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Abstract
Wireless access networks need to deliver a satisfactory level of Quality of Service (QoS) to their subscribers. The service 
quality can be measured through various metrics, for example the mean packet delay, average throughput, the jitter and band-
width. Based on the type of network application, one or the other can be more important. Mobile data offloading has a crucial 
effect on the efficiency of wireless access networks. Offloading decreases the load on mobile networks (LTE) which frees 
the band to other users and consequently improves the QoS level. Also data offloading reduces the cost of the downloaded 
information. In this paper we assess the impact of data offloading on the efficiency of wireless access networks. We employ 
two popular scheduler algorithms to measure the effect of resource allocation among users. In particular, an analytical model 
for mixed LTE and WiFi access networks is developed. The model takes into account the role and the effect of various appli-
cation demands. The model evaluates the wireless access networks behavior when some portions of network service zones 
are tenanted by different application types. Using the real network simulation NS3, the network performance metrics (the 
average throughput, delay and packet loss) are investigated to evaluate the network performance under diverse traffic loads.

Keywords Wireless Access Networks · LTE · WiFi Networks · Traffic Modeling · Performance modeling · Offloading

1 Introduction

Networks with diverse access technologies which can deliver 
a service using a cellular access network and capable of 
keeping the service when switching to another WiFi access 
network is called a wireless access networks [40]. The rapid 
increase in the use of wireless devices results in numerous 
challenges for wireless access networks design and imple-
mentation. Also, the various types of network applications 
produce different traffic types. Each application generates 
traffic with different characteristics which leads to differ-
ent types of traffic in the network. Some applications gener-
ate traffic with fixed rate like voice calls; others like video 
streaming and web browsing generate traffic with variable 
rate. Applications like files transferring generate traffic with 
different burst size. These challenges should be considered in 
the design of the new generation of wireless access networks 

due to the constraints on the delay and bandwidth require-
ments for different network applications [7, 11, 13, 30]. The 
third Generation Partnership Project (3GPP) presented the 
LTE characteristics [29], the novel optimized architecture for 
the radio access and the core networks. Many solutions have 
been proposed to handle these demands such as, offloading 
to other access networks like macrocell, microcell, picocell, 
femtocell and Wi-Fi hotspot. Using complementary access 
technologies for delivering data to mobile users in cellular 
network is called offloading. Offloading reduces the time of 
a user to be served by cellular technology and hence frees 
band to other users and reduces the cost of downloading 
data. The most significant solution is offloading to WiFi 
access points due to their spreading in most smartphones and 
deployment in wide locations. Also WiFi networks have a 
lower cost for both users and operators [7, 18, 37]. Through 
this paper we evaluate the influence of offloading to WiFi 
access networks under different types of application char-
acteristics on the efficiency of the wireless access networks. 
The rest of paper is organized as follows. In Sect. 2, we pre-
sent the related studies to this research problem. Section 3 
shows the simulation model for the integration of multiple 
wireless access networks. Section 4 presents the analytical 
performance model for wireless access networks. Through 
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section 5 we present the discrete event simulation results of 
the presented model. Section 6 concludes our results.

2  Related Work

The rapid increase in the use of wireless devices leads to a 
large variation of the network application demands [7]. The 
target of building the fifth generation access network is to 
support heterogeneity with multi radio access technology 
and various options to the users [14] and [37]. Gerhard et al. 
[41] investigated the performance of the physical and MAC 
layers of LTE cellular networks with a large class of schedul-
ing policies. They presented a formula for user transmission 
rate as a function of channel conditions. Also they assumed 
that each user has an input queue with unlimited buffer size 
at the MAC layer. Using independent Poisson arrival pro-
cesses they introduced an approach to get the upper bounds 
on all polynomial moments of the queue backlog and expo-
nential tail bounds on the tail probability. Hussam et al. [2] 
introduced a resource allocation scheme for downlink LTE 
cellular network using queuing theory based on the channel 
quality information. They considered the channel quality 
information reporting modes in LTE where the subscriber 
only report the indices of their best sub bands and an actual 
channel quality information corresponding to the best sub 
bands. In Richard et al. [8] studied the problem of self-
organized relays in a cellular network. They derived an opti-
mal static closed form solution for resource sharing between 
base stations, relay stations links and users using Markov 
decision process. The influence of key system parameters 
has been investigated, showing the importance of relaying 
gain. The resources are allocated dynamically considering 
the stability for infinite buffers and blocking rate, also file 
transfer time in the presence of admission control. Wang 
et al. [16] introduced a scheduling scheme for the LTE cel-
lular networks which allocates resources to users based on 
the queue length and the overflow probability. The model 
can be used for inelastic traffic and is compatible with 3GPP 
LTE systems. They used a discrete-time Markov-modulated 
Poisson process to model each user flow arrival at the queue 
input. They adjust the allocated bandwidth adaptively 
according to the average queue length and buffer overflow 
probabilities. Narcisse et al. [27] introduced a model with 
process sharing queue model for cellular LTE networks with 
Poisson arrival process and a round robin scheduling disci-
pline. They studied the performance of LTE networks with 
different transmission zones that takes into account mobility 
of users between zones. Their model is based on a multiclass 
process sharing queue which captures mobility of users 
between zones through the distribution of the sojourn time 
a user physically stays in each zone. They assumed round 
robin scheduler, so resources are shared equally among 

