
Vol:.(1234567890)

International Journal of Wireless Information Networks (2019) 26:80–89
https://doi.org/10.1007/s10776-019-00422-1

1 3

Error Rate Analysis of ZF and MMSE Decoders for Massive Multi Cell 
MIMO Systems in Impulsive Noise Channels

Hasan Abu Hilal1 

Received: 13 November 2018 / Accepted: 29 January 2019 / Published online: 9 February 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In wireless channels, Non-Gaussian noise is one of the most common noise models that is observed. This type of noise has 
a severe impact on wireless systems with linear and multiuser detection devices. In this paper, We study the performance 
of zero forcing (ZF) and minimum mean square error (MMSE) ZF detection methods in Impulsive multi-cell MIMO chan-
nels. We start by showing the Bit Error Rate performance in non-Gaussian channels for ZF Detection, then we extend the 
derivations for MMSE ZF system. We clearly show the lower and upper bound derivations and verify it through simulations. 
The sum rate analysis for this case is also examined. Finally, we address the ZF matrix inversion complexity problem, and 
propose a simple ZF algorithm that does not necessitate the matrix inversion. We then investigate the convergence of such 
a detector and look at the Symbol Error rate SER performance through simulation again.

Keywords Multicell · Impulsive noise · MIMO · Linear precoding

1 Introduction

MIMO affords increased channel capacity and data through-
put using multiple terminal antennas on both the base sta-
tion and the subscriber end. MIMO, spatial multiplexing, 
multicell and massive communications are the eminent 
research theme for the next generation communication. In 
the last decade, MIMO received a considerable attention and 
research, since it can enhance the link reliability without 
forfeiting the bandwidth efficiency. Recently the concept of 
multi cell and massive MIMO attracted the interest of many 
researchers [1–5].

The demands for high data rate influences the deployment 
of multi cell MIMO and massive communication technol-
ogy. For such systems, the need for simple decoding and 
low complexity design is extremely important. This would 
be achievable through linear decoders. Linear decoders 
have been well researched in the last decades. Essentially, 
ZF and MMSE linear precoders are the basic linear detec-
tion systems. This types of decoders have been investigated 
in the literature before. However, the employment of these 

detectors in the new proposed wireless concept is inevita-
ble. In [4], The performance of a single cell massive MIMO 
is considered, for multi user massive OFDM MIMO sys-
tem. The linear precoding complexity issues and reduction 
issues have been investigated in [6]. In [5], cognitive idea 
for MIMO systems was considered, and the performance 
analysis of cooperative networks is also presented.

In most of these linear precoding schemes, one should 
note that the accuracy of these linear detectors depends heav-
ily on the accuracy of the Channel State Information CSI. 
For multiuser systems, the base station uses the estimated 
CSI from the pilot uplink channel and feed them to the linear 
decoders. These CSI values can be found through interpo-
lation methods. The effects of regression based interpola-
tion of CSI on the linear precoding devices in the downlink 
channel were addressed in the literature. The performance 
of a binary input non fading channel has an exact formula 
for the BER and can be found in [7]. Currently, research 
is significantly revolving around the SER performance of 
massive MIMO in different scenarios. In [8], the SER of the 
ZF and MMSE decoders is carried out. Other performance 
metrics such as asymptotic properties of the linear precoces 
are available in [9]. However, the performance was measured 
under Gaussian noise assumption, and to justify this assump-
tion, the central limit theorem is usually used.
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In many physical channels, such as urban, indoor radio 
channels and underwater acoustic channels, the ambi-
ent noise is known to be non-Gaussian, due to impulsive 
man-made electromagnetic interference. This led to further 
research on impulsive channels, and the demodulation of 
these signals [10, 11]. In this paper, we examine the per-
formance of multi cell MIMO systems under non-Gaussian 
noise assumption. In the literature, the impulsive noise has 
drawn the attention of many researchers. A research that 
considers the impact of impulsive noise on wireless systems 
was conducted in [12–14].

