
Vol.:(0123456789)1 3

International Journal of Wireless Information Networks (2021) 28:45–76 
https://doi.org/10.1007/s10776-021-00504-z

An Overview on Position Location: Past, Present, Future

Seyed (Reza) Zekavat1 · R. Michael Buehrer2 · Gregory D. Durgin3 · Lisandro Lovisolo4 · Zhonghai Wang5 · 
Shu Ting Goh6 · Ahmad Ghasemi1

Received: 29 September 2020 / Revised: 12 January 2021 / Accepted: 22 January 2021 / Published online: 8 March 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Prior to the 21st century, positioning technologies had limited applications including air traffic control, air and sea navigation, 
satellite communications and related military uses. Today, positioning technologies have deeply merged with daily life and 
enabled many novel sensors, systems and services. For example, navigation systems are the enablers of road traffic prediction, 
assisted and autonomous driving, and several aspects of healthcare. They have also facilitated worldwide services provided 
by companies such as Uber and Lyft. In fact, in many aspects of modern life, localization systems are deemed essential to 
day-to-day living and are contributing to our general well-being, the economy, and security. Accordingly, position location 
technologies have become key components of many worldwide industries. These positioning technologies include the Global 
Positioning System (GPS), WiFi-based indoor localization, cell-phone based localization (including the fusion of GPS, 
cell-tower based localization and dead-reckoning), and inertial/dead-reckoning techniques. Tracking technologies are also 
considered key components for localization, as are the more recently integrated concepts of machine learning and artificial 
intelligence. This paper provides a review of the history of localization, the main technological enablers of localization and 
assesses the future directions of localization methods.
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1  Introduction

The history of position location goes back to the original 
needs of mankind for navigation. In the early ages, heavenly 
bodies were considered a primary means for finding one’s 
approximate location. Later, a simple compass was used to 
enable navigation, especially for trade-inspired sea travel. 

With the emergence of airplanes and the requirements of 
modern military conflicts (specifically World War II), more 
precise location information was required. When mid-range 
airplanes were developed in the late 1930s, scientists of 
many countries including Germany, Italy, the UK and the US 
worked hard to develop the first radar systems. Originally, 
these radars were used for air surveillance, but soon found 
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application in sea and ground surveillance and were installed 
on ships, airplanes and ground vehicles.

RAdio Detection And Ranging (Radar) was introduced as 
a system that uses the reflected radio waves from objects to 
detect those objects and estimate their ranges. While radar 
was originally considered for the detection and ranging of 
targets, advanced radars are now capable of extracting a 
large amount of information from targets such as their size, 
speed, and even type. These capabilities are essential to both 
military and civilian applications.

Building high power amplifiers was considered a key 
requirement for long range passive and active radar locali-
zation. Many radar technology historians consider the UK 
as the first nation to develop the magnetron. The magnetron 
was next introduced to the US National Research Lab (NRL) 
which created the first radar.

The earliest localization systems were developed in the 
early 20th century and were based on direction finding. 
Transmit beacons (which could include commercial radio 
stations) were placed at known locations. A plane or ship 
used a rotating antenna to measure the angle to the beacon 
and then used the principle of triangulation (see Sect. 2.4) 
to determine its position.

Another common air navigation method used during the 
first part of the 20th century is the A/N Beacon. This bea-
con transmitted morse code for “A” to the east and west 
while transmitting morse code for “N” to the north and 
south using an Adcock array. Because of the specific pat-
terns used for those characters in morse code, a constant tone 
would be heard when the signal is received 45° of north or 
south [1]. This beacon could thus be used to determine the 
approximate angle to the beacon and provide an aid for air 
navigation.

LORAN (LOng RAnge Navigation) was a hyperbolic 
radio navigation system developed during WWII [2]. This 
system provided a range of 500 miles with an accuracy of 
tens of miles using two frequency bands at 1.85 and 1.95 
MHz [2]. The system was initially used along the US and 
Canadian East Coasts. However, it was soon used exten-
sively in the Pacific Theater of World War II. By the end of 
WWII there were 72 LORAN stations and 75,000 receivers.

LORAN-B was initiated by US Navy, but doesn’t appear 
to have ever been operational. LORAN-C originated with the 
US Air Force, taken over by the US Navy and then by the US 
Coast Guard in 1958. The system was first deployed in 1957 
and provided for improved performance (hundreds of feet 
accuracy) and used a lower frequency band (90–110 kHz) 
[2]. Development/use of LORAN-C caused surplus LORAN 
units to be made available causing a rise in its popularity. 
The LORAN-C system served the 48 continental states, their 
coastal areas, and parts of Alaska until February 2010.

In 1959 the US Navy built the first satellite navigation 
system known as Transit [3]. The system used satellites in 

low polar orbits to locate submarines and used ten satellites. 
The basic principle was based on the Doppler effect and 
received signal’s Frequency-of-Arrival. The subs often had 
to wait hours to receive signals from the satellites due to the 
small number of satellites and their specific orbits. However, 
this system paved the way for modern GPS.

More advanced satellite-based navigation was achieved 
via Global Navigation Satellite System (GNSS) that is a 
general term for all types of Satellite-based positioning 
systems. Global Positioning System (GPS) [4], originally 
Navstar GPS, is a satellite-based radio navigation system 
owned by the United States government and operated by 
the United States Space Force [5]. GPS was introduced in 
1973 but didn’t became fully operational until 1993 using 
a constellation of 24 satellites. The Russian Global Navi-
gation Satellite System (GLONASS)—the GPS Russian 
competitor—became fully operational in mid 2000s. The 
European Union, India, Japan and China have also intro-
duced similar systems that are set to become operational in 
near future. Today’s advanced air and sea navigation capa-
bilities, as well as air, ground and sea traffic control systems 
would have not been possible without the emergence of GPS 
and radar. The original GPS technology is highly sensitive 
to jamming and also doesn’t work properly in indoor and 
downtown areas. Recently, GPS III technology has been 
introduced by Lockheed Martin that has three times bet-
ter accuracy and up to eight times improved anti-jamming 
capabilities [6–8]. In addition, there is a new trend of provid-
ing positioning services through LEO constellations, which 
represent a concrete perspective for the new generations of 
space-based positioning. The European Space Agency is 
working to develop LEO-based GNSS systems. For example, 
Germany’s National Aeronautics and Space Research centre 
(DLR) is conducting R&D on the KEPLER constellation. In 
addition, numerous private companies are deploying LEO 
constellations that expected to provide positioning services.

Other devices such as Inertial Navigation Systems (INS) 
and their integration with GPS have enabled localization in 
GPS-denied areas such as tunnels or downtown areas. WiFi 
localization emerged in the 2000s for indoor geolocation and 
downtown applications and was soon integrated into smart 
phones [9]. Today, localization continues to advance as there 
is a desire/need for precise navigation and positioning for 
devices as diverse as automobiles and video games. Vehicu-
lar systems are envisioned to enable automated driving (i.e., 
self-driving vehicles) and road traffic control. These locali-
zation applications will feature technologies well beyond 
INS, GPS and microwave frequency localization. Key mod-
ern location technologies incorporate machine learning and 
artificial intelligence along with millimeter wave, imaging, 
and visible light localization to enable RF-free localization, 
especially in areas with complex propagation environments. 
RFID localization has enabled new applications and has 
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supported giant suppliers such as Amazon, toll road pay-
ments and electronic identification.

Traditional Radio Frequency (RF) localization is based on 
the use of geometric positioning using measured distances 
or angles to known geographical markers. Such techniques 
are generally known as trilateration and triangulation respec-
tively. Accordingly, the three main signal measurements 
include Received Signal Strength (RSS), Time-of-Arrival 
(TOA) and Direction-of-Arrival (DOA). RSS techniques 
don’t require precise and complex signal processing which 
are needed by TOA and DOA estimation, but typically offer 
less reliable positioning. Non-geometric localization meth-
ods are based on RSS, network localization, visible light, 
INS, and imaging technologies. Usually, these techniques 
are integrated with tracking methods such as Kalman Filter-
ing and machine learning. The performance of TOA, DOA 
and RSS techniques are affected by the availability of line-
of-sight (LOS) propagation between anchors and the device 
to be localized. Thus, non-LOS (NLOS) propagation scenar-
ios must be detected and mitigated [10–12]. These scenarios 
are usually tackled via multi-node, network, or distributed 
localization methods. In addition, fusion of TOA, DOA and 
RSS measurements made across multiple nodes help enable 
localization in NLOS environments [11–13].

The emergence and progress of Smart Phones and the 
development of location-based applications has motivated 
WiFi localization methods [9]. Various RSS techniques have 
been developed and progressed by various vendors. The 
accuracy of RSS based localization depends on the selected 
path-loss models. This accuracy is improved by integrating 
RSS localization and Kalman Filtering techniques.

Hybridization or fusion of localization methods increases 
the localization performance. Fusion techniques introduced 
in the literature includes GNSS and INS fusion, specifically 
to offer high performance GNSS localization in urban areas, 
when line-of-sight with one or higher number of satellites 
is obstructed by buildings or other obstacles [14]. There are 
numerous other examples such as multi-node TOA-DOA 
fusion [15] and fusion Wireless Local Positioning Systems 
and STAR sensors for satellite localization [16], and multi-
sensor data fusion for capsule endoscopy localization [16, 
17]. Kalman filtering and its variations are among high per-
formance multi-sensor fusion localization techniques (Chap. 
5 of handbook [18]).

Clearly, the estimation accuracy of localization tech-
niques varies with signal and data processing methods. 
Thus, recent advances in data processing and analysis, as 
well as machine learning support high localization accu-
racy. Moreover, the trend in mm-wave communications 
and massive multi-input multi-output (MIMO) systems is 
considered another avenue for advancements in localization 
technologies. This paper intends to review the trend of wire-
less localization techniques and standards within the last two 

decades and their impact on localization accuracy. The paper 
offers a narrative on the emerging trends in geometric and 
non-geometric based localization technologies.

The paper is organized as follows. Section 2 presents geo-
metric localization via DOA, TOA, and RSS localization 
methods. The section introduces key measures for compar-
ing these techniques and will highlight the impact of com-
munication parameters on the accuracy of these localization 
techniques. In addition, this section introduces techniques, 
standards, and methods and their impact on localization 
accuracy. Section 3 presents non-geometric localization via 
fingerprinting. Section 4 reviews signal processing methods 
for NLOS identification and localization. Section 5 intro-
duces collaborative localization methods. Section 6 summa-
rizes tracking techniques for localization with space, aircraft, 
maritime, underwater and pedestrian applications. Section 7 
presents machine learning methods used for localization. 
Section 8 reviews radar systems, Sect. 9 reviews RFID, and 
Sect. 10 reviews visible light localization. Section 11 con-
cludes the paper.

2 � Geometric Localization via DOA, TOA 
and RSS

Geometric localization techniques are mostly based on 
Radio Frequency localization. They use measured dis-
tances and angles to known geographical markers, and are 
called trilateration and triangulation techniques, respectively 
[19–27]. To enable geometric-based localization, the device 
to be localized should transmit a signal which is detected 
and used to estimate channel by multiple receivers at the 
geographical markers (sometimes called anchors). Alterna-
tively, the anchors could transmit signals which are meas-
ured at the device to be localized. In these techniques, the 
main assumption is the known position of anchor nodes.

The three main signal measurements include RSS, TOA 
and DOA. Current WiFi localization methods are typically 
supported by RSS techniques, which require measurements 
made by at least three nodes, but benefit from additional 
measurements. RSS techniques don’t require precise and 
complex signal processing, while TOA and DOA estima-
tion require complex signal processing methods. Since 
DOA techniques need directional antennas, the hardware 
component for DOA estimation is also complex. Research on 
channel estimation for TOA, DOA, and RSS measurement 
goes back to decades ago. However, research on exploiting 
trilateration methods goes back to 1990 and was partially 
triggered by GPS. This section reviews fundamental wireless 
positioning techniques that include RSS, TOA, and DOA. 
All these techniques need information extracted from a num-
ber of nodes to enable the process of localization. RSS and 
TOA techniques need the availability of at least three nodes 
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for a process that is called trilateration. DOA method need 
the availability of at least two nodes. When higher number 
of nodes are available, more data can be incorporated to 
improve the positioning accuracy. TOA estimation is very 
sensitive to the availability of LOS.

