
Vol:.(1234567890)

International Journal of Wireless Information Networks (2018) 25:470–479
https://doi.org/10.1007/s10776-018-0414-3

1 3

Node Localization Based on Improved PSO and Mobile Nodes 
for Environmental Monitoring WSNs

Shu Shen1,2   · Lijuan Sun1,2 · Yibo Dang1 · Zhiqiang Zou1,2 · Ruchuan Wang1,2

Received: 27 March 2017 / Accepted: 20 August 2018 / Published online: 11 September 2018 
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In this paper, a novel iterative localization algorithm based on improved particle swarm optimization (PSO) is proposed for 
monitoring environment like lakes, rivers or other water bodies. The first step of this algorithm is to get the position of some 
unknown nodes by using improved PSO algorithm. The second step is to locate other nodes by using these unknown nodes 
in first step as new anchor nodes. The localization problem of island node in sparse distributed grid is solved by introducing 
adaptive mobile node in this paper. The simulation results show that the algorithm has the advantages of small location error 
and little influence by environmental factors.

Keywords  Localization algorithm · Wireless sensor networks (WSNs) · Particle swarm optimization (PSO) · Environment 
monitoring

1  Introduction

In recent years, China’s ecological environment is getting 
worse with increasing pollution. How to monitor and control 
environmental pollution effectively has become a top issue 
the Chinese government and the community concern about. 
Compared with those traditional methods which are com-
bined with sparse monitoring station and artificial sampling 
strategy, a large-scale distributed environment monitoring 
system constructed by Internet of Things (IoT) technology 
provides a practical solution for environmental monitoring, 
which has a lot of advantages such as high real-time per-
formance, low cost, simple maintenance and high degree 
of intelligence [1]. In the area of environmental monitoring 
Wireless Sensor Networks (WSNs) applications, the sensor 
localization is one of the important research tasks [1]. The 
sensed data or the detected events will be meaningless with-
out accurate location information of sensor nodes. There-
fore, how to get the location information of sensor nodes in 

the environment perception is the problem to be solved in 
this paper.

Due to sensor nodes in WSNs with such characteristics as 
limited energy, poor reliability, large scale, random distribu-
tion, susceptible to interference [2], the localization method 
about WSNs should satisfy the requirements like self-organ-
izing, robustness, energy efficient, distributed computing 
and so on [3, 4]. Currently, localization methods for WSNs 
can be classified into various kinds. Today the most widely 
used method in outdoor localization is Global Position Sys-
tem (GPS) positioning technology [5–7]. Although there 
are some advantages like high positioning accuracy, good 
real-time performance and good anti-interference ability 
about GPS, it is really difficult to equip for each node in 
resource-constrained large-scale distributed WSNs because 
of its limitations like high energy consumption, cost and 
system complexity. Common localization algorithms for 
WSNs can be divided into range-based localization algo-
rithm and range-free localization algorithm [8]. Range-based 
localization algorithms (RSSI [9, 10], TOA [11] and TDOA 
[12], etc.) need to measure the distance or angle among 
nodes during the process of locating, so that they have a 
higher requirement on hardware and can be influenced by 
the measurement environment easily. Range-free localiza-
tion algorithms mainly include centroid algorithm [13], DV 
Hop algorithm [14], amorphous algorithm [15], etc. This 
kind of localization algorithms achieve lower localization 
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accuracy than range-based localization algorithms, but they 
don’t require to measure the distance or angle among nodes, 
which can reduce the requirement of hardware, and the influ-
ence of environment. To the best of our knowledge, it is 
difficult to find a universal location algorithm which is suit-
able for various applications taking into account the large 
differences among various applications’ background. How-
ever, it seems advisable to choose or design an appropriate 
localization algorithm after considering the network scale, 
cost and accuracy requirements.

