for the first 10 iterations. It is evi-
dent from Table 7 that R2 values in all the seven cells 
lay between 0.96 and 0.99, which was a good fit. This is 
because theoretically, the closer the R2 value is to 1, the 
better the model fits to the real data.

As such, the R2 fit which is essentially the square of 
the correlation between the actual values and estimated 
response values was highly successful in describing the 
change in real data.

Table 4  Simulation parameters

Parameter Value Units

Slope correction factor, α 0.88 –
Reference distance for modified SUI, d

0
1 meters

Reference distance for SUI, d
0

100 meters
Shadowing correction, S 9.2 dB
Transmission Frequency, f 28 Ghz
Maximum gNB-UE distance, d 248 meters
gNB Transmit power, Pt 20 dBm
Transmitter antenna height, h or ht 52.5 meters
Mobility model RD & RWP –
Subscriber height, h

0
1.5 meters

Transmitter antenna gain, Gt 19.2 dBi
Correction for frequency, Xf − 11.5 MHz
Correction for receiving antenna height, Xh 34.1 meters
Free space path loss, A 41.38 dB
Path loss exponent, y 2 –

Table 5  BPNN empirical 
training data

Crisp INPUTS Low Medium High Units

LB UB LB UB LB UB

Received carrier power − 125 − 168 − 172 − 186 − 184 − 191 dB
Blocking probability 1.0 ×  e−10 9.0 ×  e−9 8.0 ×  e−9 9.0 ×  e−8 8.0 ×  e−8 9.0 ×  e−7 –
Velocity 0 0.9 0.7 2.9 2.5 5 m/s
Power density − 5 − 16 − 14 − 24 − 22 − 27 dB
Path loss − 9 2 1.8 9 8.8 21 dB
Traffic intensity 0.1 0.2 0.18 0.5 0.48 0.9 Erlang

Fig. 7  BPNN training error curve
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4.2.2  Proposed Protocol’s Handover Performance

In this sub-section, the proposed handover protocol is evalu-
ated using metrics such as packet delivery ratio, cell candi-
dacy, ping-pong and handover rates.

Packet delivery ratio—The proposed handover protocol 
was evaluated in terms of number of successfully received 
packets and dropped packets as shown in Fig. 8. This per-
formance was then compared to that of the conventional 5G 
AKA’. It is evident from Fig. 8 that the proposed protocol 
had a higher number of successfully received packets com-
pared to the 5G AKA’ protocol.

This better performance can be attributed to the training 
of the ANN that was carried out within the cellular network 
that facilitated the smooth transition of the UEs among dif-
ferent cells. However, in the conventional AKA’ protocol, a 
handover is likely to be triggered at the wrong instant due to 
inaccurate handover prediction and hence resulting in large 
handover latencies. This effectively causes fewer numbers of 
packets being received across the network. In addition, the 
proposed handover protocol was also evaluated in terms of 
average packet drop rate. As shown in Fig. 9 the proposed 

protocol resulted in reduced in reduced average packet drop 
rates compared with 5G AKA’ protocol.

It is evident from Fig. 9 that the average packet drop 
rates for both 5G AKA’ and the proposed protocol remained 
well above 0.1 and both had the same shape up to the 130 s 
instant when this rate started falling as 5G AKA’s rates kept 
increasing. As explained above, the output layer decision 
was either a 1 or 0 representing urgent handover and no 
handover required respectively.

Cell candidacy—to simulate the applicability of this out-
put decision in network selection, the UE at the hysterisis 
region of seven cells is considered as shown in Fig. 10.

It is evident from Fig. 10 that different cells exhibited 
diverse values for CCV. Whereas cell-6 had the least CCV, 
cell-4 had the highest CCV value. As such, among all these 
cells, the handover was only possible to cell 4 since it had 
the best performance in terms of Pr, PD, PL, VUE, Ac and 
Pb. To minimize ping-pong handovers that may be occa-
sioned by fluctuations in FOMs, hysteresis margins were 
introduced for all the FOMs whose cumulative value repre-
sented handover factor. The hysteresis margins for each of 
the six FOMs were dynamically adjusted by the ANN based 
on the dynamic range of the measured values and hence the 
aggregate handover factor was also dynamic.

Table 6  BAN logic initial 
assumptions

SNo Description

S1

S2

S3

S4

S5 AUSF|≡ #(Ƚ)
S6 UE|≡(AUSF|⇒Ƚ)
S7 UE|≡#(ß)
S8 AUSF|≡#(ƴ)
S9

S10

Table 7  R2 values Iteration Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 Cell-6 Cell-7

1 0.99 0.99 0.98 0.97 0.99 0.99 0.98
2 0.97 0.99 0.99 0.98 0.99 0.99 0.98
3 0.99 0.99 0.98 0.99 0.97 0.99 0.99
4 0.98 0.97 0.99 0.99 0.98 0.97 0.99
5 0.99 0.96 0.99 0.97 0.99 0.98 0.99
6 0.98 0.99 0.97 0.98 0.99 0.96 0.98
7 0.96 0.99 0.99 0.98 0.97 0.99 0.99
8 0.99 0.98 0.99 0.97 0.99 0.96 0.99
9 0.97 0.97 0.99 0.98 0.99 0.99 0.99
10 0.98 0.99 0.98 0.99 0.98 0.99 0.98

Fig. 8  Received packets comparisons
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Ping pong rates—in terms of ping pong handovers rate, 
the proposed protocol’s performance was also compared 
with 5G AKA’ protocol. To accomplish this, network load 
was varied between 1 and 10 as the ping pong rate was meas-
ured. As shown in Fig. 11, the proposed protocol had lower 
ping pong rate compared with 5G AKA’ protocol under the 
same network conditions.