2.1 � RSS Estimation

Compared to TOA and DOA, RSS estimation is considered 
the least complex positioning method. However, RSS high 
performance estimation is hinged upon a good channel path-
loss model between all WiFi access points or cell phone 
towers and any location or spot within the desired areas. 
Channel pathloss model for a given environment includes 
both deterministic and random components. The statistics 
of the random component is determined via numerous field 
measurements. In addition, the channel varies with time as 
the position of people and things are time varying. Within 
the last two decades, many algorithms have been developed 
to address the problem of random spatial and temporal 
behavior of channel model that impacts RSS precision. To 
address the impact of channel inaccurate modeling on the 
RSS-based position estimation diverse techniques such as 
fusions of higher number of observations and application of 
techniques such as Kalman Filtering. While RSS localization 
is still available in NLOS situations, but it is expected that 
the localization performance reduces.

In high performance RSS techniques, the transmitted 
power information is embedded in the transmitted package. 
This is essential to multiple access communications to avoid 
near-far problems that increases multi-user interference and 
reduces the detection performance. A receiver computes the 
received signal and compares it with the transmitted signal 
and then uses a pathloss channel model to compute its dis-
tance from the transmitter. More information on RSS locali-
zation methods have been provided in Sect. 3.

2.2 � TOA Estimation

It should be highlighted that TOA estimation is an essen-
tial component of channel estimation that is required for all 
receivers. Without high performance TOA estimation, the 
detection performance of all receivers reduces. TOA esti-
mation process that is used for the purpose of localization, 
includes two steps of coarse TOA (required for all receivers) 
and fine TOA estimation. Coarse TOA estimation is usually 
attained via a simple match filtering techniques while fine 
TOA estimation is achievable via advanced methods. Exam-
ples of these methods include blind source separation (BSS) 

such as independent component analysis (ICA), MUSIC or 
SPIRIT methods (Chaps. 8, 9 of [18]).

TOA estimation allows the measurement of range or 
distance; thus, enabling localization [28–33]. The pro-
cess incorporates measurements made by multiple base 
nodes to localize a target node via trilateration [19–27]. It 
is assumed that the positions of all base nodes are known. 
If these nodes are dynamic, such as satellites in GPS 
localization, the position of nodes should be precisely 
computed to allow base-nodes to localize their positions 
(GPS-TOA positioning). In some circumstances, multiple 
base nodes may cooperate to find their own position before 
any attempt to localize a target node.

TOA estimation process would be affected by the 
availability of the LOS and the homogeneity of medium. 
Human body and underground are examples of inhomoge-
neous media. NLOS or obstructed LOS (OLOS) scenario 
could seriously reduce TOA estimation performance. In 
addition, TOA estimation process would be very complex 
in inhomogeneous media. High performance TOA estima-
tion in inhomogeneous media requires proper selection of 
signal waveforms [16, 17, 29, 34, 35].

2D localization via TOA estimation requires measure-
ments across three nodes. As highlighted in the introduc-
tory of the Handbook of Position Location [18], assuming 
known positions of base nodes, and a co-planar scenario, 
three base-nodes and three measurements of distances 
(TOA) are required to localize a target node (see Fig. 1a). 
In a non-coplanar case, four base-nodes are required. 
Using the measurement of distance, the position of a tar-
get node is localized within a sphere of radius Ri with the 
receiver i at the center of the sphere (where, Ri is directly 
proportional to the time-of-arrival �i as shown in Fig. 1a. 
The localization of the target node can be carried out 
either by base nodes using a master station or by the tar-
get node itself.

TOA estimation is the main driver for GPS. TOA esti-
mation accuracy hinges upon fine timing synchroniza-
tion across multiple nodes. In addition, TOA estimation 
requires the transmission of a time-stamp. The accuracy 
of fine timing synchronization as well as time stamp is 
critical to fine TOA estimation. Furthermore, TOA estima-
tion accuracy is a function of available bandwidth. Higher 
bandwidths are available at higher frequency ranges such 
as millimeter wave (mm-wave). Higher frequency ranges 
allows higher bandwidth and accordingly finer timing esti-
mation. Higher frequency ranges also enable implementa-
tion of bigger antenna arrays within smaller areas. Finally, 
TOA estimation accuracy is a function of hardware pro-
cessing power and the clock pulse rate. As the clock pulse 
rate increases, the sampling rate increases and in general 
a high precision TOA estimation is expected.
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Fig. 1   Taken from [Chap. 1: 
[18]]: a Operation of TOA and 
RSS, b Operation of TDOA, c 
Comparison of TOA and TDOA 
Calculations, d Operation of 
RTOA, and e Operation of DOA
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2.3 � TOA and Related Variations

A variation of TOA estimation is Time-difference-of-arrival 
(TDOA). We also may consider Round Trip TOA (RTOA) 
Estimation as a related variation of TOA and it is a solu-
tion to cross node synchronization. As the name suggests, 
TDOA estimation requires the measurement of the differ-
ence in time between the signals arriving at two base nodes. 
Similar to TOA estimation, this method assumes that the 
positions of base nodes are known [18]. The TOA differ-
ence at the base nodes can be represented by a hyperbola. 
A hyperbola is the locus of a point in a plane such that the 
difference of distances from two fixed points (called the foci) 
is a constant. Assuming known positions of base nodes and 
a co-planar scenario, three base nodes and two TDOA meas-
urements are required to localize a target node (see Fig. 1b). 
TDOA addresses one drawback of TOA by removing the 
requirement of synchronizing target node clock with base 
node clocks. In TDOA, all based nodes receive the same sig-
nal transmitted by the target node. Therefore, as long as base 
node clocks are synchronized, the error in the arrival time at 
each base node due to unsynchronized clocks is the same.

As shown in Fig. 1c, TOA is the time duration (or the 
relative time) between the start time (ts) of signal at the 
transmitter (target node) and the end time (ti) of the trans-
mitted signal at the receiver (base node Bi). However, as 
shown in Fig. 1c, TDOA is the time difference between the 
end times (ti and tj) of the transmitted signal at two receivers 
(base nodes Bi and Bj). Thus, in TDOA technique, only base 
nodes’ clocks need to be synchronized to ensure minimum 
measurement error. In general, the complexity of target node 
clock synchronization is higher compared to base node clock 
synchronization.

In RTOA, the localizing Node 1 transmits a signal that 
is received by all surrounding nodes, e.g., Node 2. Next, 
Node 2 responds to the transmitted signal and provides the 
time of arrival and departure (or time stamp) information 
of signal to Node 1. Node 1 calculates the distance from 
Node 2 through a comparison across the time of transmis-
sion of its signal to Node 2 and time of reception of the 
signal from Node 2 along with information received from 
Node 2 (Fig. 1d). Clock synchronization and time stamp 
information is needed in this technique. Wireless Local Posi-
tion Systems (WLPS) is an example of localization systems 
that incorporate round trip TOA estimation for localization 
[36–40]. WLPS has diverse applications in security, autono-
mous driving [41], UAV localization [42], satellite localiza-
tion [43].

In WLPS, the localizing Node 1 is called Dynamic Base 
Station (DBS) and the localized Node 2 is called transceiver 
(TRX). Usually DBS is an expensive component of RTOA 
and TRX is considered very simple and low cost. Thus, in 
practice DBS can be installed on limited number of mobiles 

while TRX can be installed on a large number of mobiles. 
Installation of TRX on a large number of soldiers in bat-
tlefields to enable their localization via vehicles or com-
manders is an application of WLPS. This specific appli-
cation avoids bombardments of friendly soldiers in battle 
field setups. Installation of WLPS on vehicles can be a key 
components of future self-driving vehicles.

2.4 � DOA Estimation

In DOA estimation, base nodes determine the angle of arriv-
ing signal (see Fig. 1d). To allow base stations to estimate 
DOA, they should be equipped with antenna arrays, and 
each antenna array should be equipped with RF front-end 
components. However, this incurs higher cost, complexity 
and power consumption. DOA-based localization requires 
at least measurements made across two nodes.

DOA estimation usually incorporates an antenna array. 
However, many tracking Radar systems historically use 
reflector antennas for DOA estimation. Reflector antennas 
along with RF feeders enable transmission of high power 
pulses and accordingly surveillance of longer ranges in 
space, land or sea. Antenna arrays enable electronic steer-
ing of beampattern allowing rapid switching across differ-
ent directions. Antenna arrays include a number of antenna 
elements.

Similar to TOA estimation, in DOA estimation, the posi-
tions of base nodes should be known. However, unlike TOA 
and TDOA, for the known position of a base node and a co-
planar scenario, only two base nodes along with two DOA 
measurements are required. For a non-coplanar case, three 
base nodes are required.

Antenna dimensions are determined by the frequency 
range: the higher the frequency, the smaller the antenna 
dimensions could be. DOA estimation has applications in 
airport Instrument Landing Systems (ILS), and airplane 
Radio Direction Finding (RDF). DOA estimation is also 
used in radar-based localization.

2.5 � Localization Performance Key Metrics

Two localization error key measures include probability-of-
error and Cramer-Rao Lower Bound (CRLB) (Chap. 2 of 
[18]). Probability-of-error is computed based on the error 
Probability Density Function. It indicates the probability that 
the location measurements fall within a specific region, and 
includes three categories of Linear Error Probability (LEP), 
Circular Error Probability (CEP) and Spherical Error Prob-
ability (SEP). For a one-dimensional location measurement 
(e.g., range measurements made by a single node), the region 
is a line and the probability-of-error measure refers to LEP. 
For a two and three-dimensional (3D) localization, proba-
bility-of-error measure refers to CEP and SEP, respectively. 
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CRLB is another measure of localization performance, 
which represents the minimum possible variance of error in 
the estimation of a parameter such as TOA or DOA. Based 
on the nature of localization method, either probability-of-
error, CRLB, or both might be used to evaluate the per-
formance. For example, GPS offers the global location in 
space, thus, SEP can be used to evaluate GPS performance. 
Moreover, GPS is based on TOA estimation, and CRLB can 
be used to evaluate GPS TOA estimation error. Tracking 
radars may also use SEP or CEP (based on the nature of 
Radar) to evaluate the localization performance.

3 � Non‑geometric Localization 
via Fingerprinting

The most natural way to obtain location information is 
through geometric relationships to anchors using RF signal-
based measurements, as discussed in the previous section. 
However, in this section we present an overview of non-geo-
metric positioning techniques, since geometric techniques 
are not always feasible. Specifically, we are interested in 
localization scenarios that cannot rely on geometric tech-
niques due to the high prevalence of non-line-of-sight con-
ditions and heavy multipath propagation [18, 44, 45]. One 
such scenario is indoor environments. In these scenarios, 
localization has relied on so called “fingerprinting” tech-
niques in which RF signal parameters (often Wi-Fi based) 
are measured at known locations and stored in a database. 
These RF fingerprints and the recorded location are stored in 
this database for later retrieval. Specifically, a device wish-
ing to determine its position, will measure the RF signals 
in its local environment and send a query to the database. 
The database is then used by pattern-matching technique 
to determine the location of the device [45, 46]. Such tech-
niques have been developed since the early 2000s [44].

There are three primary design aspects to such non-
geometric (fingerprinting-based) localization techniques 
[18]: (a) the measurements used, (b) the database structure 
employed in which those measurement-location pairs are 
held, and (c) the position estimation technique employed 
(e.g., pattern matching). We will discuss each aspect in turn 
in this section.