active users regardless of the user’s location. Kehindeet al. 
[28] introduced an analytical model for estimating the LTE-
based public safety network capacity for voice communica-
tions. They used a Markov birth and death process to model 
the network. They calculated the minimum number of chan-
nels required for different levels of users priority to achieve 
the grade of service. Dima et al. [9] introduced a traffic 
model for LTE cellular networks which considers different 
realistic parameters that can be used for LTE network plan-
ning and optimization. They generate the traffic profile of 
each eNodeB in LTE cellular network as a function of a 
variety of metrics such as signaling, bandwidth, busy hour 
session attempts and number of bearers, then they planned 
the LTE cellular network using 15 eNodeB. Konstantin et al. 
introduced in [32] a multiple servers queuing systems to 
analyze the subscribers blocking probability in LTE cellular 
network with a limited amount of resources. They derived a 
mathematical model for resources allocation in LTE-A cel-
lular networks, evaluated blocking probability and average 
amount of occupied resources. They assumed that the sub-
scribers arrive according to the Poisson process with rate � 
and stay in server an amount of time independent of their 
arriving process and are exponentially distributed with rate 
�. In [6] Naila et al. studied the behavior of the LTE cellular 
network MAC scheduler and evaluate its performance using 
discrete time Markov chains. The authors considered two 
types of traffic according to soap project, the first one is real 
time traffic like voice and video and the other is non-real 
time like FTP and HTTP applications. They used lognormal 
and exponential distributions for the video applications, also 
they model voice traffic using ON/OFF traffic model with 
exponential distribution for the silence and active periods 
with deterministic packet size and inter-arrival time. Spaey 
et al. [33] introduced an analytical model to study LTE cel-
lular network time varying capacity and its influence on the 
admission control algorithm with no quality of service dif-
ferentiation. Tony in [39] addresses the dilemma of the 
resource sharing by introducing a scheduling algorithm 
using Markov decision approach and quality of service 
aware. The algorithm is two-level scheduling to optimize the 
resource allocation and estate the amount of data sent by the 
traffic source. Richard et al. [25] studied the performance of 
the MAC performance of the LTE cellular network using 
cross-layer algorithm for resource optimization. The algo-
rithm is based on queueing theory and its parameters are 
transmission rate, packets waiting time in the queue and the 
size of the queue at the MAC layer. The authors presented a 
closed form of the previous metrics to evaluate the perfor-
mance of the algorithm by calculating the bandwidth utility. 
Also they use ON/OFF traffic source to generate voice data. 
Xi Li et al. [42] developed a model to assess the performance 
of the LTE cellular networks. The authors presented a math-
ematical model for resource scheduling in LTE networks 
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based on a Markov chain. Each state in the Markov chain 
represents the total number of subscribers associated to one 
MCS (Modulation and Coding Scheme). They studied the 
behavior of the network using two different scenarios. In the 
first scenario they assumed a single service class and no 
quality of service. In the second class they considered one 
quality of service class and two non-guaranteed service 
classes. They validated the model using fixed file size and 
calculated the completion time for file download under dif-
ferent scenarios. Li et al. [22] introduced a model for band-
width dimensioning in LTE cellular network for S1-U inter-
face. The authors presented the model for the elastic traffic 
and they used the M/G/R-PS process sharing queueing 
model to analyze the behavior of the system. Their main 
targets were the bandwidth and network delay. In [21] 
authors used the same previous model [22] to measure the 
bandwidth of the eNB required to be handled by the inbound 
and outbound interfaces to carry elastic traffic given the 
amount of traffic and the number of users in the cell. The 
process sharing model M/G/R-PS was discussed in [23]; 
where it is used for dimensioning cellular networks as well 
as ADSL networks. A selection mechanism called common 
radio resource management was presented in [36, 38] to 
select the used technology based on subscriber needs and 
the available resources between the sets of available tech-
nologies. Most of the previous studies didn’t consider the 
network status to get the decision of the handover, they only 
depend on the received signal strength. The enormous data 
traffic in mobile networks forces the operators and users to 
use WiFi offloading to handle this huge traffic. The offload-
ing techniques in previous studies were divided into two 
strategies, the first one lets the users free to choose the suit-
able technology for them. In the second strategy, the func-
tion of choosing the network technology is selected based 
on the operator point of view. In [1, 18, and 29], they intro-
duced the 3GPP release11 to assist user in choosing the best 
WiFi network. The authors in [20] demonstrated by meas-
urements that the WiFi offloading reduces the cellular net-
work congestion. The author in [35] conducted a survey to 
estimate the mean user time spent in waiting YouTube 
stream and downloading a file, they found out that the user 
can stays ”10” minutes for YouTube streaming and three to 
five hours waiting to download a file for the half of the set 