In our previous work [16–18], a distributed WSN for 
online water quality monitoring was designed. Furthermore, 
a suitable localization algorithm was designed according to 
the characteristics of environmental monitoring by com-
bining genetic algorithm with GPS in [19]. In that study, 
accurate position information of beacon nodes is collected 
by using GPS firstly, and then calculate the positions of the 
unknown nodes preliminarily using improved genetic algo-
rithm. In another literature about our work [20], an iterative 
localization algorithm based on minimum condition number 
is proposed. The presented algorithms in [20] has begun 
considering the characteristics of environmental monitor-
ing applications, but there are still some following disad-
vantages. Firstly, the presented algorithms used an iterative 
method to locate, and the first located nodes will be treated 
as the temporary beacon nodes, which will result in the accu-
mulation of the positioning error. Secondly, a basic premise 
of above algorithms is the high connectivity of network, 
which requires dense node deployment instead of random 
toss node deployment in reality. Thirdly, considering the 
characteristics of limited hardware resources in the distrib-
uted WSNs, the algorithms seem too complex and difficult 
to realize. In order to find a solution to above problems, 
this paper intend to absorb the features and advantages of 
aforementioned locating algorithms and proposes a WSN 
localization algorithm based on the improved particle swarm 
optimization algorithm and adaptive mobile nodes.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the model we use in this work, including 
wireless channel model and bacon node deployment model. 
Section 3 introduces an iterative localization method based 
on improved PSO algorithm. Section 4 presents a further 
improved localization method combined with improved PSO 
algorithm and adaptive mobile node. Section 5 gives some 
results of simulation experiments and Sect. 6 concludes the 
paper.

2 � Model Description

Assuming that some sensor nodes are deployed in the out-
door environment randomly, those nodes are static and 
can be classified into two classes, the beacon node and the 

unknown node. At the same time, a small number of mobile 
nodes are deployed in such environment. Both beacon nodes 
and mobile nodes are equipped with GPS devices and solar 
battery to ensure accurate location and long power dura-
tion. S, B, U and M represent the sensing node set, the bea-
con node set, the unknown node set and the mobile node 
set respectively. Assuming that every node communication 
radius is the same, denoted as R, the location of each sensor 
node Sn ∈ S is denoted as (xn, yn).

2.1 � Wireless Channel Model

In the WSNs mentioned above, each sensor node is equipped 
with a microcontroller and RF transceiver. When a node 
receives a wireless signal, the RSSI value of other nodes with 
the range of the communication radius R can be measured 
through the radio frequency transceiver. The classic Shad-
owing model is adopted here following Eq. (1) [21]:

where d0 is the reference distance; p0 is the received signal 
strength at distance d0, which contains the loss caused by 
attenuation or the environment; d is the real distance; X0 is 
a Shading factor with dB as the unit, whose mean is 0 and 
mean square error (dB) is a normal random variable; p is 
the received signal strength at distance d; n is the path loss 
exponent, whose value depends on the type of environment 
and building. In actual measurement, X0 has little effect on 
the results. So that we can get the RSSI simplified ranging 
formula if d0 = 1 m, as shown in Eq. (2) [22]:

where RSSI is the received signal strength when the distance 
from the transmitting node is d, the unit is dBm; A is the 
received signal strength when the distance from the transmit-
ting node is 1 m; n is a signal transmission factor, which is 
related to the propagation environment of the radio signal. 
Thus, the distance d can be calculated as:

2.2 � Beacon Node Deployment

As shown in Fig. 1, BA and BB are two beacon nodes, the 
unknown nodes are concentrated on one side of the intercon-
nection between BA and BB. After measuring RSSI value, the 
distance between U1, BA and BB, denoted as dA1, dB1, dAB 
respectively, can be estimated by Eq. (3).

According to Fig. 1, it is easy to derive Eq. (4) by cosine 
theorem.

(1)p = p0 + 10n log10

(
d

d0

)
+ X0

(2)RSSI = A − 10n log10 d

(3)d = 10
A−RSSI

10n

(4)cos � =
d2
A1

+ d2
AB

− d2
B1

2dA1dAB
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Then the position of the unknown node U1 can be calcu-
lated by Eq. (5).

In literature [23], it has been proved that when the dis-
tance between the beacon nodes is larger, the influence of 
ranging error is smaller, it means the distance between the 
two beacon nodes dAB is larger, and the effect of ΔdAB on 
cosα is smaller. Intersection area of two communication cir-
cle is inversely proportional to the distance between the two 
beacon nodes dAB. In another hand, the area can be located 
is smaller when dAB is larger. As a result, the way of tak-
ing the value of dAB should be taken into comprehensive 
consideration.