3.1 � Measurements Used for Fingerprinting

Localization based on fingerprinting usually consists of 
two phases: (1) the offline portion (creating the database); 
and (2) the online phase (exploiting the database). The 
measurements (i.e., fingerprints) taken at each location 
depend on the type of device that may use the resulting 
database. For WiFi-based positioning, RSS is the primary 
measurement, although temporal patterns are also used as 

is channel state information [45, 47]. However, cellular-
based systems fingerprinting techniques can exploit any 
measurement taken by the mobile or RAN [18]. The key 
is that the measurement must be unique to a location and 
relatively constant. If multiple locations have the same 
fingerprint, the localization technique cannot be certain 
which location is the true location (although temporal/
history data helps here). Further, if the fingerprint changes 
over time, it will also be difficult for the localization tech-
nique to determine position based on the measured finger-
print without constant database re-calibration.

Examples of measurements used for fingerprinting 
include RSS, round-trip delay, direction-of-arrival, power 
delay profile, and channel state information. Typically, the 
mobile records these measurements on signals transmit-
ted by anchors, although location systems can work the 
other way as well (anchors taking measurements of signals 
transmitted by the mobile). Additionally, like geometric 
techniques, performance is improved if the measurements 
are taken from/at as many anchors as possible.

3.2 � Database Structure

A second important aspect of fingerprinting techniques is 
the database. After offline measurements are taken (along 
with the location at which they were taken), the measure-
ments are placed into a database for future use. The struc-
ture of this database can either be a uniform grid where all 
reference coordinates are evenly spaced in the (x,y) plane 
or if that is not possible, in an indexed list [18]. If uniform 
spacing is used, the spacing dictates the resolution of the 
localization technique, although interpolation is often used 
[48]. Note that the location tied to the measurement can 
be obtained by GPS when available, but more often must 
be manually entered since the absence of GPS often moti-
vates the need for fingerprinting techniques.

In addition to explicit measurements, propagation mod-
els are also often used to populate the database. While 
measurements are more accurate, they are also very time-
consuming and suffer from the drawback that they must 
be retaken whenever there are major changes to the envi-
ronment or the anchor upon which the measurement is 
based. Databases that rely on propagation modeling have 
an advantage in that they can be updated very quickly. Of 
course, their accuracy can be poor in complex propagation 
environments.

Of course, the two modalities can also be mixed [48]. 
Specifically, propagation models can be used to initially 
populate the database. Measurements are then taken and 
used to replace the model-based points and interpolation 
can be used to smooth out the differences [48].
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3.3 � Position Estimation

The final aspect of fingerprint-based techniques is the posi-
tion estimation technique. In other words, as a device is 
moving through an environment, new measurements are 
taken and compared to the database in order to determine the 
position of the device. The specific means for determining 
that position estimate is crucial in the overall performance. 
A common approach is to use K-nearest neighbors (KNN). 
With KNN a weighted average of K locations from the data-
base are used to determine the unknown location. These K 
locations are weighted with the inverse of the Euclidean 
distance between the observed RSS measurement and the 
K-nearest training samples [49].

A second popular approach is the use of support vector 
machines [50]. A support vector machine uses kernel func-
tions to overcome the incompleteness and inaccuracy of the 
RSS (or other) measurement values, but suffers from higher 
computational complexity.

Thirdly, neural networks (including deep neural networks) 
have also been employed. Neural networks utilize the back-
propagation algorithm to train weights relying fingerprint/
location pairs (i.e., labeled data) in the training phase as a 
form of supervised learning [46].

In any pattern-matching approach, some form of search 
space reduction technique must be applied. This is due to 
complexity reasons. Consider a database with 40,000,000 
measurements. Performing pattern-matching over that entire 
database would be impractical. Thus, before pattern-match-
ing, we must first reduce the size of the search space. One 
common approach is known as filtering [18]. The filtering 
step is often performed in a series of steps. For example, the 
first step might limit the search space to all fingerprints that 
contain the anchor with the largest RSS value. If this is the 
only measurement used, this may be the only filtering step. 
However, if there are other measurements taken, they can 
be used to additionally filter the search space. In addition 
to filtering, the genetic algorithm has also been proposed to 
reduce the search space.

4 � Signal Processing Methods for NLOS 
Identification and Localization

This section presents algorithms for Non-Line-of-Sight 
(NLOS) identification and localization [13, 15, 51, 52]. 
In NLOS scenario, a positive bias is added to TOA or 
range measurement, and DOA error due to NLOS can be 
positive or negative, which is not small. The NLOS error 
greatly degrades the performance of localization algo-
rithms depending on the fusion of TOA and/or DOA meas-
urements [18, 53, 54]. In NLOS scenario, (1) the NLOS 
measurement(s) can be detected and discarded when LOS 

measurements are enough for localization [54]; (2) NLOS 
measurement can be detected and used for localization 
after calibration [55–57], (3) the NLOS impact can be 
reduced by a weighted summation of multiple estimations 
obtained using multiple sub-sets of measurements [58], 
and, (4) the shared reflection points can be localized via 
DOA fusion and then localize the target with shared reflec-
tion points and TOA fusion [11].

The NLOS identification algorithms can be built upon 
the received signal’s characteristics including TOA statis-
tics [59–62], RSS statistics [61, 63, 64], root-mean-squared 
delay spread (RDS) [61, 62], phase statistics with multi-
antenna [13, 65], channel diversity [63, 66], and the com-
bination of multiple parameters [61, 63, 67]. Various tech-
niques have been developed for the process of discriminating 
LOS and NLOS signals.

In NLOS scenario, a positive bias is added on the meas-
ured range/TOA. The bias is not a constant value due to 
the target movement. This leads to a larger TOA standard 
deviation (or variance) than that of a TOA measured in LOS 
scenario [53]. TOA standard deviation (or variance) is used 
in [59] for LOS and NLOS discrimination. In addition, due 
to the random positive bias in NLOS TOA, the TOA dis-
tribution is not symmetric around the true TOA and not 
as sharp as that is obtained in LOS scenario. Thus, TOA 
distribution’s Skewness (measure the asymmetry of a prob-
ability distribution of a real-valued random variable about 
its mean) [60] and Kurtosis (measure the sharpness of the 
peak of a random variable distribution curve) [60, 62] tests 
can be used for NLOS identification, and Shapiro-Wilk and 
Anderson-Darling tests can be used to determine if the TOA 
distribution is a normal distribution with limited number of 
samples [60]. Ultra-wideband (UWB) signals possess higher 
temporal resolution, the delay spread of the received signals 
can be obtained and acts as a parameter for discriminating 
LOS and NLOS signals [61, 62].

In NLOS case, the received signal’s power is much 
weaker than the one obtained in LOS scenario, and the sta-
tistics of RSS can be applied for NLOS detection. In [61], 
the RSS distribution parameters are applied to discriminate 
LOS and NLOS. The Skewness of the dominant path power 
distribution is applied to detect NLOS signal in [63].

The dispersion of the received signal energy over time by 
the channel, which is named RDS, can be obtained when the 
channel sampling rate is high, such as in a wideband system. 
In the RDS calculation, the multipath components whose 
amplitudes are within a certain threshold of the strongest 
component are retained. In LOS case, the LOS component 
is the strongest one, and some strong NLOS components will 
be retained. This leads to a small number of retained mul-
tipath components and a small RDS. While in NLOS case, 
the strongest component is much weaker, and a large number 
of NLOS components will be retained (a large number of 
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multipath components and a large RDS). Thus, RDS can be 
used for NLOS identification [61, 62].

In LOS only condition, the phase difference between 
two receiving antennas is a constant. In LOS dominant sce-
nario, the phase difference is contained by multipath signals, 
but it still centers at the LOS phase difference. While in 
NLOS condition, the phase difference between two receiv-
ing antennas is a random variable. Thus, the statistics of 
the phase difference between two receiving antennas can be 
used for NLOS identification [13, 65]. The channel fading 
is relatively flat in LOS dominant scenarios and more fre-
quency-selective in NLOS dominant scenarios for the richer 
multipath superposition, especially when the receiver has a 
position displacement in the data collection process. Thus, 
the channel diversity [63] and channel correlation [66] can 
be applied for NLOS identification.

Usually a single parameter for NLOS identification does 
not perform very well. Thus, multiple parameters are com-
bined to obtain a better performance. In [61], NLOS identi-
fication using TOA, RSS, RDS and their combinations are 
evaluated. When the exact distance information is available, 
the combination of TOA, RSS and RDS for NLOS identi-
fication obtains the best performance, but when the exact 
distance is not available, the RDS based method is most 
successful. In [63], when skewness of dominant path power 
distribution and kurtosis of frequency diversity variation 
distribution features are combined for NLOS identification, 
it beats any single feature. RSS and channel state informa-
tion (CSI) in OFDM system are input to a recurrent neural 
network (RNN) model for NLOS identification [64]. In [67], 
statistic parameters computed from RSS and range estimates 
are taken as input features to the Machine Learning (ML) 
algorithms for NLOS identification.

The above algorithms apply received signals character-
istics to identify NLOS signals. In the localization process, 
the detected NLOS measurement(s) can be discarded (if 
there are enough LOS measurements for localization [54]), 
or used after proper processing including (1) rank the NLOS 
error and select NLOS measurements with small errors 
[66] and (2) calibrate the NLOS measurement(s) error [59]. 
There are also other algorithms to mitigate NLOS impact on 
localization performance. In [58], it is assumed that there 
are more than necessary base nodes for localization. The 
base nodes are divided into multiple subsets, and each sub-
set obtains one estimation of the target position. The range 
residual (the difference between measured range and cal-
culated range (between estimated target position and base 
nodes’ positions)) is applied to weight the target position 
estimations, and the weighted summation of these estima-
tions reduces the NLOS impact. In [11], DOA fusion is first 
applied to estimate the target position, and then the NLOS 
measurements is detected using the TOA and estimated tar-
get position. If there is no LOS measurement, the shared 

reflection points (localized via DOA fusion) and TOAs are 
used to localize the target.

5 � Collaborative Localization

While traditional localization techniques rely on measure-
ments between anchors and the device to be located, in 
recent years, a new paradigm for localization has emerged. 
This new paradigm, described in this section is termed col-
laborative (also cooperative or network) localization. In col-
laborative localization [68–71], localization is supported by 
using measurements between nodes requiring localization 
in addition to measurements between anchors. These addi-
tional measurements provide improvements both in terms 
of localization coverage and accuracy. An interesting aspect 
of collaborative localization is that while it has been studied 
for several years, it may take on new importance as it can be 
directly combined with device-to-device (D2D) LTE and 5G 
communication [72, 73]. In addition, collaborative GNSS 
solutions are under research and development [74–76].

The benefits of collaboration between nodes requir-
ing localization have been studied both theoretically (via 
CRLB) and algorithmically in the existing literature. These 
benefits can be described in terms of both reduced localiza-
tion error and improved localizability (i.e., coverage). This 
can be understood through the example shown in Fig. 2. In 
traditional localization, the source nodes (those seeking to 
be localized) typically require a minimum of three connec-
tions to anchors in order to be localized [18]. In the figure 
only one of the source nodes (out of nine) has sufficient 
connections to anchors to perform traditional localization. 
However, with collaborative localization, nearly every node 
in the graph is localizable using an appropriate collaborative 
localization technique, highlighting the coverage benefit. 
Additionally, even the one node that is localizable without 
collaborative localization can improve its location estimate 
through the extra connections (i.e., constraints) highlighting 
the performance benefit.