used in their study. Many studies as in [3, 10, 15, 31] have 
been conducted to evaluate the impact of offloading to WiFi 
access point from the cost side by decreasing the volume of 
data used by mobile network and its efficiencyrelated to 
using femto cell. Also some studies [19, 20, 35] have con-
sidered the offloading to WiFi network for only decreasing 
the usage of mobile networks without taking into account 
the quality, needs and traffic types. In our proposed study we 
consider the needs of users through the received throughput 
and we also take into consideration the application traffic 
types. We study the behavior of the diverse wireless access 
networks with three types of application traffic, contentious 
(fixed size) and sporadic (exponential and Pareto). Also we 
consider the throughput metric when offloading to different 
traffic types.

3  Wireless Access Networks Architecture

An access wireless network which offers switching from one 
access network to another is named a wireless heterogeneous 
access network [17, 40]. The main architecture of the hetero-
geneous access network is assumed as shown in Fig. 1 where 
the topology of the network consists of five zones. All zones 
are fully covered by LTE cellular network technology. Each 
zone is also partially covered by WiFi technology. The sub-
scribers connected to WiFi access points start their requests 
using WiFi technology because of their low cost. During 
the subscriber downloading sojourn time through WiFi net-
work, he can move to LTE technology if the WiFi technol-
ogy do not satisfy his needs. As illustrated in the flow chart 
in Fig. 2 which shows the activities of the user from the start 
of data request until the request completes. In both cases 
the subscribers start connecting with the strongest signal. 
For WiFi technology, the user connects to the closest access 
point and for LTE technology, he connects to the cell which 
have the best RSRP (Reference Signal Received Power) [4]. 
The handover between the cells in LTE technology is per-
formed based on RSRQ (Reference Signal Received Quality) 
as in Fig. 3 where the handover can occur according to the 
available throughput. The parameter setting of each technol-
ogy and traffic characteristics are presented in Tables 1, 2 
and 3. The five zones are covered by five evolved nodesB 

Fig. 1  Heterogeneous access 
network topology consisting of 
five zones
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(eNB). We trigger the traffic requests in the middle cell by 
a heavy traffic while the edge cells are triggered by normal 
load to study the impact of handover among the LTE cells. 
The users are uniformly distributed over the five zones. We 
assess the performance metrics (accumulative throughput, 
aggregated cell throughput, end to end delay, loss and Jitter) 
to evaluate the whole network behavior.  

4  The Analytical Performance Model

Most of the mobile internet traffic comes from transfer-
ring web pages, video and audio streaming, downloading 
video and audio files; each of them needs a different dura-
tion to reach its destination according to the status of the 
network congestion and the available resources. Most of 
the traffic inside the mobile network can be considered as 
a sequence of requests that can be modeled as a flow of 
bursts. The request rate of each user is highly depends on 
the network technology type, channel conditions and the 
set of active users competing for the network resources. 