The applicable precondition of aforementioned two bea-
con nodes’ localization method is that all unknown nodes 
must be on the same side of the two beacon nodes’ inter-
connection. Moreover, taking into account the cumulative 
error problem caused by the iterative localization method, 
a new beacon nodes deployment method is proposed in this 
paper. In the initialization phase, square grid division of the 
monitoring area is carried out firstly and make sure that all 
beacon nodes are deployed at the 4 vertices of each square. 
In Fig. 2, the monitoring area is divided into 4 grids with 
9 beacon nodes, which are denoted as grid 1, 2, 3 and 4, 
respectively. The grid length (i.e. the distance between the 
two adjacent beacon nodes) is set to node communication 
radius R, the communication range of each beacon node in 
grid 1 is shown as an example.

According to the number of beacon nodes can be detected 
by the unknown node, the grid 1 can be divided into three 
types of region, denoted as I, II and III. The unknown nodes 
in the region I can detect 4 beacon nodes, 3 beacon nodes by 
the unknown nodes in the region II, and the unknown nodes 
in the region III can only detect 2 beacon nodes. Taking 
into account the distribution of the unknown nodes in the 
grid and such two important factors as coverage density and 
connectivity, the monitoring area with grid coverage can be 
divided into dense distribution grid and sparse distribution 
grid, which are defined as follows:

(5)x = dA1 cos �, y = dA1 sin �

Densely distributed grid In such a grid, the coverage 
density of the unknown nodes is high and there must be 
a number of unknown nodes distributed in region I or II. 
If there is an unknown node in region III, that unknown 
node must be able to detect at least one neighbor nodes in 
region I or II within its communication range.

Sparsely distributed grid In such a grid, unknown nodes 
may be distributed in region I and region II and there must 
appear island node in region III, which is defined that such 
an unknown node in the region III cannot detect the neigh-
bor nodes in region I or II within its communication range.

There are two classes of unknown nodes in densely dis-
tributed grid (grid 1 in Fig. 2, for example) in accordance 
with the number of detected beacon nodes within their 
communication range. The first class of those unknown 
nodes distributed in region I or II, which is able to detect 
3 beacon nodes at least. Oppositely, the second class of 
those unknown nodes distributed in region III, which can 
only detect less than three beacon nodes. For the first class, 
the maximum likelihood estimation method is used mostly 
to solve such multilateral measurement problem. However, 
due to the fact that the maximum likelihood estimation 
method is greatly affected by the measurement error, this 
paper uses an improved particle swarm optimization algo-
rithm to solve an optimization problem which is used to 
calculate the unknown node’s location.

U1(x,y)

dA1 dB1

α
x

y

dAB

Fig. 1   Location map of two beacon node
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Fig. 2   Schematic diagram of grid node deployment
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3 � Iterative Localization Method Based 
on Improved PSO Algorithm

3.1 � Improved Particle Swarm Optimization 
Algorithm

Particle Swarm Optimization (PSO) is a kind of optimiza-
tion algorithms which is used to simulate the behavior of 
swarm intelligence. The basic idea of PSO is initializing a 
group of particles randomly, each particle is considered as 
a potential optimal solution of the extremum optimization 
problem, and the characteristics of each particle are repre-
sented by its position, speed and fitness. Assuming there is 
a population X = (X1, X2, …, XN) composed by N particles 
in a D dimensional space, where the location of i-th particle 
in the D dimensional space can be expressed as Xi = [xi1, 
xi2,…, xiD]T. Then the fitness of each particle’s position Xi is 
calculated according to the objective function. If supposing 
the velocity of i-th particle is Vi, the individual extremum is 
Pi, and the population’s global extremum is Pg, it is feasible 
to adopt Eqs. (6) and (7) in each iteration to update one 
particle’s velocity and position according to the individual’s 
extremum Pid and the global extremum Pgd.

where Vid and Xid are speed and position, respectively; 
d ∈ (1,D) is the dimension of space; i ∈ (1,N) is the label 
number of particles; k is the current number of iterations; c1 
and c2 are non-negative constants, called learning factors; 
r1 and r2 are random numbers in the [0,1] uniform distri-
bution; ω is the inertia weight coefficient, which reflects 
the degree of the particle’s inheritance to the current speed. 
In [24], Shi firstly introduced the inertia weight coefficient 
into PSO algorithm and put forward the linear-decreasing 
inertia weight. He pointed out that larger inertia weight coef-
ficient was conducive to global search, while smaller inertia 
weight coefficient was more conducive to local search. In 
order to balance the ability of global searching and local 
improvement better, the improved particle swarm optimiza-
tion algorithm adopts the adaptive inertia weight coefficient 
in Eq. (8):