Analysis based on Fisher information has shown the gen-
eral benefit of collaboration between nodes [77], the scal-
ing of the benefits of collaboration with network size [78, 
79], the impact of anchor placement [80], and the impact 
of neighbor selection [81]. In addition to insights based on 
Fisher information, many localization algorithms have been 
developed [68, 71]. However, despite the theoretical studies 
indicating clear benefits of collaborative localization and 
the development of many practical algorithms, there have 
been few actual deployments. This is mainly due to the the 
deployment of ad-hoc networks (which would benefit the 
most from collaborative localization) is still notoriously 
hard. This is especially true for techniques which rely on 
time-based distance measurements.
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The basic problem to be solved in collaborative locali-
zation can be developed assuming Gaussian noise corrupts 
the measurements between pairs of nodes � . More spe-
cifically, the Maximum Likelihood solution can be shown 
to be equal to a weighted least squares solution of the 
following:

where �̂ is a vector of the estimates of all node positions � 
and �ij is the standard deviation of the noise in the meas-
urement yij between nodes i and j . Clearly this is a non-
linear, non-convex optimization problem and does not have a 
closed-form solution, although it can be solved using classic 
gradient descent using either using a centralized or distrib-
uted approach [70]. The difficulty to this approach is that in 
order to find the true global minimum, an appropriate start-
ing point is required. Otherwise a local minimum is reached 
which may be far from the true solution.

The global minimum can be reached using a branch-and-
bound (BB) solution search strategy, coupled with the refor-
mulation linearization technique (RLT) [82]. This however 
can be highly complex which leads to a desire to find sub-
optimal methods such as convex optimization using convex 
approximations of the original objective function. Other 
slightly less complex approaches (e.g., stochastic search 
techniques [83]) which can find the global optimum with 
high probability have also been developed.

Sub-optimal algorithms for solving this collaborative 
localization problem can be categorized in several differ-
ent ways. However, we the following dichotomies are often 
used [18, 68]: (a) Measurement Type; (b) Centralized vs. 
Distributed; (c) Sequential vs. Concurrent; and (d) Bayesian 
vs. One-Shot.
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With respect to measurement type, all typical measure-
ments used in traditional localization have been used in 
collaborative localization . These include received signal 
strength, angle-of-arrival, and time-of-arrival [18, 68]. 
Additionally, in high density scenarios connectivity-based 
localization algorithms have also been proposed [84–86]. 
In addition to measurement type, algorithms are devel-
oped as both centralized and distributed approaches. For 
example algorithms developed in [69, 87, 88] are central-
ized approaches whereas those in [89–91] are distributed. 
Sequential approaches perform localization sequentially 
where nodes with sufficient connections determine their 
positions and then serve as anchors to other nodes [92]. Con-
current approaches can be distributed or centralized, but in 
either case allow all nodes to simultaneously determine their 
position [91].

6 � Tracking

The target tracking processes has two important procedures: 
the sensor which could either continuously localizes the 
target or receives the signal from target, and the algorithm 
which process the information provided by the sensor and 
continuously track the movement of the target. Different sen-
sor uses different method for tracking purposes. For exam-
ple, two-way TOA [93] is being used by active radar, active 
sonar and laser retro-reflectometer, while TDOA or DOA is 
being measured via sensor-array such as wireless receiver 
array or microphone array during the tracking process.

On the other hand, he RSS based target tracking method 
consists of either directly measuring the received signal 
power of each sensor [94] or implementing the signal search 
and fusion algorithms through the sensor array such as mul-
tiple signal classification (MUSIC) [95], diagonal unloading 
(DU) [96] or steered response power (SRP) [97]. Also, video 
[98] and infrared camera [99] have been used for indoor and 
outdoor object tracking by integrating the machine learning 

Fig. 2   Collaborative localiza-
tion
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(ML) algorithm into the target tracking process. In typical, 
image processing technique is applied into each or multi-
ple video frame(s) for object detection and classification 
purpose [100], then the object tracking algorithm will be 
applied.

The history of sensor-based target tracking could be 
backtracked to early 1900. Before 1960, researchers were 
focusing on the sensor development and implementation. 
For example, extensive research and development on sub-
marine detection and tracking methods have been conducted 
during 1910s, especially via the underwater acoustic sensor 
[101]. The underwater acoustic sensor, known as hydro-
phone [102], was successfully developed a decade later.

Similarly, the radar development gains much of researcher 
attentions during 1920s, because it is capable of providing 
target detection and tracking, which is located at hundreds 
of kilometers away from the radar station. During 1935, the 
first aircraft tracking by radar has been successfully demon-
strated [103]. The development of radar continues after the 
world war 2, because it also serves as an important tool for 
missile detection and tracking purpose [104]. The superior 
performance of radar is further verified when Soviet launch 
their first satellite to space, which the radar could detect and 
track an object 500km away from the station [105].

The Kalman filter (KF) was introduced by RE Kalman 
during the early 1960 [106]. Since then, researchers had 
been focused on the algorithm development for target track-
ing applications, especially the KF-based algorithm imple-
mentation [107, 108]. Over the years, various KF have 
been introduced in research community for target tracking 
application. The Generalized KF (GKF) was introduced to 
address the relationship between estimation error and lateral 
discontinuity issue in underwater target tracking application. 
The GKF uses a weighting matrix in loss function evaluation 
to overcome the particular issue [109]. As the digital compu-
tation performance significantly improves over the last two 
decades, a higher complexity KF, such the unscented KF 
(UKF) [110] and ensemble (EnKF) [111] become the poten-
tial candidate for nonlinear target tracking algorithm. Both 
UKF and EnKF avoids the linearization process of observa-
tion model during the update process. Furthermore, various 
sigma point transformation methods have been developed for 
UKF algorithm. These include the spherical simplex trans-
formation method [112], randomized transformation [113], 
cubature KF [114] and square-root based KF [115]. While 
the computing technology today allows high complexity 
KF algorithm, such as UKF and EnKF to be implemented 
target tracking in application, however, the development of 
low computational cost KF based algorithm still remains an 
interest among researcher. Especially for the target tracking 
application where either high complexity signal process-
ing on received signal is required or limited computation 
power available in the microprocessor. As such, researchers 

have introduced several low cost KF, these include weighted 
measurement fusion based KF [42] and weighted optimiza-
tion-based distributed KF [116] algorithms.

The tracking algorithm development does not only evolve 
around the KF based algorithm. Bayesian filter and Gill-
Murray Modified Gauss-Newton method have been intro-
duced as an alternative target tracking algorithm since 1989 
[117, 118]. On the other hand, α-β filter is one of the popu-
lar tracking algorithms to track the high-speed maneuver-
ing target such as aircraft and missile [119]. In addition, 
Probability Hypothesis Density filter has been introduced 
as a tool to simultaneously track multiple targets in real-
time [120]. Also, the particle filtering has become a popular 
tracking algorithm for nonlinear system application. It has 
been widely implemented in signal processing-based track-
ing problem [121]. Furthermore, the optimization algorithm 
and estimation algorithms fusion-based algorithm has been 
widely considered among researcher. For example, [122] 
integrates the PF into particle swarm optimization to simul-
taneously track two speakers in a room.

Also, it is not guarantee that the source will continuously 
transmits the signal, and outlier could exist in measure-
ment. Therefore, hypothesis-based target tracking algorithm 
has been introduced since 1986 [123], to determine if the 
measured data is associated with the particular source. The 
hypothesis method has been integrated with different esti-
mation algorithm such as interacting multiple model (IMM) 
KF [124], particle filter [125] and Gaussian mixture filter 
[126] for various applications which includes the missile 
and acoustic source tracking.

6.1 � Space Object

The global navigation satellite system (GNSS) has been 
well known as the major positioning system for land, sea 
and air tracking application. However, the phase array radar 
remains the primarily instrument for space objects tracking 
purposes. Currently, the North American Aerospace Defense 
Command (NORAD) tracks all the natural and man-made 
satellite in space, and updates the satellite orbit information 
in space object catalogue daily. The space object catalogue 
website is accessible by public. The accuracy of satellite 
orbit provided byin space object catalogue is typically less 
than 5 km error for prediction near the epoch, and gradually 
degraded to 15 km error or higher over the 15 days [127]. 
However, the increment of tracking error up to 15 km has 
very low impact on the ground station tracking performance 
for telemetry and telecommand purposes.

A higher tracking accuracy can be achieved via laser 
retro-reflector device, which is equipped on the satellite. It 
is achieved by measuring the TOA of laser beam emitted 
from ground station to the satellite, and reflected back to the 
ground station. The high accuracy laser tracking is typically 
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provided by International Laser Ranging Service via their 
satellite laser ranging ground station network [128].

6.2 � Aircraft

The radar has been the primary device to track an aircraft. 
Although the modern aircraft is equipped with GPS receiver, 
the primary function of GPS receiver is to assist pilot in nav-
igation when the aircraft is out of the radar communication 
range. To fully utilize the aircraft localization information 
via the GNSS for tracking purpose, an alternative position 
and heading broadcasting method, known as the automatic 
dependent surveillance-broadcast (ADS-B) system was pro-
posed during 1990s. The aircraft is required to periodically 
broadcast the ADS-B message to surrounding, which the 
ADS-B message contains both the position and velocity 
vector of the aircraft. The ADS-B signal was aimed to be 
received by satellite constellation, in order to achieve global 
aircraft tracking. However, the ADS-B signal broadcast by 
aircraft primarily received via terrestrial base station during 
the past two decades. The first ADS-B space demonstra-
tion only achievable in 2013 by PROBA-V [129] while the 
ADS-B constellation is only achieved via the hosted pay-
load on IridiumNext constellation [130], which was launch 
between 2017 to 2019.

6.3 � Maritime

Radar remains the primary tracking device in maritime 
application. Alternative tracking method has been consid-
ered, which includes the satellite image, synthetic aperture 
radar (SAR) image and automated identification system 
(AIS) based tracking method. The AIS is similar to ADS-B 
but it is specifically designed for maritime application, where 
the vessel periodically broadcasts its location and heading 
direction to surrounding. Both radar and AIS are capable of 
providing the real-time tracking of the maritime vessel. On 
the other hand, the satellite and SAR images are often used 
for data matching [131, 132], together with the radar and 
AIS data [133], to identify and track the maritime vessel 
which is conducting the illegal activities [134]. Currently, 
a new location broadcasting system, known as very-high-
frequency (VHF) data exchange system (or VDES) [135] is 
under development and testing. The VDES contains three 
subsystems which includes the AIS, an application specific 
message (ASM) channel to reduce the AIS channel’s load, 
and a high rate communication channel between vessels, 
satellites and stations.

6.4 � Underwater

Submarine tracking is considered to be the first target track-
ing application in the history. The weaponized submarine 

during late 19th country becomes a major threat to maritime 
in each country. Since then, numerous submarine tracking 
methodology has been proposed, such as buoyancy method 
[136] and acoustic method (or known as hydrophone) [101]. 
The first hydrophone in array was successfully test in 1920s 
[102]. In addition, a similar detection and tracking technique 
has been applied for torpedo tracking to reduce the threat 
from underwater during war time. With the introductory of 
KF during 1960s, it has been shown that it is possible track 
the underwater torpedo in real-time [137].

The underwater tracking does not limited for military 
application purpose. Instead, the underwater tracking has 
been extensively used in marine life research. The marine 
lives are being tracked to understand their biology behavior 
such as seasonal movement pattern, growth, survival and etc. 
In typical, the marine life tracking involves an acoustic tag, 
which is attached on the marine life itself [138]. In [139], 
hydrophone array is installed at seafloor to receive and track 
the signal which is transmitted by the acoustic transmitter. 
In addition, automated underwater vehicle with hydrophone 
installed has been utilized for marine life tracking instead 
of installing the fixed hydrophone at various locations. 
Although radiofrequency-based fish tracking method has 
been investigated during 1978 [140], but the acoustic signal 
remains the major tracking source due to the reason that the 
electromagnetic wave has a poor performance in underwater 
environment [141]. On the other hand, the non-destructive 
tracking method has also been considered among the marine 
biologist, which is the underwater camera based marine life 
tracking method [142].