The performance of MIMO techniques over fading chan-
nels and impulsive noise is a well researched topic in the lit-
erature. The degradation of the signal to noise ration (SNR) 
and Symbol Error Rate (SER) in Orthogonal Frequency 
Division Multiplexing (OFDM) receivers under impulsive 
noise is investigated in [15, 16]. The design of optimum 
receivers over fading channels and impulsive noise has been 
well studied in the literature. However, the performance of 
these receivers in a massive MIMO system was not con-
ducted. In this paper, the issue under scrutiny is the topic 
of non Gaussian channels in multicell MIMO systems. In 
addition to that, we propose a simple decoder that does not 
necessitate matrix inversion.

The ZF and MMSE precoders require matrix inversion 
calculations. This will make the complexity issue substan-
tial. In [17], the computational complicity of a massive 
MIMO is addressed. The close to optimal and efficient 
regularized zero forcing precoder is replaced by a truncated 
polynomial expansion (TPE) precoder, hence, RZF requires 
fast inversion of large matrices in a coherence period. Obvi-
ously this is a very sophisticated implementation. For mul-
tiuser MIMO where interference is known at the transmitter, 
the precoder is utilized to remove these effects. The main 
drawback of such a coding system is the increased com-
plexity, both at the receiver and transmitter end, see [18]. 
For cases where users are equipped with single antenna and 
multi antenna base station system, efficient algorithms based 
on optimum joint beamforming are proposed, as in [19, 20].

In [18], more general problems were also considered, for 
example, users could have multiple antenna system. Some 
methods employ successive interference cancellation for 
cancelling out the interference term, other methods include 
beamforming at the receiver. Different algorithms for choos-
ing the downlink transmit vectors using block digonalisa-
tion have been also addressed. They are mainly a generaliza-
tion of the channel matrix inversion and can be applied to 
throughput maximization or power control problems. In this 
paper, we study and propose the Newton’s method for solv-
ing the Newton’s equation of matrices. More precisely, we 
use the iterative Newton technique that solves the problem of 
finding the matrix inversion iteratively. We also investigate 
the convergence of this method and show that it converges 

to proper values. We finally replace the matrix inversion 
step of ZF and MMSE precoders with our proposed itera-
tive solution.

The organization of this paper is as follows: The multi-
cell MIMO signal components are stated in Sect.2, which 
describes the precoding detection technique in massive 
MIMO systems, and we clearly explain the system and noise 
models. Section 3 furnishes the derivation of the probability 
of error expressions for the ZF and MMSE receivers in non 
Gaussian noise. Section 4 demonstrates the derivation of the 
sum rate analysis. In Sect. 5, we explain the proposed sim-
ple ZF detector, and work on some derivations to proof the 
convergence of the system. Section 6 shows the numerical 
evaluations and simulation results. Conclusions are stated 
out in the last Section. Before we start the system model, 
we use the notations below to simplify the reading of this 
research article.

1.1  Notations

The transpose of a matrix � is denoted by �t , and the hermi-
tian of the matrix is denoted by �H . The bold case represents 
matrix or vectors. The operator ‖‖ is denoting the norm of 
the matrix. The [�]k stands for the kth row of the matrix � . 
�i,j is the (i, j)th component of the matrix � . The operation 
E[x] is the expectation of the random variable x. ∗ stands for 
the complex conjugant.

2  System Model

In Multi cell and massive MIMO systems, the mobile or user 
equipment terminal is connected to more than one cell at a 
time. This can be observed by looking at Fig. 1. We consider 
a system that has L number of cells, the number of users in 
the system is denoted by K, and it is assumed to be less than 
the number of the antennas at the base stations ( K ≤ M) . All 
of the users mobile terminals are single antenna system. The 

A

Fig. 1  Multicell MIMO model
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channel model is assumed to split into two parts. The first one 
stands for the pathloss and shadowing effect, and it is denoted 
by �ljk , where �ljk is the channel gain of the kth user from jth 
cell to cell l. The second channel gain part is the fading one. 
By resting on this assumption the model is described as the 
fading coefficient from the kth user of the jth cell to the mth 
base station antenna of the lth cell. And denoted by hkmjl . The 
channel is assumed to change slowly and remains constant 
over the transmission of one symbol duration. But changes 
from symbol to symbol. We also assume that the channel is 
known to all base stations and users. Moreover, the fading 
gain is assumed to be independent and identically distributed 
(i.i.d) zero mean unit variance circularly symmetric complex 
Gaussian random variable (C(N(0, 1))). Considering all of the 
above assumptions, the transmit receive equation for the lth 
cell can be given as:

where �l is the received complex vector of dimension M 
for the lth base station. �u is the received SNR. �i is a K 
dimensional vector, carrying the transmitted signals for the 
users in cell i. The kth component represent the kth user. 
�l,i = (glimk)M×K , is a matrix that has a size of M × K and 
denotes the channel gains between the lth base station and 
the K users in the ith cell. l, i = 1, 2,… , L . So that the (m, k)
th component of (glimk) is the channel coefficient between the 
mth antenna of the lth cell, and the kth user of the ith cell. 
Finally, we can represent (glimk) as follows:

where �l,i = (hlimk)M×K . Furthermore, we describe the noise 
model in the system. In this research, we put forward the 
assumption that the noise term �l is non Gaussian noise, 
and follows Middleton’s class-A model distribution and we 
ignore the relevant interference term hence our main objec-
tive is the noise effect on the over all performance of the 
system. The noise mainly is an infinite expansion of Gauss-
ian density functions with different variances and identical 
means, [21]. We assume that each noise sample w = wg + wi , 
is the superposition of a background Gaussian component 
wg , and impulsive part wi , with X = var(wg)∕var(wi) , holds 
their power ratio. The probability density function (PDF)
of Middleton’s class-A model complex valued noise can be 
expressed as:

(1)�l =
√
�u

L�
i=1

�l,i�i +�l,

(2)glimk = hlimk

√
�lik,

(3)�li = �li�li, l, i = 1, 2,… , L,

(4)�li = diag(
√
�li1,

√
�li2,… ,

√
�liK),

(5)p(wp) =

∞∑
m=0

�m

��2
m

e

(
−

|wp |2
�2m

)

,

where �m =
Zm

m!
exp(−Z) , �2

m
= �2(m∕Z + X)∕(X + 1) , and 

�2 = var(wp) . X represents the power ratio of the background 
Gaussian noise and the impulsive one. Z is the impulsive 
index. It results in an impulsive wi for small values of Z, and 
a near-Gaussian when Z is large [22, 23]. As can be observed 
from its pdf in (5), the noise wp is not Gaussian. However, 
the class-A noise can be viewed as conditionally Gaussian, 
and called as compound Gaussian. Therefore, wp , when con-
ditioned on a Poisson random variable Yp with parameter Z, 
is Gaussian with zero mean and variance given by:

The variance of the noise wp can be easily found by taking 
the expectation of (6) with respect to the random variable 
Yp using the fact that E(Yp = Z) . The random variable Yp 
dominates the impulsive occurrence, if Yp > 0 the impul-
sive part is present, but if Yp = 0 it is not. Finally, we shall 
specify the joint distribution of the conditional variances 
v1,… , vM , which find out the joint distribution of wp . In 
this case two approaches can be used, one assumes that 
vp, p = 1, 2,… ,M are i.i.d random variables, and the 
second approach assumes that v1 = v2 = ⋯ = vM , and vp is 
related to a single Poisson random variable, This assumption 
is valuable when the different receive antennas are influ-
enced by the same physical process creating the impulse, 
thereby making the conditional variance vp of each receive 
antenna the same. This might be an accurate model for a 
multi-antenna system where the antenna elements spaced 
close together distance. Mathematically, w1,… ,wM will be 
statistically dependent, but uncorrelated [24]. This model 
is referred to the spherically invariant noise model and was 
used in [25]. The joint distribution of the noise samples 
� = [w1,… ,wM] is:

Impulsive noise (commonly termed shot or man-made 
noise) has features quite dissimilar to Gaussian noise, and 
its corrupting effect on any wireless digital communication 
system can be substantial due to its volatile characteris-
tics. Furthermore, W-CDMA and wide band signals can 
be significantly degraded due to the wideband nature of 
impulsive noise interference. In a W-CDMA system for 
example, mobile users power is controlled by the base sta-
tions while shot noise power is out of control, This indeed 
one of the real life scenarios for wireless communica-
tions. The impulsive scenario in some cases is caused by 
source of undesired emissions, The effect will depend on 

(6)vp = var(wp∕Yp) = �2

(
Yp

Z(X + 1)
+

X

X + 1

)
,

(7)p(�) =

∞�
m=0

�m

(��2
m
)M

e

�
−
∑M

p=1

�wp �2
�2m

�

,
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the distance between base stations and the sources. The 
most interesting situation is the urban one because it is 
categorized by a very high density of users and impulsive 
noise sources such as cars and motorcycles. In this particu-
lar scenario, the impulsive noise level can be several dBs 
higher than users signal level in the base station receiver. 
Therefore, BER performance can be dramatically degraded 
in the presence of shot noise interference.