Fig. 2  User activities from the start of data request until the request 
completes

Fig. 3  Handover based throughput flow chart

Table 1  LTE Parameters Setting

Frequency: 2.6 GHZ
Bandwidth: 10MHz (50RB)
eNB inter-distance: 250 m
eNB antenna hight: 25m
eNB Transmission Power: 46dBm
LTE noise figure: 5dB
User transmission Power: 24 dB
eNB Scheduler: Proportional Fair(PF)
eNB coverage radios: 150m
eNB Antenna type:Isotropic

Table 2  WiFi Parameters Setting

Frequency: 5GHz
Bandwidth: 20MHz with OfdmRate54Mbps
Adaptive Rate Fallback Algorithm
Access point Antenna: Isotropic (2.5 m height)
Transmission Power: ”15” decibel
Receiver Noisefigure: ”7”decibel
Receiver Gain:one decibel
Transmitter Gain : one decibel
Propagation Loss model: Friis Loss Model
WiFi Coverage Range:”70” m

Table 3  General Parameters Setting

Coverage area: ”0.39” kmm
2

Minimum Throughput : ”0.2”Mb/s
RSRQ threshold: 24
Total number of users: 380
user antenna : ”1.5” m
number of enodeB: ”5”
Access point per cell: ”4”
Peak Transmission Rate : ”2” Mb/s
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In the WiFi technology, the downloading rate of a user 
decreases exponentially as the number of users in the 
network increases and also depends on the channel qual-
ity and user distance from the access point. We consider 
the stream of requests as a flow of a constant or sporadic 
bursts through the mobile network. We use the Processor-
Sharing Queue (PSQ) model where all resources shared 
by the set of active users equally likely as the basis of the 
analytical model of the wireless access network [23, 26]. 
We consider the continuous and sporadic arrivals as inputs 
for the PSQ model and finally derive an estimate of the 
delay and request loss probability for any general matrix 
exponential distribution. In all cases, we assume that all 
available transmitting resources have a maximum capacity 
of ”R” bit/s.

4.1  Continuous Arrival

In the first case, we consider the continuous arrival requests 
with � as the average requests arrival rate and ”S” as the 
mean request size. The total request size by each subscriber 
can be given by St = �S in packets, and the network load uti-
lization is ”U” = St∕R . Using process sharing queue model 
where all users equally share the available network resources 
so that each user can download with a rate depends on the 
number of active users. This rate can be obtained by divid-
ing the total capacity by the average number of active users 
”R/x”. Assume that ”x” is the number of active wireless 
devices each one requests data from an access point or eNB. 
The size of data is exponentially distributed and we assume 
that the service time is exponentially distributed. So, the 
overall system network can be modeled as M/M/1 processor 
sharing queue. So the stationary distribution probability of 
the simultaneous users can be obtained from the following 
equation [24]:

where �(x) is the probability that there are ”x” simultaneous 
active devices in the network. And the average number of 
simultaneous users can be calculated by:

where ”U” is the load utilization of the network.
In case that there is no restriction on the number of simul-

taneous users as in WiFi technology the average delay is 
well known and can be derived from Little’s Law as in [24]:

where x̄ come from equation 2, � is the user arrival rate, S is 
the total size of requests.

(1)�(x) = �(0)Ux, For x = 0, 1, 2.....

(2)x̄ =
U

1 − U
.

(3)MPD =
x̄

𝜆 ∗ S
=

1

(R(1 − U))
.

If the number of simultaneous users is restricted as in 
LTE technology to some value ”M” greater than 1, the states 
of stationary distribution will be limited to ”M”. The average 
delay can be obtained as follows [24]:

where PB is the blockage probability, ”M” is the number of 
users that can be served simultaneously. The blockage prob-
ability can be obtained as follow [24]:

where ”U” is the load utilization of the network.

4.2  Sporadic Arrival

In the sporadic arrival case, we consider first the traffic that 
can be modeled by the exponential distribution for both the 
active and inactive periods. Consider ”N” as the number 
of active users. Each user is active for a random period of 
time then quite in the next time period for a random dura-
tion. During the active period the user requests a flow 
where the flow size is independent, exponentially distrib-
uted with mean ”S” inactive period durations are independ-
ent, exponentially distributed with mean 1/OFF. Then the 
total traffic load of a single subscriber can be calculated as 
ST = OFF ∗ S . So the load per subscriber can be given as � 
= ST/R, and the utilization of the network by U = N� . Now 
assume we have one access point or one eNB and a constant 
number of connected wireless devices. The resources are 
equally shared among the devices and this can be modeled 
by process sharing queueing model. Each device requests a 
file to download then goes to the inactive state waiting. The 
inactive state can be modeled as .∕M∕∞ queue. The network 
can be modeled as a closed queuing network that consists of 
two queues, an ./M/1 processor-sharing queue and an .∕M∕∞ 
queue, with N customer as in Fig. 4. Then the states of sta-
tionary probability becomes [24]:

where �(x) is the stationary distribution probability of exit-
ing x users in the system and ”N” is the total number of 
active users in the network. For � the arrival rate is given by:

where R is the capacity of the network and S is the mean 
request size. In case of no restriction on the number of 
simultaneous users as in the WiFi technology the average 
delay can be derived from little’s law [24]:

(4)MPD =
x

�(1 − PB)s
=

1 − (M + 1)PB

(R(1 − U))
.