6.5 � Pedestrian

Since 1990s, researchers have been exploring the indoor and 
outdoor pedestrian target tracking problem. Pedestrian (or 
human) tracking remains the most challenging target track-
ing topic. Unlike the wireless sensor devices, the human 
does not broadcast signal with specific ID code and time 
stamp. Thus, tracking method that requires time-stamp or ID 
information, such as the TOA (both one-way and two-way) 
is not applicable. Instead, smart devices, wearable devices or 
passive-sensor based tracking method have been developed 
to assist in pedestrian tracking application over the past few 
decades.

The availability of microelectromechanical systems 
(MEMS) sensor creates opportunity of smart and wearable 
devices development for target tracking application. Major-
ity of the wearable devices-based target tracking are focusing 
on the step-count related tracking. For example, the motion 
of pedestrian is tracked via the doppler shift of a buzzer’s 
signal which both transmitter and receiver are installed on 
the boot [143]. On the other hand, the pedestrian dead reck-
oning (PDR) system [144] which consists of a MEMS inertia 
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measurement system (IMS) (includes gyroscope, accelerom-
eter, pedometer and magnetometer), is one of the most popu-
lar method among the researchers in both indoor and out-
door pedestrian tracking application. For indoor pedestrian 
tracking, the PDR primarily uses the IMS data to track the 
pedestrian movement. For outdoor tracking application, the 
PDR fuses both the GNSS data and IMS data to achieve high 
tracking accuracy performance [145]. The IMS sensors are 
used to estimate pedestrian’s step length and heading direc-
tion. Due to the fact that the step length varies greatly among 
each pedestrian [146], the step length is generally estimated 
based on the velocity measurement output from the IMS 
[147], which generally contains bias and error. Typically, the 
zero velocity update (ZUPT) algorithm is implemented in 
PDR. The ZUPT resets the velocity measurement whenever 
the pedestrian’s foot is step on ground for short interval. The 
purpose is to minimize the accumulative tracking error in the 
PDR system [148].

The passive device is defined as the device that does not 
actively transmit any signal to the target, and require the 
target to return a response signal. Instead, it captures any 
possible signal that is transmitted by the target. Example 
devices include the video camera, infrared camera [99] and 
acoustic sensor. The image-based tracking algorithm gener-
ally integrated with machine learning algorithm for feature 
extraction and human recognition [100] purpose. Therefore, 
the image-based tracking is a multi-step target tracking pro-
cess. On the other hand, the acoustic sensor consists of either 
microphone array or acoustic vector sensor (AVS) to capture 
the speech sound of human. The microphone array could be 
a linear array [122] or circular array [149] that each micro-
phone collaboratively performs the beamforming to estimate 
the direction of the sound source. The AVS is a small sensor 
device that could provide the DOA of the acoustic sound 
source as measurement [150]. Also, additional signal pro-
cessing algorithm is often implemented into the single/multi 
source detection process, such as track before detect [151], 
Gibbs-generalized labelled multi-Bernoulli filtering [152], 
random finite set method [153] to achieve a better speech 
source tracking accuracy performance.

While the primary purpose of target tracking is to con-
tinuously locate an object, however, it also serves as the 
purpose for situation awareness, and aiding in system analy-
sis. The primary purpose of pedestrian and moving object 
tracking in self-driving car is to predict the possible move-
ment of pedestrian (or the object) to avoid any possible col-
lision [154]. In biomedical field, the tracking of endoscopy 
capsule movement within human digestive system has been 
a focus study. Various endoscopy capsule tracking strategy 
has been study in literature, which include the RSS [155], 
TOA, TDOA [17] and DOA [16] based tracking method. 
The successfulness of the endoscopy capsule tracking 
could lower the required image processing time taken by 

the medical personal, such that the medical analysis results 
could be delivered to patient in shorter timer period. On the 
other hand, acoustic based tracking system has been recently 
used to track and study the behavior of animal movement in 
the farm during the feeding and sleeping period [156]. The 
tracking system could help the farmer to identify any sick 
animal.

7 � Machine Learning/Artificial Intelligence 
Techniques for Localization

Machine learning (ML) and artificial intelligence (AI) has 
gained much attention in various research fields in recent 
years due to its promising performance on complicated prob-
lems. Different from the traditional analytic methods, ML 
first uses massive data to train a model and then applies to 
localization. This section aims to shed light to the evolu-
tion of ML techniques for localization within the last two 
decades.

ML based localization algorithms can be classified into 
two categories based on their applications that include: (1) 
An algorithm incorporates channel measurements to directly 
determine users’ location, and (2) An algorithm estimates 
the channel parameters (e.g. channel gain, delay and angle 
information), which can be applied to localization in a 
straightforward way [157].

For the first category, the channel fingerprint contains 
position information, which can be exploited using neural 
networks (NN) [158], convolutional neural networks (CNN) 
[159], and Weighted K-Nearest Neighbor (WKNN) [160] to 
determine user/node localization. For the second category, 
NN is used to estimate parameters of static MIMO channel 
[161–163] and dynamic MIMO channel [164]. A data-driven 
deep neural network (DNN) approach is proposed in [165] 
for node localization via the lower frequency spectrum. 
Authors in [166] propose a supervised machine learning 
approach based on Gaussian Process Regression (GPR) for 
distributed localization in massive MIMO systems.

As mentioned earlier in the paper, many localization 
techniques are based on triangulation methods in Euclidean 
geometry. These techniques utilize geometrical properties of 
sensors to infer locations. ML algorithms can work directly 
on the natural (non-Euclidean) coordinate systems pro-
vided by sensor devices. ML algorithms exploit the topol-
ogy implicit in sets of sensor readings and locations in the 
construction of possibly non-Euclidean function spaces for 
the estimation of unknown user locations, as well as channel 
parameters, which in turn, are used for localization. Here, a 
set of beacon (anchor) nodes are used to provide a training 
data for a learning procedure. Beacon nodes are nodes with 
known locations. The result of the learning procedure is a 
prediction model that is used to localize nodes/users with 
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unknown positions. Beacon nodes are also used in non-ML 
approaches to extrapolate unknown node/user locations.

Mostly, ML algorithms model localization problem as a 
classification or regression problem [167], namely classifica-
tion based and regression based localization.

Both approaches include two phases: (1) Training phase, 
and (2) Prediction phase. In training phase, training data are 
used for ML algorithm(s) to learn an underlying correlations 
among training instances. The training data for localization 
consists of feature vectors associated with beacon nodes, 
also known as predictor variables, and their known location 
coordinates, also known as predicted variables. The feature 
vector of every beacon node includes an n-tuple some meas-
urement such as RSS values for signals received from other 
nodes or distances to other nodes as measured by that beacon 
node. Here, n denotes the number of users minus one. Dur-
ing this training phase, an ML algorithm essentially fits a 
statistical model on the training dataset. This is realized by 
determining optimum values of a set of parameters defined 
by the model. This model is used in prediction phase as 
a trained model. The prediction phase involves estimating 
location coordinates of nodes/sensors/users via the trained 
model. Note that a user can be localized if its own feature 
vector, i.e., its n-tuple measurement, has a same composi-
tion with those of nodes in the training phase. This feature 
vector is used as input for the trained model. The model pre-
dicts the location coordinates of the user as its output. Note 
that the model parametric values remain unchanged as the 
model estimates location of nodes/users. Thus, the order of 
nodes/users being localized has no impact on their estimated 
locations. This feature provides more flexibility compared to 
traditional trilateration-based progressive localization algo-
rithms that their localization performance depends on the 
order of users being localized. Trilateration is a geometrical 
technique that can locate an object based on its Euclidean 
distances from three or more other objects.

In summary, both classification and regression based 
localization work as follows: 

(1)	 Beacon nodes communicate with each other to obtain 
pairwise N-dimensional vectors, where, N denotes the 
number of beacon nodes. A pairwise feature is some-
thing that can be calculated/obtained based on the sys-
tem. For instance, for a small network of sensors, it 
can be signal-strength/distance between two beacon 
nodes/sensors. Thus, each beacon node build its corre-
sponding pairwise vector whose elements are its signal-
strength/distance to other beacon nodes.

(2)	 One beacon node is chosen as a head beacon. First, it 
collects all pairwise vectors from beacon nodes. Next, 
it runs a learning procedure which is a regression or 
classification. This procedure leads to a trained model. 
This trained model will use for prediction of locations. 

The head beacon broadcasts this trained model to all 
nodes/users in the network. In addition, each beacon 
node broadcasts a simple message such as “Hello” to 
all nodes/users.

(3)	 Each sensor/node/user, which is not a beacon node, 
computes its pairwise distance/signal-strength vector 
with all beacon nodes as a result of receiving the simple 
message from beacons. Next, each sensor node applies 
the prediction/trained model that has been obtained 
in the previous step to its pairwise distance/signal-
strength vector to estimate its location.

We explain classification and regression based localization 
in detail in the following sub-sections.

7.1 � Classification Based Localization

This approach requires the localization problem to be 
mapped into a classification problem. In order to realize 
that, a common approach includes two steps: (1) Dividing 
the deployment area into some geographic regions. These 
geographic regions are known as cells, and they have rec-
tangular, square, circular, or arbitrary shapes; (2) A clas-
sification procedure as an ML algorithm is ran to decide 
membership of nodes/users with unknown location in these 
classes. Based on these memberships, ML algorithms local-
ize those users, i.e., each node/user is classified based on its 
membership to these cells [168].

Different ML algorithms are used in the classification 
based localization. Common approaches include Support 
Vector Machine (SVM), K-Nearest Neighbors (KNN), 
Multi-Layer Perceptron Neural Network (MLP).

7.1.1 � Support Vector Machine (SVM)

The Support Vector Machine (SVM) generates hyperplane(s) 
in multidimensional space to split data points into different 
classes. Close data points to hyperplane(s) are known as 
support vectors. SVM aims to provide hyperplane(s) in a 
way that support vectors of different classes have maximum 
distance with each other. SVM classifies data point to as 
many as classes data points are. data points can be linearly 
and/or non-linearly separated. A hyperplane is obtained as 
middle points between support vectors of different classes if 
data points are linearly separable. If that’s not the case, data 
points are mapped into other spaces for easier separation. 
Mostly, from a lower dimension space to a higher dimension 
space via some kernel functions. Common kernels include 
linear, polynomial, sigmoid and Gaussian functions. The 
results show that Gaussian kernel has a better performance 
based on the standard deviation and mean error [169].

SVMs are used in the localization system by training sup-
port vectors on a radio map whose consists of a set of grid 
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points. SVMs analyze the relationship between the trained 
fingerprints and grid points. SVMs consider each grid point 
as a class and attempt to find a perfect match between user 
locations and grid points. The tested RSS fingerprints are 
considered as inputs to SVM and the predicted class to 
which the fingerprints belongs is the output. In the case 
of localization problems, the RSS fingerprint vectors are 
mapped into higher dimensional space using kernel func-
tions because in most cases the location classes are not lin-
early separable. After this mapping, SVM finds a hyperplane 
to divide data points into two classes. The maximal margin 
hyperplane and support vectors are used by SVMs to iden-
tify the tested data class.

The measured fingerprint is classified according to the 
sign of a function f(x). A linear function of the used kernel 
function for mapping data points into a higher dimension 
space is considered as f(x). Due to possibility of several 
locations for users, a localization problem is considered as 
multi-class classification problems. Common approach is 
that SVM maps these multi-class classifications into a com-
bination of two-classes, which are labeled as binary classi-
fication. An N-class problem is divided into N binary clas-
sifier via SVM. Each binary classifier is trained separately to 
estimate user locations and it separates one class from other 
classes. A localization process includes two steps: First, out-
puts of all N binary classifiers are calculated. Next, maxi-
mum value of f(x) is the predicted class [169–177].