3  System Performance

By now, we have completed the description of the sys-
tem and the noise model. In the coming discussion, we 
study and analyze the ZF and MMSE performance under 
the aforementioned assumptions. We further assume that 
the lth base station knows the matrices �ll but not �li for 
i = 1, 2,… , L, i ≠ l . The number of antennas is larger than 
the number of users. Therefore, the ZF acts as a precoding 
linear system with matrix multiplication. This precoding 
matrix can be written as:

By using Eq. (8) and multiply it by Eq. (1) we can write the 
following:

we can extract the information of the kth user signal from 
the total received vector as:

We can clearly see that the term [�ZF
ll
]k�l is projecting some 

noise enhancement effect on the ZF coding scheme. This 
indeed, would be mitigated through some precoding tech-
nique. For instance, we employ the matrix �ZF

ll
 as a precod-

nig matrix (before we transmit the signal). This will avoid 
the noise amplification problem. Recalling that the noise 
term generally follows the distribution as in the foregoing 
section. For now, let us study the signal in Eq. (10). To do 
so, we first should detect the data in the signal. Hence, we 
decode it using maximum likelihood concept, as it is one of 
the most powerful detection algorithms. First, we rewrite the 
signal in Eq. (10) with the noise term combined as discussed 
above, then we find the mean of the signal as:

(8)�ZF
ll

=
(
�H

ll
�ll

)−1
�H

ll
,

(9)

�ZF
ll

∗ �l = �ZF
ll

∗ [
√
�u

L�
i=1

�l,i�i +�l]

=
√
��l +

√
�

L�
i≠l

�ZF
ll
�li�i +�ZF

ll
�l,

(10)rlk =
√
�xlk +

√
�

L�
i≠l

�
�ZF

ll

�
k
�li�i +

�
�ZF

ll

�
k
�l,

The second step is to find the variance. To evaluate the 
variance of the received signal, we need to find the expres-
sion E

[
(rlk − E(rlk)(rlk − E(rlk)

∗
]
 . Then we can write the 

following:

After further manipulations we can make use of the result 
in [8]. We use the result that was found for Gaussian noise, 
then we average it with respected to the new distribution of 
our noise model. This will furnish the lower and upper part 
bound on the SER performance. So, let us write the error 
rate probability for 2 code words system. We start by the 
upper bound as:

where �xik = x2
ik
− x1

ik
 , and ( x2

ik
, x1

ik
 ) are the kth components 

of ( �1
l
, �2

l
 ). ul,t =

∑
i≠l

∑K

s=1
�lis�xti,s�2 . Now, we will average 

the expression given in Eq. (14) with respect to the noise 
distribution. Substituting the term SNR (

√
� =

1√
vl
) , where 

vl is the noise variance. This means that we fix the signal 
power to unity and change the variance amplitude, then the 
SNR is found accordingly. We assume the worst case sce-
nario. In other words, in a multi antenna system having M 
antennas, we assume the highest noise variance to occur at 
all the branches vl = vmax. l = 1, 2,… ,M . Now taking the 
expectation of both side of Eq. (14) we can write the below:

(11)rlk =
√
�xlk +

√
�

L�
i≠l

�
�ZF

ll

�
k
�li�i +Wl,

(12)

E[rlk] = E

�√
�xlk +

√
�

L�
i≠l

�
�ZF

ll

�
k
�li�i +Wl

�

= E
�√

�xik

�
+
√
�

L�
i≠l

E
��
�ZF

ll

�
k
�li�i

�
+ E[Wl] =

√
�xik,

(13)

E
�
(rlk − E(rlk)(rlk − E(rlk)

∗
�
= E

�
(rlk −

√
�xik)(rlk −

√
�xik)