(5)PB =
UM

1 + U + U2 + .... + UM
.

(6)�(x) = �(0)
N!

(N − x)!
�x ..... = 0, 1....N.

(7)� =
R

S
(1 − �(0)).



139International Journal of Wireless Information Networks (2021) 28:134–146 

1 3

where x̄ come from equation 2, S is the mean request size, 
� is the load for each wireless device and N is the number 
of wireless devices.

In case of restricted number of simultaneous users as in 
LTE technology to some constant ”M” lesser than ”N” in 
each eNB then the average delay will be [24]:

where ”M” is the number of users that can be served 
simultaneously.

PB is the blockage probability and can be derived from 
as follow [24] :

where U is load utilization of the network and N is the total 
number of connected wireless devices.

In the above equations, we modeled the network per-
formance metrics for specific cases of sporadic arrival, the 
contentious case (the burst degree is zero) and the expo-
nentially ON/OFF case (as a well behaved traffic). Now 
we modify the model to accept any general sporadic traffic 
arrival distribution using the matrix exponential distribu-
tion approach as in Fig. 5. Therefore, we introduce the ME 
representation of the Truncated Power tail (TPT) distribu-
tion by ME function representation. In this approach, each 

(8)MPD =
x̄

𝜆S
=
�
1

R

�∑x=N

x=1
x

N!

(N−x)!
𝛼x

∑x=N

x=1

N!

(N−x)!
𝛼x

.

(9)MPD =
x̄

𝜆S
=
�
1

R

�∑x=M

x=1
x

N!

(N−x)!
𝛼x

∑x=M

x=1

N!

(N−x)!
𝛼x

.

(10)PB =

(K−1)!

(K−1−M)!
�M

1 + U + U2 + .... +
(K−1)!

(K−1−M)!
�M

.

distribution can be represented by two matrices P and B 
[24]. The reliability function of TPT distributions is:

The variable � can be chosen from the rang 0 < 𝜃 < 1 . For 
larger values of � , more phases (T) are necessary to obtain 
the same heavy tailed characteristics as for lower � . By con-
trolling The truncation phase parameter ”T”, we can con-
trol the traffic type, for example when ”T=1”, it represents 
the exponential distribution and as ”T” increases the tail 
increases (Pareto distribution) and the traffic will be heavy 
tailed. By using ME approach, the arrival process can be 
modeled as a network of states (called phases) with expo-
nentially distributed interevent times. Any distribution can 
be approximated closely by using this approach [24]. Then 
the representation of arrival process can be defined by two 
matrices. As in [34] the generator matrix QN and the rate 
matrix LN for any number of wireless devices N are defined 
as follows:

 

where Xi = 𝜇(i)I⊕i ⊗ P.
where i = 1...N − 1

yi = (B𝜖)⊕i.
where i = 1, ...N

zi = (−B)⊕i − 𝜇(i)I⊕i.
where i = 1, ...N

where B an P are the matrix exponential representation of 
the active period distribution, � is the request rate, I is the 
identity matrix and � is unity vector. The request rate � is not 
a constant but it depends on the number of active users. Note 
that the main diagonal blocks Zi of QN are quadratic but with 

(11)R(x) ∶=
1 − �

1 − �T

T−1∑
j=0

�j exp
−�x

�j

(12)QN =

⎡
⎢⎢⎢⎢⎢⎣

z0 x0
y1 z1 x1
.. .. .. .. ..