In the conventional 5G AKA’ protocol, only RSSI is 
taken into consideration during handovers. As such, when 
the UE detectes a neighboring cell with better RSSI values 
than the current one, it executes handoff. A slight reduction 
of RSSI or signal blockage in the target cell will trigger 
another handover back to the source cell, leading to high 
ping pong rates. Consequently, the proposed protocol poten-
tially saves on system overheads.

Handover rates—the proposed protocol handover initia-
tion was also compared with related intelligent handover 
schemes developed in [22, 34] as well as with conventional 
5G AKA’ RSSI based handover as shown in Fig. 12. To 
accomplish this, the handover rates of all these schemes over 
a fixed duration of 5 min was employed.

It is clear from Fig. 12 that 5G AKA had the highest 
handover rate of 36 followed by the schemes in [22, 34] 
and the proposed protocol with 14, 3 and 2 handover rates 
respectively. Using the 5G AKA’ as the basis, the proposed 
protocol reduced the handover rate by 94.4%. Since the con-
ventional 5G AKA’ handover protocol uses only RSSI as the 
only handover criteria, any slight reduction of RSSI value 
or even signal blockage due to obstacles result in hando-
vers. This high number of handovers come with increased 
signaling, communication and computational costs. In addi-
tion, longer handover latencies crop in due to increased pro-
cessing time at the terminal. These elongated latencies can 
potentially result in increased call drops for ongoing calls.

Handovers are generally resource intensive due to the 
heavy signaling that is incolved. As such, it is required that 
the number of handovers be kept at a minimum. This can 
be achieved by ensuring that handovers take place when 
they are actually necessary. In terms of handover latencies, 
elongated handovers are caused by poor choice of handover 
parameters as well as improper target cell selection. This 
often leads to high packet losses and call drops during the 
handover process.

Fig. 9  Average packet drop rate comparisons

Fig. 10  Cell candidacy values

Fig. 11  Ping-pong handover comparisons

Fig. 12  Handover rates comparison



32 International Journal of Wireless Information Networks (2022) 29:14–35

1 3

Owing to their extremely low latency, higher data rates 
and high bandwidths, 5G networks have been deployed in 
a number of domains such as internet of things (IoT). In 
most of the IoT deployments such as smart homes and smart 
grids, the sensors are resource constrained and the users nor-
mally access device’s data remotely over insecure wireless 
channels. In these application scenarios, any security and 
privacy lapses may easily escalate to the 5G core network 
and vice versa. The proposed protocol offers salient secu-
rity features that are readily applicable in 5G enabled IoT 
domain to protect the exchanged messages. In addition, its 
low handover and ping pong rates, coupled with high packet 
delivery rates makes it applicable in resource constrained 
IoT devices. Its ability to efficiently select target cells dur-
ing handovers greatly minimizes packet losses as observed 
in Fig. 10 above.

5  Conclusion and Future Work

Handover efficiency and security are key issues in cellu-
lar networks, more so in 5G networks which have stringent 
security and low latency requirements. To boost efficiency, 
the handover process needs to be executed very quickly. 
Unfortunately, most of the convention handover schemes 
have been shown to be based only on network parameters 
such as RSSI and SNR. In legacy cellular handover archi-
tectures, only RSSI is utilized during handover decision pro-
cess. This often leads to high ping pong handovers as well 
as elongated handover latencies. As such, many schemes 
have been developed that incorporate additional parameters 
such as battery power and bandwidth requirements. How-
ever, these techniques concentrate on efficiency improve-
ments at the expense of security. In this paper, a protocol 
that addresses both efficiency and security is presented. The 
handover decision is shown to incorporate comprehensive 
parameters based on network, user, UE and service require-
ments so as to uphold QoS and QoE after the handover. The 
formal security analysis using BAN logic has demonstrated 
the ability of the proposed protocol in executing secure 
and strong authentication among all the communicating 
entities. In addition, a number of attack models have been 
deployed to assess the security features of the proposed pro-
tocol. Based on the formulated theorems and their proofs, 
it is shown that the proposed protocol offers anonymity and 
perfect key secrecy. In addition, it is resilient against packet 
replays, eavesdropping, forgery, MitM and DoS attacks. In 
terms of performance, the simulation results have shown 
that the proposed protocol has lower packets drop rate and 
ping-pong rate coupled with higher ratio of packets received 
compared with 5G AKA’ protocol. Moreover, the proposed 
protocol’s handover rate was compared with that of related 
schemes, with results demonstrating that it had the least 

handover rates. Since 5G network is the core of internet 
of things deployments such as smart homes and vehicular 
networks, the obtained security and performance gains are 
of great significance in these domains. Future work in this 
research domain will involve security and performance eval-
uation of the proposed protocol using metrics that were not 
within the scope of this work.
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