7.1.2 � K‑Nearest Neighbors (KNN)

KNN algorithm is based on considering a predefined number 
of calibration points or beacon nodes, i.e., K points. Beacon 
nodes are nodes with known location. These beacon nodes 
correspond to RSS fingerprints in the localization. These 
RSS fingerprints rely on the physical distance between 
access points in the radio map and users. First, KNN algo-
rithm calculates the distance between the user with unknown 
location and beacon nodes. Common distances are Manhat-
tan and Euclidean norm-distance. Next, it selects K nearest 
nodes to the user based on its distance calculation. Estimated 
location of the user is the average of coordinates of these K 
nearest nodes (neighbors) [170, 174, 176, 177].

7.1.3 � Multi‑Layer Perceptron Neural Network (MLP)

MLP is a vigorous tool for many applications mainly non-
linear estimation. Localization is a nonlinear mapping 
between some available information and desired locations. 
Thus, MLP is one of common ML approach for localization. 
In the localization process, different variables/parameters 
are used in the literature as input for MLP such as received 
RSS measurements [178–181] and channel state information 
(CSI) [46, 182], and output always is an estimated location. 

For each localization, the trained MLP estimates user’s loca-
tion for some given inputs [170, 177, 178, 183, 184].

7.1.4 � Other ML algorithms for Classification based 
localization

Decision Trees is used in [176, 177, 183]. Naïve Bayes is 
used in [176, 183, 185]. Authors in [177, 185, 186] use 
Random forest. Six machine learning algorithm including 
Bayesian Network, Sequential minimal optimization (SMO), 
AdaBoost, and Bagging are compared in [176]. The corre-
sponding results show that KNN is the superior algorithm 
with respect to other methods based on both the computa-
tional time and accuracy to estimate position. In addition, 
the decision tree provides nearly same performance when 
used with iterative algorithms, namely Bagging and Ada-
Boost [176].

7.2 � Regression Based Localization

Node/User Localization in an N-dimensional region requires 
an estimation of N-coordinates for target nodes/users, which 
generally are real numbers. This can be modeled as a regres-
sion problem as well. As explained earlier in the paper, given 
true Euclidean distances of nodes/users from beacon nodes, 
trilateration is used for localization. To locate a node/user 
that we do not know its true Euclidean distances from bea-
con nodes, we can use a regression tool to learn about these 
distances via training information such hop-count and/or 
RSS. The head beacon constructs a linear/non-linear regres-
sion function based on a training data such as the location 
of beacon nodes. Next, the head beacon will broadcast this 
function to all nodes/users. In addition, other beacon nodes 
send a Hello massage to all nodes/users. Thus, non-beacon 
nodes/users compute their distance vector from beacon 
nodes/users once they receive Hello message from beacon 
nodes/users. Next, they determine their location via applying 
the regression function to their distance vector.

Different ML algorithms are used in the regression based 
localization. They include SVM, NN, etc.

7.2.1 � Support vector regression (SVR)

SVM has been modified and denoted as support vector 
regression (SVR) to apply to nonlinear regression models. 
RSS values for each antenna element and virtual grid coor-
dinates (x, y) of each reference tag are considered as SVR 
inputs and SVR outputs, respectively. Thus, a target position 
is given by spatial coordinates in SVR rather than a region 
or proximity in SVM. SVR uses the same basic idea as SVM 
but applies it to predict real values rather than a class. The 
SVR maps a function f(x) to the training data that has a 
small deviation from that data, i.e., SVR approximates the 
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training data via f(x). SVR can be used via both linear and 
nonlinear approximation functions. Kernel-based SVR maps 
a lower dimensional data into a higher dimensional data in 
the hope that the data could become more easily separated 
or better structured [187–189].

7.2.2 � Artificial Neural Networks (ANN)

Similar to classification based localization, ANN or MLP, 
are used for regression based localization. Here, ANN esti-
mate spatial coordinates (x, y) of user/target rather than its 
corresponding class. Here, training input and output are RSS 
and user coordinates, respectively [190]. Authors in [191] 
use convolutional neural network (CNN) with regression-
based fingerprint model to estimate user position. In theory, 
ANN can lead to a very accurate localization prediction. 
However, this accuracy reduces for the real-time applica-
tions due to the computational time required to make pre-
dictions [190].

7.2.3 � Other ML algorithms for regression based 
localization

Cluster K-nearest Neighbor (CKNN) and Weighted K-near-
est Neighbor (WKNN) are used in [192] and [193], respec-
tively. Authors in [194] use Gaussian Process Regression 
(GPR). Proximity algorithm is used in [195].

8 � Radar

Radars can be defined as the general category of remote 
positioning systems. These systems are divided into two 
main categories of Passive and Active Target Remote Posi-
tioning. Targets in Radars are usually passive and don’t con-
tribute in the process of positioning. Passive target radars are 
usually called primary radars. However, in secondary radars 
that are used for Air Traffic Systems, targets (airplanes) are 
active targets. They are equipped with transponders that 
communicate with the airport secondary radar and provide 
information such as their GPS-calculated position and alti-
tude that is key to the air traffic control process.

Primary radars find the position of targets in the sur-
rounding areas via a  transmission of a short burst of energy 
and processing its reflections [196, 197]. The reflected signal 
is called echo. TOA and DOA estimation is key to radar 
localization. Radars that use rotating reflector antennas, 
find DOA based on the direction of the reflector antenna, 
and use round trip TOA for TOA estimation. In general, 
the detection quality of a radar system is characterized by 
two important metrics: one is the probability-of-detection 
(pd) that represents the ability to detect all targets, and the 
other is the probability-of-false alarms (pfa) that indicates 

the probability of falsely treating noise as the desired tar-
get. In addition, detecting a passive target always requires 
a tradeoff between pd and pfa: as the former increases, the 
latter increases, resulting in a low overall performance. 
Long-range Radar technology require high power amplifiers 
such as Klystron and Magnetron. Solid state power ampli-
fiers have also been developed for short to mid-range radar 
applications.

Originally, radars were used for the detection and rang-
ing of targets, but today advanced signal processing along 
with machine learning methods enable radars to extract more 
information such as the nature of target, its size, and speed. 
Radars use tracking techniques to enable them to track tar-
gets. Radars (specifically those used in military applications) 
can track a large number of targets simultaneously.

The ability of traditional radar systems to find the loca-
tion of targets is usually limited to the targets in free space. 
Wireless environments such as urban, suburban and even 
rural areas suffer from variety types of obstacles that are 
usually called scatterers. The capability of radars to detect 
the desired targets is hindered by clutters or reflections from 
undesirable scattereres and interfering radars, which are 
inevitable in typical indoor and urban areas, rendering radar 
systems impractical [198]. Moreover, operation of multi-
ple radars in urban areas require multi-user technologies to 
avoid interference effects.

Vehicle-to-vehicle localization via mm-wave radars are 
key to autonomous vehicles. These radars are required to 
operate in rich scattering media. They also should cope with 
near ground channel effects as they are usually installed on 
vehicle bumpers [199, 200]. Emerging mm-wave radars, IoT 
devices, mobiles, along with many traditional radios highly 
impacted the utilization of spectrum technologies. This has 
led to the development of new and novel spectrum sharing 
methods that may involve artificial intelligence to enable 
coexistence of numerous radio devices [201].

9 � RFID Based Localization

At first glance, radiofrequency identification (RFID) tech-
nology may not seem like the panacea of radiolocation that 
it is fast becoming. Passive, far-field RFID tags operating in 
the UHF bands are short-ranged, requiring enough incident 
RF power to energize its logic, memory, and communica-
tions circuitry. Even if there is enough incident power on the 
passive RFID tag to power all of its operations, the data rate 
is extremely low compared to modern, conventional radio 
communications. The existence of multiple tags in a reader’s 
field of view slows and hampers communications in ways 
unfamiliar to any modern cellular air interface.

Yet RFID has, from the beginning, been primarily a 
location technology. Identification information, by itself, is 
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meaningless; only when the tag is connected by location to 
its context does RFID become useful. This fact is obscured 
by the fact that passive RFID tags have such limited range. 
If passive RFID works, its location is instantly known: the 
tag is right by the reader! That reader may be a portal to a 
warehouse, may be hovering above a toll lane on a highway, 
or may be monitoring a storefront for unauthorized removal 
of merchandise [202, 203]. In every case, the context of 
location is at least as important as any unique identifier that 
an RF tag stores.

However, as passive tags have increased in range, their 
usefulness in a radiolocation system has become appar-
ent. A landmark accomplishment in RFID localization was 
achieved, indeed, by LANDMARC (LocAtioN iDentifica-
tion based on dynaMic Active Rfid Calibration) [204]. The 
LANDMARC system took advantage of the lossy RFID 
propagation channel to perform localization with RSS fin-
gerprinting, along with strategically placed reference tags, 
that achieved 50-percentile accuracy of about 1.0 m [204]. It 
is well-known that RSS fingerprinting works better in lossier 
environments, as this effectively adds a stronger dependence 
on distance to RSS, making it easier for trilateration algo-
rithms to localize a transponder [205]. Passive UHF RFID, 
by using backscatter communications from reader-to-tag-
to-reader, operates with a free space link budget that more 
closely resembles a radar system, even in an uncluttered, 
free-space environment.

9.1 � The Unique Role of Phase in RFID Localization

There is a hidden strength in using backscatter systems like 
RFID to localize transponders. Unlike conventional radios, 
an RFID reader can both transmit and receive signals using 
the exact same RF oscillator source. RFID tags use load 
modulation at their antennas to reflect digital signals back 
to the reader (switching between two different electri-
cal loads, which effectively selects between two different 
radar cross sections). So the RFID signal experiences a true 
“round-trip” propagation with zero latency, and the RFID 
reader can make a true phase-stable measurement on this 
link. Although it is possible to experience range correlation 
effects due to oscillator phase noise, modern-day commer-
cial frequency synthesis hardware generates oscillators that 
are stable enough to avoid range correlation effects in UHF 
and microwave bands for signals that travel a few kilometers 
or less.

Arnitz et al. illustrated how phase could be used for pre-
cise localization of RFID tags [206]. Nikitin, et. al. demon-
strated phase-based measurements on the backscatter link 
that produced range estimates that consistently predicted 
in which 60-cm “lane” an RFID tag was traveling through 
a reader portal [207]. Zhou and Griffin used a 5.8 GHz 

microwave RFID link to demonstrate how a simple, two-
frequency phase measurement can be used to estimate tag 
range that is typically within 20 mm of the reader at ranges 
of 1.275 m [208]. Cheng, et. al. demonstrated a multi-fre-
quency phase measuring technique that could further refine 
range estimates indoors with errors on the order of 10 cm 
[qi].

The increase in RFID location precision that use phase 
can be further enhanced by employing sensor fusion tech-
niques. Because inertial-magnetometry units (IMUs) for 
handsets and portable devices have lowered in both cost and 
power consumption, power-stingy IMUs are easily incor-
porated into an RFID tag. Akbar et al. demonstrated that 
an RFID tag capable of backscattering IMU data is capable 
of hybrid inertial microwave reflectometry (HIMR) [209]. 
HIMR uses data backscattered from the RFID tag in addition 
to measurements on the signal strength and phase of the RF 
link itself, fusing the two different types of measurement 
into a location estimate that ends up being far more accurate 
than using RF link measurements or IMU data alone.

Akbar et. al. demonstrated the ability to track a moving 
target on a circular track with 2D RMS position error con-
sistently less than 2 cm, in a bounded area surrounded by 3 
microwave readers operating up to 20m away from the tag 
[210]. Yang et. al. later demonstrated a general framework 

CMOS 
Stasis

Fig. 3   Nikitin’s trend for improved sensitivity and range of passive 
UHF RFID tags is illustrated [212, 213]
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for sensor fusion involving Kalman filtering of the meas-
ured backscatter physical parameters as well as IMU data to 
achieve ranging errors of less than 2 cm [211].