Yn−1 zN−1 xN−1
yN zN

⎤⎥⎥⎥⎥⎥⎦

Fig. 4  The Process Sharing Queueing (PSQ) model

Fig. 5  The N-burst Traffic Model
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growing dimension for the i active sources. Consequently 
the other two diagonals contain non-quadratic matrices Xi 

and Yi . The rate matrix L is: LN =

⎡
⎢⎢⎢⎢⎢⎣

0

RpI

2RpI
⊕2

NRpI
⊕N

⎤
⎥⎥⎥⎥⎥⎦

 

where Rp is the peak transmission rate during active period 
and I is the identity matrix. The stationary distribution vec-
tor � can be partitioned in N+1 sub vectors according to the 
blocks in QN:

� = �0,�1, .....�N
That can be computed by the following iterative approach.

Then we can treat the system as SM/M/1 queue. the SM/M/1 
queue is considered as a Quasi-Birth-Death Process. By cal-
culating the matrix R using the cyclic reduction algorithm 
[34]. The number of iterations is determined by the speed 
of convergence of RK → 0 , if the eigenvalues of R are close 
to 1 then the case for heavy-tailed N-burst approaches the 
blow-up region.

A0 + RA1 + R2A2 = 0  w h e r e : 
A0 = L, A1 = −(B + vI) ,A2 = vI and B = Q + L;

Then we can calculate the average delay. 

Also we can get the blockage probability in case of M queue 
size as follows [24]:

4.3  Hybrid Network Model with Handover

In this model, we consider the two technologies LTE and 
WiFi. Assuming that the bandwidth of each technology is 
equally shared between the active wireless devices. In both 
technologies the single user gets the full bandwidth of the 
network if he is alone in the network. Thus we can split 
our network to different areas according to the available 
resources in each region. A user in a specific area will get the 
full bandwidth, if he is alone in the coverage area. Each new 
user request has a probability ”P” to be initially download-
ing from one of the two technologies and ”1-P” probabil-
ity to download from the other technology. We express the 
total time spent in a specific technology before handover to 

(13)𝜋0 =

[
𝛴N

i=0

(𝜇(i)x̄)i

i!

]−1
.

(14)𝜋i = 𝜇(i − 1)(𝜋i−1 ⊗ P)(B⊕i)−1.i = 1.....N

(15)MPD =
1

AT

R(I − R)−1�

(16)PB =
1

AT𝜋(R
ML)𝜖

.

another neighboring one by �i where i represents the technol-
ogy. Also for the static user, the user can be handovered to 
another radio technology if the current one is not satisfying 
his needs (the throughput is less than threshold). The user 
request can complete in the initially downloading technology 
or some of the data is going to downloaded from a neighbor 
technology (handover). Users currently downloading from 
technology ”i” have a probability Pi to download from the 
other technology i+1. The sum of all neighbors’ handover 
probabilities is equal to one. Every user requests a burst of 
traffic to be downloaded from the access point or base sta-
tion. The total amount of data downloaded from a particular 
technology per specific user depends on the spending time 
in each technology which depends on the service time of the 
technology and its status. We assume that the time spent in 
each technology is exponentially distributed random vari-
able. The whole network can be seen as multi-class Proces-
sor Sharing queue (PSQ) model as Fig. 6. Each class in the 
model represents the available technology. Customers of 
each technology arrive to the queue according to sporadic 
arrival model explained earlier. We can consider the arrival 
request in each technology as the arrival to this technology 
in addition to the handover requests from the other technolo-
gies. Note that Awl and Alw are the average number of users 
handovered to the LTE technology and the average num-
ber of users handovered to WiFi technology respectively to 
complete their download (without finishing request). So the 
arrival rate of each technology can be given as:

where �w is the arrival rate at WiFi technology, �l is the 
arrival rate at LTE technology, Awl and Alw are the aver-
age number of users handover to the LTE technology and 
the average number of users handover to WiFi technology 

(17)�w = Aw + Alw, �l = Al + Awl.

Fig. 6  The Multi-class Process Sharing Queueing Model
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respectively. The service time in each technology can be 
assumed as above by dividing the total capacity over the 
total data handled by the technology:

where Dw and Dl are the total amount of data transferred by 
the active users in each WiFi and LTE technologies respec-
tively, � and R are the service time and data rate of each 
technology respectively. 

Also we can compute the average number of arrival due 
to handover as follow:

where �l and �l are the arrival rate in each technology, hw and 
hl are the handover probability from WiFi technology and 
LTE technology respectively.

Then the average throughput of the user can be obtained 
from the standard result of multi-class processor sharing [5]:

where �w and �l are the average throughput of WiFi and LTE 
technology respectively, Rw and Rl are the data rate of WiFi 
technology and LTe technology.