∗
�

= �E

��
i≠l

�
j≠l

�
�ZF

ll

�
k
�li�i�

H

j
�H

lj

�
�ZF

ll

�H
k

�

+ E
��
�ZF

ll

�
k
�l�

H

l

�
�ZF

ll

�H
k

�
,

(14)Pe ≤
1

4

2∑
t=1

(
1 +

�|�xik|2�llk
4(1 + �ul,t)

)−(M−K+1)

,

(15)Evmax
(Pe|vmax) =

∑
vmax

P(v = vmax)(Pe|vmax), then,

(16)

Pe ≤
∑
vmax

1

4

2∑
t=1

(
1 +

�|�xik|2�llk
4(1 + �ul,t)

)−(M−K+1)

P(v = vmax),
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As we can observe, we need to find an expression for 
P(v = vmax) , then the derivation would be completed. Recall-
ing the definition of vmax , we assumed it is the worst case 
scenario, and the maximum noise variance would happen at 
all antennas. Then it is simply the maximum of i.i.d random 
variables given in Eq. (11), and can be computed as:

Using Eq. (15) and substituting Eqs. (16) and (17) the upper 
bound equation is derived.

The derived bound is further simplified by sacrificing a little 
of the bound tightness. To do so, let us use some elementary 
algebra and rewrite Eq. (16) as below:

Note that the Cumulative Distribution Function CDF Fv(n) 
is always ≤ 1 , then we can replace the sum in Eq. (19) by M, 
hence it is always ≤ M . The residual term Fv(n) − Fv(n − 1) 
is the probability mass function of the random variable v and 
parameterized �m . So

Finally, using the results obtained above, one can write:

where �xik = x2
ik
− x1

ik
 , and ( x2

ik
, x1

ik
 ) are the kth components 

of ( �1
l
, �2

l
 ), respectively. In a similar fashion we can derive 

the lower bound of the error rate of the system. The lower 
bound in Gaussian model is first written in Eq. (22). Then 
we follow the averaging trick for the equation, but this 
time the averaging will be on the conditional non-Gaussian 
noise variance as we explained. The expectation is shown 
in Eq. (23).

(17)P
(
�2
m
= �2

max

)
=

(
n∑

k=0

e−A
Ak

k!

)M

−

(
n−1∑
k=0

e−A
Zk

k!

)M

,

(18)

Pe ≤

��
vmax

1

4

2�
t=1

�
1 +

���xik�2�llk
4(1 + �ul,t)

�−(M−K+1)
�

×

⎧
⎪⎨⎪⎩

�
n�

k=0

e−A
Ak

k!

�M

−

�
n−1�
k=0

e−A
Zk

k!

�M⎫⎪⎬⎪⎭
,

(19)
FM
v
(n) − FM

v
(n − 1) =

(
Fv(n) − Fv(n − 1)

)M−1∑
i=0

FM−i−1
v

(n)Fi
v
(n − 1),

(20)P
(
vmax = �2

n

)
≤ MP(v = �2

n
) = M�m,

(21)Pe ≤
M

4

∞∑
m=0

2∑
t=1

(
1 +

�|�xik|2�llk
4(1 + �ul,t)

)−(M−K+1)

�m,

(22)Pe ≥
1

8

2∑
t=1

(
1 +

1

v
|�xik|2�llk

�(1 +
1

v
ul,t)

)−(M−K+1)

,

For the the lower bound derivation, we would carry on the 
result in [26] and use the Q-function approximation given 
in that work. Then we can conclude another bound approxi-
mation as:

3.1  Extension to MMSE Performance

We carry on the results of Gaussian noise analysis of the 
MMSE system. Then we average the expression on the 
conditioned Poisson random variable. Assuming 2 code 
words then using the result in [8]:

where �xik = x2
ik
− x1

ik
 , and ( x2

ik
, x1

ik
 ) are the kth user compo-

nents in the lth cell, and �l =
�

1+�ul,t
 for t = 1, 2 (2 codeword 

system). The performance is found by averaging Eq. (26) 
with respect to the channel matrix Hll , and the impulsive 
noise distribution. That is :

(23)

Evmax

�
Pe(�vmax)

�
= Evmax

⎡⎢⎢⎢⎣
1

8

2�
t=1

⎛
⎜⎜⎝
1 +

1

v
��xik�2�llk

�(1 +
1

v
ul,t)