9.2 � Boosting the Range of RFID

Despite recent gains in the performance of passive UHF 
RFID, it is the energy-harvesting circuitry that still limits the 
usable range. Since UHF RFID operates in unlicensed bands 
around 900 MHz, readers must abide by the typical indus-
trial-scientific-medical (ISM) regulations in the country of 
operation. In the US, these restrictions require a maximum 
of 1 Watt input power to a transmit antenna restricted to a 
maximum of 6 dBi peak gain. Under these transmit restric-
tions, Fig. 3 illustrates how tag sensitivity—the minimum 
input power to a passive tag required to energize its circuitry 
and conduct communications—has changed over the years. 
Each data point on Fig. 3 records underneath the maximum 
range of a passive UHF RFID tag under ideal conditions 
(peak transmission power and antenna gain, free-space chan-
nel, no polarization mismatch).

As can be seen in Fig. 3, after a surge of improved sen-
sitivity, a period of stagnation exists to this present day. 
Largely due to the limits of devices in standard silicon 
CMOS fabrication processes, the ability of RFID tag energy-
harvesting circuits to convert RF power to a usable electric 
form have not improved appreciably between 2015 and 2020. 
Although the thermodynamics of RF energy-harvesting and 
suggestive alternative solid-state devices show that improved 
conversion is possible, an economical alternative has yet to 
be successfully implemented [213, 214].

However, the device limitations has not stopped research-
ers from finding new ways to enhance the range of localiza-
tion for RFID. One popular method involves employing a 
reflection amplifier at the RFID tag. In this implementation, 
a small amount of on-board battery power or alternative 
energy-harvesting power-banking or harvesting scheme is 
employed by the RF tag to amplify any reflective commu-
nications power. This can be accomplished using conven-
tional transistors [215] or more exotic tunnel diodes [216] 
that use microWatts of power to greatly enhance the range of 
backscatter communications. In 2017, Amato demonstrated 
a microwave backscatter link that could retrieve digital data 
from 1.2 km away (line-of-sight) [217]. Qi et al. later dem-
onstrated the power of this technique to localize indoor and 
outdoor tags up to 30m away with less than 10 cm RMS 
error [218].

In all, RFID and its related technologies has shown enor-
mous achievements in recent years for localization. The ulti-
mate prize—a long-ranged radiolocation system capable of 
cm-scale, motion-capture-grade localization in multipath 
and/or non-line-sight scenarios—-is getting tantalizingly 
close to technical reality.

10 � Visible Light Positioning

Solid-state light-emitting diodes, photo-diodes, and image 
sensors are embedded in different devices (smartphones, 
smartwatches, and tablets, to name a few). LED-based illu-
mination saves power, produces creative fixtures, and smart 
lighting [219]. Image sensors and particular purpose photo-
diodes collect images and other light data for different appli-
cations. These facts jointly create a profitable opportunity for 
the development of pervasive, secure, and low-cost visible 
light communication (VLC) and visible light positioning 
(VLP) [220] systems, both for indoor and outdoor uses.

VLC systems offer high bandwidth using illumination 
devices, thus immune to other electromagnetic sources, 
favoring a high reuse factor since light does not go across 
walls. Such technologies have already been proposed for use 
indoors and in vehicular platforms (ships, airplanes, buses, 
and cars). Their use may reduce the number of cables and 
reduce weight, manufacturing cost, and energy consumption. 
Besides, as light does not interfere with other electromag-
netic equipment, it may be safely used in domains where 
RF interference is undesirable, such as hospitals, mines, gas 
stations, and aircraft. VLC may also be very cost-effective if 
installed in existing illumination systems with few changes. 
As a result, visible light positioning (VLP) technologies 
aiming at localizing devices using information from (visible) 
light (communication) sources have also emerged rapidly. 
The staggering use of the non-licensed RF bands (as the 
WiFi and Bluetooth bands) and the developments in LED, 
PDs (photo-diodes), and image sensors technologies throttle 
the design of VLC and VLP systems.

VLP technology is well suited for self-owned short-range 
localization systems. Some have pointed VLP as a powerful 
technology for low-cost IPS (indoor positioning system) for 
the IoT (Internet of Things) era, leveraging high-accuracy 
localization-dependent data delivery at high data rates with 
high availability in consumer applications. The light within 
a room does not interfere with light in another room, eas-
ing VLP systems reuse for indoor applications. The wave-
particle nature of light (its very short wavelength/particle 
size) makes it possible to obtain a very accurate position 
location. Consequently, VLP arises as a competitive alter-
native for IPS. Different VLP systems have been proposed 
and employed for intelligent transportation systems (ITS) 
as well.

We make an effort to present a historical perspective of 
VLP, mainly considering the dual use of light sources for 
communication and position location. Nonetheless, we must 
undoubtedly make undesired mistakes when searching for 
the birth of some ideas, concepts, and their use for VLP. In 
our endeavor, difficulty tracking the onset of using a particu-
lar ranging method for VLP comes from the fact that several 
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groups were probably employing similar principles simul-
taneously. We try to address when and how light sources, 
LED sources, and VLC systems were employed to locate 
and track different devices. VLP research and development 
is ongoing, humanity’s ingeniousness, the delay for some 
ideas to be publicized, and the thriving technology era we 
live in also hamper the objective.

10.1 � Preceding Technologies

The efforts leading to the first LIDAR (light detection 
and ranging) systems using laser (light amplification by 
stimulated emission of radiation) beams succeed already in 
the 1960s [221, 222]. Since these systems employ optics, 
they were also called Optical RADARs. A LIDAR irradi-
ates light, and from the reflected light, one computes the 
distance to objects and surfaces. Such systems were inte-
grated for surface scanning [223]. Satellites convey such 
optical radar techniques for geodesy, metrology, and geo-
dynamics applications [224]. While the first systems were 
large and heavy, nowadays they are embarked in drones for 
many applications to map the most different environments 
and surfaces.

Optic-electronic systems have provided precision sens-
ing for industrial positioning and alignment applications 
for a long period [225]. With time the optical-electronic 
systems replaced several electro-mechanical systems for 
the precise positioning in industrial applications. The key-
technology were optoelectronic position-sensitive detec-
tors using the lateral photo effect. The impinging light 
produces an electrical current that flows to the detector 
contacts proportionally to the resistance from the position 
where light impinges to each contact. To determine the 
incident spot position, one compares the resulting currents. 
Such lateral effect position-sensitive devices are capable of 
rapid response and very high position resolution. There-
fore, position-sensitive detectors allow determining the 
position of a light spot on the receiving optics’ focal plane 
in real-time. Various types of position-sensitive photo-
detectors have been developed  [226], from using only 
one photo-diode sensor to using multiple photo-detectors 
in multi-sensor arrays. These systems have been used by 
diverse industrial applications to measure displacement, 
angle, straightness, object location, height, and center. 
Such position-sensitive detectors have also being used 
for optical range sensing [227]. The light (using a laser) 
emitted and its reflection impinges a position-sensitive 
detector, and from the resulting current, one computes the 
range. Using three of such ranges, one resolves the relative 
position and constructs 3D maps.

Range finding from the projection a known pattern of 
light (laser) on a surface or scene is also possible [228]. 
Cameras are employed to capture the projection of the 

structured light pattern on the surface. The pattern distor-
tion resulting from its projection algorithms compute the 
distance to points in the scene. The use of visible projected 
structured light patterns has been a suitable range finding 
method, using infrared or/and visible light projection.

Smart dust is millimeter-scale sensor nodes with limited 
computation power, limited sensing capacities, and limited 
communication capabilities with a base station intended 
for large scale monitoring tasks for many applications. An 
approach for a smart dust location position using a rotating 
parallel laser beam was proposed in [229]. The sensor dis-
tance to the lighthouse makes the angular width in which 
the sensor sees the light change. Thus, each dust sensor 
measures the time interval that it sees the light and the 
period it takes for the light to be seen again, i.e., the light-
house revolution, to compute its distance to the lighthouse.

10.2 � Location Position From Light Intensity

The intensity of light in a room depends on each light 
source’s intensity, arrangement, the light reflection from 
walls and objects, and the medium itself. Different illumi-
nation fixtures and lamps, in general, produce different spa-
tial distributions of light intensity and different rooms have 
distinct spatial distributions of light intensity. Even if the 
light intensity may be the same in some specific points in 
different rooms, the spatial distribution of light intensity will 
most probably be different over different rooms. The authors 
of [230] propose to track light intensity changing as data to 
track user displacement and user activity. Light detectors 
(wearable solar cells) measure the light condition. An RFID 
infra-structure offers absolute reference positions, and one 
employs light intensity change for displacement tracking. 
Measuring and collecting the light intensity distribution in 
a room over time may produce a unique distinct illumina-
tion energy histogram. The histogram may be fed to scene 
analysis or fingerprinting methods to obtain the correspond-
ent locality, identifying, for example, the room where the 
distribution was collected [231].

Light intensity patterns may vary severely depending on 
light sensor placement in the body or objects and the actual 
fixtures. Nevertheless, the idea of using light intensity pat-
terns and variations has been embedded in different algo-
rithms trying to exploit conventional luminary infrastruc-
ture. For example, in [232], the authors propose to detect 
the passing under a light spot together with inertial data 
(using inertial measurement units—IMU) for locating the 
pedestrian in the floor. The authors of [233] follow a very 
similar idea. These works also show the relevance of using 
light intensity as data for multi-modal position location. 
Another work [234] uses six PDs placed on the faces of 
the half of a dodecaedron. They capture the light intensity 
arriving from light fixtures; each light is switched ON and 
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OFF at a particular frequency to allow its identification. The 
intensity of each surrounding light defines a different geo-
metric locus. The authors find the receiver position location 
using three of them. One notes that the last work presents a 
relevant change w.r.t. to the previously mentioned works: the 
modulation (on-off) of the light, allowing us to identify the 
sources that come by the different directions, and we need 
to move back, chronologically speaking.

10.3 � Proximity Methods

The above examples show that light/optical range-find-
ing systems have been around previously to the so-called 
VLP systems. Those ranging optical methods employ light 
sources and detectors in a known geometry/arrangement 
to estimate the target’s distance. Differently, VLP systems 
estimate the range from a visible light source to a detector 
or their relative position. VLP systems employ light in the 
most distinct environments to provide a position location for 
devices, people, and various objects. If one modulates light 
sources to convey information for localization purposes, one 
may use different geometrical approaches for VLP. These 
approaches may require large bandwidth, replacement of 
older lighting technologies by LEDs satisfies the require-
ment. They also require different beacons or anchors, which 
is also easy to accomplish using LEDs (low weight, low 
cost, high efficiency, large life-expectancy). As a result, VLP 
systems suing geometrical positioning techniques abound. 
These VLP systems may use light anchors’ identity (prox-
imity) combined with fingerprinting methods, ranging (dis-
tance estimates) for trilateration, triangulation using angle 
measurements, and others to provide a position fix.

One of the first proposals to transmit specific information 
for location position was for a vehicle location and naviga-
tion system using traffic lights [235]. Assuming that LEDs 
would replace traffic lights, the authors propose using short-
range communication devices for roadside-to-vehicle com-
munications, modulating the LEDs in the traffic lights for 
broadcasting. One finds location and navigation data within 
the broadcast information, converting the traffic lights in 
location beacons. Once the vehicle detects the short-range 
beacon, it can obtain the junction passing by, a coarse but 
useful position location. These data can be used in many 
ways for intelligent transportation systems (ITS). A camera 
captures the traffic light image augmenting channel capac-
ity, and the partitioning of the light traffic panel into regions 
encoding different information improves transmission diver-
sity, among other improvements, in [236]. These systems 
make a simple dual-use of light for positioning (the con-
veyed location position) and information (stop-caution-go) 
and other possible data, as traffic information and nearby 
services.