(6)Vk+1
id

= �Vk
id
+ c1r1(P

k
id
− Xk

id
) + c2r2(P

k
gd
− Xk

id
)

(7)Xk+1
id

= Xk
id
+ Vk+1

id

(8)� =

⎧⎪⎨⎪⎩

�min −
(�max−�min

)∗(f−f
min

)

favg−fmin
, f ≤ favg

�max, f ≥ favg

where ωmax and ωmin represent the maximum and minimum 
values of ω respectively, f represents the current object 
function value of the particle, favg and fmin represent the 
average and minimum target value of all current particles 
respectively.

According to Eq. (8), it is known that the inertia weight 
coefficient increases when the target value of each particle 
tends to be consistent or local optimal; otherwise, the iner-
tia weight coefficient decreases when the target value of each 
particle is relatively dispersed, and inertia weight coefficient 
is small when target function value is better than average tar-
get value, thus retaining the particles. On the contrary, inertia 
weight coefficient is large when the target function value is 
worse than the average target value of the particle, which make 
the particle move closer to the better search area.

3.2 � Fitness Calculation

In the actual measurement, the range error between the 
unknown node and the beacon node is inevitable, which can 
be defined in Eq. (9):

where (xn, yn) is the coordinate of an unknown node Un, (xn,i, 
yn,i) is the coordinate of i-th beacon node Bi which can be 
used to locate unknown nodes Un, dn,i is the distance between 
Un and beacon node Bi, which is estimated by Eq. (3).

In order to reduce the influence of the accumulative posi-
tioning error, Eq. (9) can be rewritten as:

Equation (10) is used to calculate the fitness value in the 
improved PSO algorithm. Therefore, the calculation process 
of the unknown node’s location can be transformed into solv-
ing the minimum value of the fitness function problem. So far 
it is possible to locate the unknown nodes in region I and II 
accurately which are distributed in the dense distributed grid. 
As for the unknown nodes which are distributed in region III, 
due to the fact that the number of the beacon nodes is less than 
3 in the initial stage, so the aforementioned method cannot 
be used directly. At this point, the neighbor nodes in region 
I or II which has been located in the previous stage will be 
regarded as new beacon nodes. At last, all the unknown nodes 
in region III can be located by using the improved PSO algo-
rithm repeatedly.

(9)f (xn, yn) =

k∑
i=1

(√
(xn − xn,i)

2 + (yn − yn,i)
2 − dn,i

)2

(10)f (xn, yn) =

k∑
i=1

(√
(xn − xn,i)

2 + (yn − yn,i)
2 − dn,i

)2

dn,i
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3.3 � The Process of Iterative Localization Algorithm 
Based on Improved PSO Algorithm

Step 1 The monitoring area is initialized with grid 
division, while the beacon nodes equipped with GPS 
and solar battery are deployed on the 4 vertices of 
the square grid, the unknown nodes are deployed in 
that grid. The distance between two adjacent beacon 
nodes is the node’s wireless communication radius R, 
and each beacon node can obtain its own position with 
the help of GPS. Beacon nodes broadcast its own node 
information, including its ID number and its location.
Step 2 An unknown node Un receives the broadcast 
information of beacon nodes, and calculate the distance 

from each beacon node according to measured RSSI 
value by Eq. (2).
Step 3 According to the number of beacon nodes which 
can be detected by that unknown node, Step 4 will 
be performed if the number of nodes can be detected 
reaches 3 (in region I or II), otherwise nothing is done 
and wait for next judgement (in region III).
Step 4 Initialize particle swarm. A population is gener-
ated with N particles, while the position and velocity 
of each particle are initialized to random values. The 
individual extreme value of i-th particle is initialized to 
the position of i-th particle.
Step 5 The fitness of each particle is calculated by 
Eq. (10). The particle’s position which has the smallest 
fitness is selected as the global extremum.
Step 6 The particle’s velocity and position are adjusted 
and updated by Eqs. (6), (7) and (8).
Step 7 The current fitness value of each updated particle 
is calculated and compared with the fitness value of 
the individual extreme value Pid of the particle. If the 
current fitness value of i-th particle is less than the fit-
ness value of Pid, the current position of i-th particle is 
updated to the new individual extreme value Pid.
Step 8 The fitness value of each particle is compared 
with the fitness value of the global extreme value Pgd. If 
the current fitness of i-th particle is less than the fitness 
value of Pgd, the position of i-th particle is updated to 
the new global extreme value Pgd.
Step 9 When neither the calculated fitness value reaches 
the preset fitness value nor the number of iterations of 
the loop reaches the preset maximum number, it jumps 
to Step 6. Otherwise it exits the loop and output the 
coordinates of the global extreme value Pgd.
Step 10 Step 3 to Step 9 are performed repeatedly until 
all the unknown nodes which can detect at least 3 bea-
con nodes are located.
Step 11 For those unknown nodes in region III, the 
unknown nodes which have been located in aforemen-
tioned are treated as the new beacon nodes, then it 
jumps to Step 3.