⎞
⎟⎟⎠

−(M−K+1)⎤⎥⎥⎥⎦

≥
1

8

�
vmax

2�
t=1

�
Pe(v = vmax)

�⎛⎜⎜⎝
1 +

1

v
��xik�2�llk

�(1 +
1

v
u
1,t)

⎞⎟⎟⎠

−(M−K+1)

≥
M

8

∞�
m=0

2�
t=1

⎛⎜⎜⎝
1 +

1

v
��xik�2�llk

�(1 +
1

v
ul,t)

⎞⎟⎟⎠

−(M−K+1)

�m,

(24)Q(x) ≈
1

12
e

−x2

2 +
1

6
e

−2x2

3 ,

Pe ≈ Evmax

⎡
⎢⎢⎣
1

24

2�
t=1

�
1 +

1

v
��xik�2�llk

4(1 +
1

v
ul,t)

�−(M−K+1)⎤
⎥⎥⎦

+ Evmax

⎡⎢⎢⎣
1

12

2�
t=1

�
1 +

1

v
��xik�2�llk

3(1 +
1

v
ul,t)

�−(M−K+1)⎤⎥⎥⎦

= M

∞�
m=0

�m ×

⎛⎜⎜⎝
1

24

2�
t=1

�
1 +

1

v
��xik�2�llk

4(1 +
1

v
ul,t)

�−(M−K+1)⎞⎟⎟⎠

+ M

∞�
m=0

�m ×

⎛⎜⎜⎝
1

12

2�
t=1

�
1 +

1

v
��xik�2�llk

3(1 +
1

v
ul,t)

�−(M−K+1)⎞⎟⎟⎠
,

(26)Pe = Q

(√
�MMSE,lk

2
|�xik|

)
,

(27)Pe = Evmax

[
Q

(√
�MMSE,lk

2
|�xik|

)]
,
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for some constants c1, c2, c̃1, c̃2 found in [8], the lower bound 
can be written as:

The upper bound expression is also given below:

4  Sum Rate Analysis

In this section we study the sum rate behavior under impulsive 
noise settings. Bound on Sum Rate (SR) for ZF MIMO sys-
tems have been discussed in [27] . In our study we will start 
by writing the rayleigh fading channel sum rate equation as :

where � (x) is the Euler’s digamma function in [28], Nt and 
Nr stands for the number of transmit and receive antennas 
respectively. The information in Eq. (46) represents the sum 
rate of a MIMO system over uncorrelated Rayleigh fading 
channels, yet, the effect of lognormal shadowing effect is not 
considered. However, we will carry on the results in [29] and 
furnish the bounds. First, the SNR and SR are written as:

(28)

PeMMSEL ≥
c1

4
Evmax

⎡
⎢⎢⎣

1

1 +
�llk

4
�1��xik�2

⎤
⎥⎥⎦

M

�K−1
1

+
c̃1

4
Evmax

⎡
⎢⎢⎣

1

1 +
�llk

4
�2��xik�2

⎤
⎥⎥⎦

M

�K−1
2

PeMMSEL−Bound ≥ M

∞�
m=0

�mPeMMSEL,

(29)

PeMMSEU ≤
c2

8
Evmax

⎡⎢⎢⎣
1

1 +
�llk

�
�1��xik�2

⎤⎥⎥⎦

M−K+1

+
c̃2

8
Evmax

⎡⎢⎢⎣
1

1 +
�llk

�
�2��xik�2

⎤⎥⎥⎦

M−K+1

PeMMSEU−Bound ≤ M

∞�
m=0

�mPeMMSEU ,

(30)Ru = Nt log2

[
1

Nr − Nt

+
�

Nt

]
+

Nt

ln 2
�
[
Nr − Nt + 1

]
,

(31)�m =
�[�]mm

K[(H)]
,

(32)R =

K∑
i=1

E[log2(1 + �m)],

The upper bound SR is given as:

Finally, recalling back the trick on averaging over the noise 
variance then the bound can be approximated as:

The lower bound is also given as

where � = 10∕ ln 10 , um and �m are the mean and the stand-
ard deviation (both in dB) of the natural logarithm variables, 
more details about these parameters can be found in [30, 31].