From the time spent in each technology we can get the 
handover users and the total amount of data transferred by 
each technology as follow [5]:

where the � is total volume of data requested by the wireless 
devices and � is the time user spent downloading in each 
technology. From little’s law we can compute the average 
time spent by the user in both technologies as follows [5]:

where Q̄w and Q̄l are the average numbers of active users in 
WiFi technology and LTE technology respectively.

We assume that the arrival at PSQ input is a combina-
tion of multiple sporadic sources (N=3 and N=4 as a case 
study) each one with a power tail active period distribution 
and exponential OFF period distribution, the integration of 
”N” multiple exponential distributions with rate ”r” is Nr 
exponential distribution. Our queueing model is based on 
the (N-burst/M/1) PSQ model. For small values of ”b”, it can 
be approximated by a continuous arrival flow (the first case 
study) with rate NK while for large values of ”b” the arrival 
process model approaches the bulk arrival that leads to the 

(18)�w = Rw∕Dw, �l = Rl∕Dl.

(19)Alw = �lhw, Awl = �whl.

(20)�w = Rw(1 − U); �l = Rl(1 − U).

(21)DW =
��w

��w + �w
; hW =

��w

��w + �w
;

(22)Dl =
��l

��l + �l
; hl =

��l

��l + �l
;

(23)T̄t =
Q̄w + Q̄l

A
.

worst performance of the network. Figure 7 presents the 
average packet delay as a function of burstiness parameter 
”b”. From the figure it is clear that the delay increases sig-
nificantly with the increase of the burstiness parameter ”b”, 
also the delay jumps to a large value at point (b = 0.1) and 
then starts to increase gradually. Even for the well behaved 
applications (modeled by the exponential distribution), the 
packet delay also increases with the increase of the bursti-
ness parameter due to the effect of the burstiness and self-
similarity. The more significant packet delay occurs for the 
applications which follow distributions with large tail. Fig-
ure 8 presents the blockage probability as a function of the 
burstiness parameter ”b”. The figure shows how the type of 
the traffic affects the behavior of the loss probability. Clearly 
the traffic with high variance (long tails) has significant loss 

Fig. 7  The average packet delay as a function of traffic burstiness for 
exponential and power tail distributions

Fig. 8  The blockage probability as a function of traffic burstiness for 
exponential and power tail distributions
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probability than those with small variance (exponential dis-
tributions). Both figures show the significance of the model 
presented in this paper when compared to other models in 
the literature that use the exponential distribution for mod-
eling the behavior of internet traffic. As our assumption of 
multiple users with ”N=3”, we have three jump points as in 
Fig. 7 for the delay and Fig. 8 for the blockage, but for mul-
tiple users the behavior of the delay will be more complex. 
The exact locations of the transitions points with multiple 
number of sporadic traffic can be given by the following 
equation:

where b is the burst parameter and it ranges from 0 to 1, K 
is the arrival rate, N is the total connected devices and Rp is 
the peak transmission rate during active period.

5  Simulations Results

First we study the behavior of LTE technology with one eNB 
with two different scheduling mechanisms (Round Robin 
and Proportional Fair). In Fig. 9, we show the behavior of 
the total eNB throughput for the two popular scheduling 
algorithms. The settings of the LTE technology parameters 
are defined in Table 1 through NS3 simulator. Figure 9 
shows the maximum capacity of single eNB which approxi-
mately 32mb/s and this is confirmed with the standards as 
in [12]. As can be seen from Fig. 9 where we compare the 
throughput of the two scheduling algorithms, Proportional 
fair provides the subscriber close to the eNB with higher 
throughput while less throughput to subscribers away from 

(24)b = 1 −
K

Rp

= 1 −
�

NRp

eNB due to weaker signal. Round robin assigns resources 
periodically to the subscribers without taking into account 
signal strength so it achieves the best fairness, but it would 
offer poor performance in throughput specially to edge users. 