The above systems modulate especial purpose lights for 
delivering the location information, while the systems in 
[230, 231] employ preexisting ambient lighting for loca-
tion position. Another interesting proposition combines 
the two principles for assisting the visually impaired [237]. 
One modulates the light radiated by the fluorescent lamp to 
convey its position (the building, the floor, the room, and 
alike, that is the lamp location or identity). Zhang and Zhang 
[238] uses fluorescent lamps as location landmarks and a 
smartphone camera as a sensor. The system detects each 
fluorescent lamp using its inherent characteristic frequency. 
A set of sampling, signal amplification, and camera opti-
mization mechanisms allow capturing these weak features 
above 80 Khz. The Visible Light Cell ID (VLID) techniques 
that return the device position as correspondent to the light 
source location (the junction, the room, or the lamp, or even 
the centroid of the correspondent illumination region) pro-
vide a locality classification. This coarse location requires 
only one light beacon, making such VLP systems to scale 
easy. The light carrying the identification and possibly the 
position for location purposes is confined within the room 
where the light fixture is, channel reuse is for free, differ-
ently than similar strategies based on RF techniques. One 
should note that the ranges for outdoor and indoor position 
location systems depend on the modulated light’s visibility 
with enough intensity and are thus proximity constrained; 
therefore, they are proximity-based positioning systems. 
These systems may present very specialized means for light 
modulation and processing techniques to extract the beacon 
identity. For example, in [239] the LED light pulses at a 
frequency much higher than the camera’s frame capture rate 
and thus producing a particular band-image pattern due to 
the interference with the pulse rate and the rolling shutter 
of the camera.

10.4 � Ranging from Light Intensity

One work presenting methods to estimate the distance of 
optical communication links from the received optical power 
or the error rate (which depends on the received power) is 
in [240]. This work provides experiments for ranging in 
air and underwater. The authors collect data that correlate 
the necessary transmission power (voltage on the LED) for 
error-free transmission to the transmitter-detector distance to 
estimate the distance between the light source and the detec-
tor. At short range distances, the error rate of the optical 
link is expected to be null. Therefore a protocol is employed 
for the transmitter to reduce its transmission power progres-
sively. Once the voltage applied in the LED for transmission 
makes the error rate depart from zero, one can estimate the 
distance from the smallest voltage leading to an error-free 
optical link using a polynomial regression or lookup table. 
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However, at long distances, transmission error will always 
occur, demanding a different strategy. The authors propose 
to employ the current transfer rate at the detector, which 
depends on the distance (assuming that the transmission 
power is constant).

After detecting the visible light source identity, one may 
compute the emitter’s distance to the detector from the 
received optical power by inverting the free-space-optical 
model. And, one has the VLP counterpart to RF received 
signal strength-based (RSS-based) location position meth-
ods. Some works use particular curves to fit received 
signal strength and distance; others use the Lambertian 
model [241]. Nevertheless, the principle is always obtain-
ing the range from the received signal strength. To obtain 
ranges to different light emitters [242], time division, fre-
quency division, code division, and other medium sharing 
techniques that are particular of VLC as color/wavelength 
multiplexing (using light sources of different colors). It is 
also possible to employ one light beacon and several optical 
receivers in a known arrangement [243]. Each of the optical 
receivers produces a different range. In [244], the authors 
present a multiple-photo-diode-based indoor positioning 
that employs photo-diodes in different tilts to measure light 
intensity. The power received from the different light sources 
fed the localization algorithm, instead of the range. Instead 
of computing ranges from the received optical power, one 
may employ the ratio between the optical power and the RF 
signal modulating the light [245], the extinction ratio [246] 
(the ratio (in dB) between the ON and the OFF voltages at 
the PD) can also be used.

10.5 � Angular Information

Using arrangements of sensors or image sensors introduces 
angular information for resolving the location position. 
The mixing of range measurements and orientation (angle 
information) is another alternative [247] using arrangements 
with multiple emitters and detectors (multiple transceiv-
ers optical nodes). The optical link line-of-sight depends 
on the relative position between the optical nodes. Using 
multiple transceivers in the optical node allows to now the 
ones under LOS. This angular information is used together 
with the range between the optical nodes to find their rela-
tive positions. Such an approach is an example of the DOA 
method in VLP systems. The angular information results 
from the fact that LED emissions follow Lambert’s cosine 
law; thus, changes in the alignment between LED and PD 
lead to changes in the received optical power in a predictable 
manner. Therefore, one could use the difference between the 
received power and the received power at a known angle to 
estimate the incidence angle. Another use of angle-of-arrival 
for VLP is to resolve the receiver orientation to maximize 

the throughput of an optical link  [248]. However, the field 
of view and possible inaccuracies in the Lambertian models 
limit the conversion from received-optical-power to angle. 
To mitigate these inaccuracies, PD arrangements composed 
by multiple receivers is a possibility [249]. Methods mixing 
the angular information and ranging for location position can 
be seen in [250, 251].

10.6 � Computer Vision Techniques

Trying to track back the history of VLP techniques, we now 
go back on time and focus on computer-vision-based tech-
niques. One may compute the receiver position knowing 
the spatial arrangement of LEDs and each LED projection’s 
positions on the image sensor. Complementary, the LEDs 
may encode their differential positions w.r.t an arbitrary ori-
gin. The image sensor is used to obtain both their relative 
positions on the image plane and the differential positions 
they broadcast.

In [252], the authors evaluate the proposal considering 
LEDs placed in traffic lights or at the roadside. Computer-
vision-based VLP methods are using different LED arrange-
ments and detectors. For example, consider the work in [253] 
that using a ceiling fixture composed of several LEDs emit-
ting light modulated to encode their positions. The device 
to be located captures their projection in two different image 
sensors spatially separated with now arrangement. Estimat-
ing the receiver’s position requires solving two sets of quad-
ratic equations to find the corresponding spherical geometric 
loci interception. Suppose different light sources are present 
in the captured images/video, then one extracts their identi-
ties. In that case, one may use the sources’ positions in the 
image to compute the image sensor’s position. The authors 
of [254] employ a fish-eye lens equipped camera to provide 
a 180o aperture and thus increase the number of detectable 
LED lights aiming at improving positioning accuracy. The 
work in [255] employs light beacons modulated using ON-
OFF keying to broadcast the beacons’ identities and coordi-
nates. Using a sequence of images, one identifies the beacon, 
demodulates its data, and obtains its location in the image. 
From the location of the beacons in the captured image, one 
extracts the angle information.

10.7 � Phase and Time Difference Ranging

Considering ITS, one notes that each vehicle embarks at 
least two headlights and two taillights. One modulates the 
lights by tones using different frequencies [256], the sec-
ond vehicle detects these tones and computes the difference 
between their phases. This difference depends on the relative 
position between the vehicles, the LED sources arrangement, 
and the detector’s disposition. The second vehicle knows its 
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detectors arrangement while the transmitted tones convey 
the first vehicle’s light disposition. If the two arrangements 
are known, the second vehicle can obtain its relative posi-
tion to the first. In [257], the authors present a TDOA VLP 
scheme aiming at vehicle localization, considering VLC 
capable LED traffic lights and that the vehicles detect the 
messages using a pair of photo-diodes. One determines the 
vehicle’s position from the traffic light position broadcast 
in the VLC link and the time difference between the traffic 
light signal’s arrival at the two photo-diodes. Such VLP can 
work using one or more traffic lights. Such a method requires 
precise knowledge of the traffic lights positions, and its accu-
racy reduces with vehicle speed up.

Similar schemes for indoor positioning also exist [258]. 
One modulates the LED ceiling lamps using different fre-
quencies and computes the position from the phase differ-
ences (the TDOAs) at the detector (a PD). These methods 
employ sinusoidal waves and detect phase differences to 
compute the difference in light travel time. Such techniques 
have been called PDOA—phase difference of arrival, posi-
tion location. In [259], PDOAs using odd multiples of a 
fundamental frequency is employed.

The work in [260] notes that by modulating the light emit-
ted by different white LEDs, one produces an interference 
pattern in the detector. The interference amplitude varies 
with the geometrical arrangement between transmitters and 
detectors. Then, by measuring the peak-to-peak amplitude 
of the received sinusoid, one also produces a TDOA meas-
urement. Measuring amplitude rather than phase does not 
require an absolute time reference at the receiver. VLP sys-
tems could use TDOA for trilateration [261]. The techniques 
to obtain the TDOAs between different beacons/anchors may 
employ the alignment of encoded data on the beacon burst. 
Another option is to use simple pulses of arbitrary posi-
tions and amplitudes within a frame (a time interval). From 
the pulses’ received profile within a frame, one obtains the 
TDOAs to different anchors [262] and computes the position 
fix. While the above methods for TDOA positioning for VLP 
are easy to deploy since they do not require synchronization, 
TOA is more demanding and, therefore, less common for 
VLP since, in general, the objective of VLP has bee to locate 
low-cost devices.

10.8 � Fingerprinting

Indoor localization using fingerprinting-based VLP is also 
possible. In [263], each LED beacon emits visible light 
intensity-modulated by a sinusoidal wave, using a different 
frequency for each LED. The received signal at the photo-
diode is processed to obtain its power spectral density. A 
pyramidal-like arrangement of five photo-detectors (placing 
a photo-diode in each face and another in a plane parallel to 
the pyramid base but above the others) provides reception 

diversity. The power spectral density is the fingerprint. The 
scene analysis process compares the power spectral density 
to be located against a database of power spectral densities 
utilizing the Euclidean distance and returns the correspond-
ing position. In [264], another example of fingerprinting 
VLP-IPS is devised for multiple LED transmitters, although 
infrared. The receiver measures the power and their impulse 
responses as fingerprints.

Another alternative is to modulate the VLP beacon syn-
chronously using its position [265]. The receiver knows 
the codes (the beacons addresses) and then computes the 
received signal’s correlation with them. The larger the cor-
relation is, the closer the receiver is to the correspondent 
beacon. By training (similar to the construction of a finger-
printing database or map), the authors fit functions to map 
the correlations to 2D coordinates. In this sense, since the 
received signal correlation with the known transmitted one 
provides a measure of received signal strength, this system 
resembles fingerprinting form received signal strength. The 
use of a fitting function simplifies scene analysis.

DOA is also a possible fingerprint feature [251]. The 
detected power varies both with the distance and the angle 
between emitter and receiver. Using an array of PDs tilted at 
different angles boosts DOA fingerprinting. Since the light 
arrives at the different PDs in the arrays at different angles, 
the detected power also varies accordingly. The resulting 
received power can be measured and used as a fingerprint.

The capability to extract the features depends on the com-
munication method (modulation scheme, coding, clock/
bandwidth) and the nature of transmitted data. Therefore, 
one may design specific modulation and coding schemes that 
consider its usability to extract fingerprinting features. For 
example, [246, 266] use OOK modulation in the VLC; con-
sequently, the fingerprints contain the ratios between the ON 
and OFF received amplitudes. One finds the most probable 
location using a database of received ON/OFF amplitudes 
ratio. Using images as fingerprinting features is also a pos-
sibility [267]. The LED beacons blink at high-frequency, 
and image sensors collect the resulting patterns at different 
rates. The fingerprints are composed of light intensity plus 
the image pattern, and then, using a probabilistic approach, 
the position of the image sensor is determined.

11 � Conclusion

This paper summarizes the history of localization tech-
niques. It highlights the initial motivation for basic Radar 
technology development in World-war II to detect and local-
ize airplanes and warships. Next, it offers an overview of the 
development of localization technologies through the evo-
lution of wireless communication technologies and signal 
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processing for TOA, DOA, and RSS computation. The paper 
presents the concept of geometric and non-geometric locali-
zation, the problems associated to NLOS localization and 
the concept of collaborative localization. The paper also 
presents the development of tracking and Kalman filtering 
methods that are key to high performance localization. The 
paper addresses the emergence of artificial intelligence and 
machine learning for localization as well. In addition, the 
paper discusses emerging techniques and methods in the 
field of localization such as visible light, machine learning, 
RFID, and network localization. Moreover, the paper dis-
cusses key localization techniques that have been developed 
over the last few decades. Furthermore, the paper sheds light 
on novel localization technologies and key research areas 
and important topics related to localization.
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