5  Simple Iterative ZF Precoder

In ZF massive MIMO system, we clearly observe the 
matrix inversion required by the ZF coding process. This 
is an inevitable step in the process. However, we prefer 
to skip the complex matrix inversion process, and use 
simple iterative addition for the coding schemes. Thus, 
in this section we show the derivation for the proposed 
simple ZF system. We use the below iterative equation to 
find the inverse of the channel matrix:

For an arbitrary matrix � , Eq. (37) iteratively ends up with 
the inverse (pseudo inverse) of the matrix � . The below 
lemma is used for completing this section.

Lemma 1 Suppose that � is n × n complex matrix with �(�) 
is the spectral radius, and if 𝜌(�) < 1 . Then limn→∞ �n = � . 
This can be easily shown considering the below eigen value-
eigen vector equation:

(33)

Rum = K log2

[
tr(�−1)

K(M − K)
+

�

K2

K∑
m=1

e
Um

�
+

�2m

2�2 D−v
m

]
+

−

K∑
m=1

log2
[
�−1

]
mm

+
K

ln 2
� [M − K + 1],

(34)Ru =

∞∑
m=0

�mRum,

(35)Ru =

∞∑
m=0

�mRLm, where

(36)RLm =

K∑
m=1

log2

[
1 +

�

K
e
�(M−K+1)+

um

�
−ln[�−1]mm−v lnDm

]

(37)�n+1 = �n(2� − ��n),

(38)
�n� = �n�

lim
n→∞

�n� = lim
n→∞

�n� = � lim
n→∞

�n = �,
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We denote the eigen values of the n × n matrix � by �i(�) 
for i = 1, 2,… , n . And if � is symmetric positive definite 
matrix � ∈ Rn×n , then we can order the relative eigen values 
( �1(�) ≥ �2(�) ≥ ⋯ ≥ �n(�) ≥ 0 ). Now, we look deeply on 
the convergence of Eq. (37). Let us start by the initial matrix 
�0 = ��T and � is a value that is related to the eigen values, 
say � ∈ (0,

2

�1(��
T )
) . limn→∞ �n = �−1 . This technique is 

related to the Newton’s method for solving f (�) = 0 for 
f (�) = � − �−1 . Now, we work on limn→∞ �n = �−1 and 
assure that �n will end in �−1 . First let us assume the 
following:

Recal l ing that  the  spectra l  radius  of  �0  i s 
𝜌(�0) = 𝜌(� − 𝛼(��T )) < 1 , then, the eigen values are :

We already assumed that 𝛼 <
2

𝜆i(��
T )

 , then |𝜆i(�0)| < 1 and 
𝜌(�0) < 1 and then:

To clarify Eq. (42), we use iterative induction method on 
Eq. (43) shown below. We can write �n = �2n

0
 and then 

limn→∞ �n = limn→∞ �2n
0

= �:

Finally, recalling the definition of �n we observe that 
�n = �−1(� − �n) , then,

The final remark we would like to state is about the selection 
of � , It is clear that one should find the largest eigen value 
of �AT . However, we can choose another way. Let (bn

ij
)i,j=1 , 

denotes the entry of �AT , then �1(�AT ) is bounded by the 
highest absolute row sum of �AT . So,

(39)�n = �n(2� − ��n), then

(40)�n+1 = �n + �n�n,

(41)�i(�0) = 1 − ��i(��
T ),

(42)lim
n→∞

�n
0
= �,

(43)

�n = � − ��n = � − �
(
�n−1(2� − ��n−1)

)
= � − �

(
�n−1(� + � − ��n−1)

)
= � − �

(
�n−1(� + �n−1)

)
= � − ��n−1 − ��n−1�n−1

= �nn − ��n−1 − ��n−1�n−1 = �n−1(� − ��n−1)

= �2
n−1

,

(44)lim
n→∞

�n
0
= lim

n→∞
�−1(� − �n) = �−1,

(45)