In Fig. 10, we show the behavior of the throughput of 
the whole heterogeneous access network. The throughput 
is presented for three different application traffic types 
namely fixed-size, exponential, and heavy tailed (Pareto) 
distributions. As we can notice from Fig. 10 the behav-
ior of the total network throughput for applications that 
follow heavy tailed distributions is the worst among the 
three types, while the best throughput behavior is for the 
applications that follow the fixed-size. The behavior of 
exponential distribution is better than the heavy tailed dis-
tribution and close to the fixed-size distribution. There is 
clearly a significant degradation in the throughput between 
the applications that follow the power tail distribution and 
those that follow the exponential distribution. Figure 11 
shows the instantaneous number of simultaneous users that 
can be served by the network. Figure 11 shows that the 
total number of users that can be served by the network 
is highly depend on the application type, where the appli-
cation which follow heavy tailed distribution can serve 
smaller number of users when compared to the fixed-size 
and exponential distributions under the same network con-
dition. The result shows the negative impact of sporadic 
traffic on the behavior of diverse access networks. From 
Figs. 10 and 11 we can conclude that the assumption of 
exponential distribution for nowadays Internet applications 
may lead to a serious overestimation of the capabilities of 
the access network. Figs. 12 and 13 show the behavior of 
the throughput and demand of cell 3. The figures show 
that the behavior of the throughput and demand of cell 3 
is very close to the behavior of the throughput and demand 

Fig. 9  Wireless access network throughput for proportional fair and 
round robin schedulers

Fig. 10  Wireless access network throughput for fixed-size, exponen-
tial and Pareto distributions
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of the whole network. So, one loaded cell can affect sig-
nificantly the behavior of the whole network. We expect 
that this poor effect will be higher if more cells use the 
sporadic traffic arrival. Figures 14 and 15 show the total 
traffic handled by cell 1 and cell 2. The figures show the 
impact of the overloaded cell 3 on the neighbor cell 2. As 
can be seen from Fig. 15 the total accumulative traffic han-
dled by cell 2 is greater than the total accumulative traffic 
of the edge cell 1 in Fig. 14, this is due to the handover 
between the cell 3 and cell 2. The figures show the effect 
of the three different application distributions. Figures 16 
and 17 show the total traffic handled by cell 4 and the edge 
cell 5. The results in Figs. 16 and 17 matches the same 
results of cell 1 and cell 2. The aggregated traffic over all 

five cells is illustrated in Fig. 18. The figure shows that the 
total traffic served by the whole network for the fixed size 
application is larger than other distributions (Exponential 
and Pareto). Also from the Fig. 18 the least amount of 
traffic handled by the network is in case of the applica-
tions that follow the Pareto distribution. In Fig. 19, we 
can observe that the total data served by each technology 
(WiFi and LTE) over all five cells. The WiFi technology 
has a significant share of the handled traffic in the network. 
The figure clearly shows how the WiFi can improve the 
cost effective use of the network in case of using an effec-
tive offloading mechanism. So, we can conclude that the 
use of offloading mechanism can increase the efficiency of 
the wireless access networks.

Fig. 11  The instantaneous number of simultaneous users that can be 
served by the network for fixed-size, exponential and Pareto distribu-
tions

Fig. 12  Cell 3 throughput for fixed-size, exponential and Pareto dis-
tributions

Fig. 13  The instantaneous number of simultaneous users that can be 
served by cell 3 for fixed-size, exponential and Pareto distributions

Fig. 14  The total traffic handled in the edge cell 1 for fixed-size, 
exponential and Pareto distributions
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6  Conclusions and Future work

The use of the wireless access networks is becoming more 
vital nowadays. Wireless access networks should deliver 
an acceptable level of quality of service to their users. 
In this paper, we developed an analytical model for the 
mixed LTE and WiFi access networks based on queuing 
theory. Our heterogeneous wireless access networks model 
estimates the effect of three types of user applications traf-
fic analytically and by simulation. Through this paper we 
evaluate the impact of offloading and application type 
on the efficiency and performance of the heterogeneous 

access networks. Also we study the effect of different 
schedulers algorithms to show how LTE technology allo-
cate resources to the subscribers. The behavior of diverse 
access network evaluated analytically using PSQ queuing 
model with sporadic arrival. We validate the model using 
discrete event simulator NS3 to reflect the credibility of 
the model. The extension of our work is to include the ana-
lytical analysis of various connectivity options to improve 
the edge user connectivity and poor coverage area through 
device to device communications using WiFi direct and 
Bluetooth technologies. Also, we are going to study the 
impact of mixing different types of traffic on the behavior 
of the diverse access network.

Fig. 15  The total traffic handled in the neighbor cell 2 for fixed-size, 
exponential and Pareto distributions

Fig. 16  The total traffic handled in the neighbor cell 4 for fixed-size, 
exponential and Pareto distributions

Fig. 17  The total traffic handled in the edge cell 5 for fixed-size, 
exponential and Pareto distributions

Fig. 18  Wireless access network handled traffic for fixed-size, expo-
nential and Pareto distributions
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