�1(�A
T ) ≤ max

i∈1,2,…,n

n∑
j=1

|bi,j| and � ∈ (0, max
i∈1,2,…,n

n∑
j=1

|bi,j|),

5.1  Complexity of the Proposed System

In this section we discuss the complexity of the system 
and compare it with the conventional detectors (Zf and 
MMSE). Consider a MIMO channel as the below:

w h e r e  � ∈ CMr  ,  � ∈ XMt  a n d  � ∈ CMrMt  .  T h e 
reciver tries to estimate x̂(y) , The ZF will minimize 
x̂(y) = argminx‖� −��‖2 . The solution is x̂(y) = �+� . 
Where �+ is the psuedo inverse (for nonsquare matrices) 
and given by �+ = (�H�)

−1
�H and the complexity of 

exploiting �+ from � is cubic with respect to the number 
of transmitters. Inversion of Large size channel matrix is 
required which means that the high computational complex-
ity is unaccepted If we compute the inversion directly, the 
resource of hardware would be wasted greatly. Therefore, 
combining the property of matrices and some mathematic 
knowledge the proposed system will posses low-complexity 
precoding scheme to solve this problem. The complexity for 
the n size Channel matrix ZF is approximted in the order of 
O(n3) , however it is approximted in the order of O(an2) in 
our proposed system where a is a constant.

6  Simulation Results

In this section, in order to validate our study of the sys-
tem performance, we use Monte Carlo simulations, and 
examine the performance of the ZF decoder system. We 
choose two different sets of values of Z and T to repre-
sent a channel with near-Gaussian noise, and a channel 
with highly impulsive noise, which is within the practical 
range of these parameters. We further assume that the sys-
tem has two cells with three users, and each BS has vari-
able number of antennas ranging from 5 to 10 antennas. 
Regarding the path loss and shadow factors �ljk , we assume 
that �1,1,k = 1(k = 1, 2, 3) . Two codewords are designed as 
X1 = [1, 1, 1, 1, 1, 1, 1],X2 = −X1. The simulation settings 
are similar to that in [8]. In the coming figures, we depict 
the performance of the system BER versus SNR, the lower 
and upper bounds as well. We then clearly show and com-
ment on the effect of the impulsive noise on the system.

The line graph Fig. 2 illustrates the BER performance 
of the MIMO system under investigation. The number of 
antennas under scrutiny is M = 5 . M = 10 . The higher 
number of antennas shows a better SER curve perfor-
mance as expected. This is due do the higher diversity 
order generated by M = 10 . The Simulation is per-
formed for a ZF decoder where the noise parameters 
are Z = 0.0001,X = 0.1 . In summary, the bounds show a 
tighter behavior for a smaller number of antennas. The 

(46)� = �� + �,
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SER curve of the system fluctuates mildly for M = 10 and 
remains unchanged for M = 5.

The line graph Fig. 3 demonstrates the SER performance 
of M = 5 . M = 10 and different noise parameters. Mainly, 
Z = 1,X = 0.1 . This is known in the literature as the near 
gaussian case. The system shows again a closer bounds for a 
smaller number of antennas, and a BER curve similar to that 
in the literature for gaussian noise. Furthermore, the BER 
curve performance drops substantially for M = 10 . However, 
the BER curve goes down gradually and slowly for M = 5 . 
Finally, the lower bound curves remain steady for both cases.

Figures 4 and 5 display the error rate performance for 
MMSE System. The SER performance for M = 5.M = 10 
and different noise parameters as similar to the aforemen-
tioned simulations. We can clearly see the error flooring 
behavior for the MMSE system. The declining shape is not 
as of the previous ones. Moreover, the near gaussian case 
and the high impulsive case are very close in their shape. 
However, there is a slight difference at the low SNR value. 
For instance, the SER for the high impulsive case at small 
SNR is closer to 10−2 where it is closer 10−3 for the same des-
ignated SNR at near gaussian case. The bounds are still firm 
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and valid for the MMSE detector. We may conclude that the 
MMSE has the constant effect behavior on the SER curves.

7  Conclusions

In conclusion. In this paper, we show the performance of the 
impulsive noise on multi cell massive MIMO systems. The 
derivations were sophisticated but fruitful. The bounds dem-
onstrates reasonable tightness around the simulation curves. 
The error rate curves were errorflooring for the MMSE more 
than that in the ZF case. To lessen the sophistication of such 
detections, we propose an iterative matrix inversion detector 
and proof the convergence of such schemes. Finally, we stud-
ied the sum rate analysis for the system under the impulsive 
noise model which lies at the heart of this research.
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