4 � Localization Method Combined 
with Improved PSO Algorithm 
and Adaptive Mobile Node for WSNs

The localization method mentioned above is able to locate 
the unknown nodes effectively in densely distributed grid. 
However, some island nodes may occur in sparsely dis-
tributed grid inevitably because of the node’s random toss 
deployment. For such island nodes, it is difficult to locate 
their positions through the method presented above as a 
result of small amount of neighbor nodes. In this paper, a 

Start

Deploy beacon nodes,
ini�alize the grid

Deploy unknown nodes

Divide the region

Is the unknown node in the 
dense distribution grid?

Is the unknown node in 
region or ?

Use Improved PSO
Algorithm to locate
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located as new beacon nodes
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the path calculated by gene�c 
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Fig. 3   Flow chart of localization method combined with improved 
PSO algorithm and adaptive mobile node
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localization method with the help of adaptive mobile node 
is proposed to solve above problem. For the sake of simplic-
ity, we make adaptive mobile node moving to the center 
of sparse distributed grid where the island node exists in. 
Then such an adaptive mobile node will be regarded as a 
temporary beacon node, which can ensure that the island 
node is able to sense 3 beacon nodes at that moment. In 
the next step, the improved PSO algorithm proposed above 
could be used to locate island node’s position. If there exist 
many island nodes in the monitoring area, adaptive mobile 
node should be able to select an optimal path to move to the 

centers of each sparse distribution grid in proper order. In 
this way, the computation of the optimal path of the adap-
tive mobile node can be transformed into a typical traveling 
salesman problem (TSP). In this work, the genetic algorithm 
is used to solve this problem.

The processing flow of localization method combined 
with improved PSO algorithm and adaptive mobile node 
are described in Fig. 3.

Fig. 4   Simulation performance 
in dense distributed grid

Fig. 5   The relationship between the average location and location error
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5 � Simulation Experiments

In order to verify the performance of the algorithm, MAT-
LAB 7.10 environment is used to simulate and analyze the 
algorithm proposed in this paper. Firstly, we simulated the 
performance of iterative localization algorithm based on 

improved PSO algorithm in the dense distributed grid. The 
communication radius R is 100 m, and 20 unknown nodes 
are randomly distributed in a square grid of 100 m × 100 m. 
The 4 beacon nodes are deployed at the 4 vertices of the 
grid in the initial stage. Each node can estimate the distance 
between the neighbor nodes by the received RSSI value. In 
order to simplify the influence of environmental factors, 

Fig. 6   The relationship between 
the average location and loca-
tion error

Fig. 7   The relationship between 
the average location and loca-
tion error (population size: 5)
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the distance measurement error is set as normal distribu-
tion where the mean is 0, and the variance of the ranging 
error is set 3 m. The simulation parameters are set as fol-
lows: the population quantity of the particle swarm is 40, 
the learning factor c1 = c2 = 2, the maximum inertia weight 
coefficient ωmax = 0.9, the minimum inertia weight coeffi-
cient ωmin = 0.6, and the iteration step is 100.

Figure 4 shows the results of the simulation experiment 
of iterative localization algorithm based on improved PSO 
algorithm to locate the unknown nodes in the densely dis-
tributed grid. The simulation results verify the effectiveness 
and reliability of the algorithm. The location accuracy of the 

unknown nodes in the region I and II is very high. Due to 
the use of iterative localization method, the location error 
of those nodes in region III is slightly larger, which satisfied 
the expected analysis. In Fig. 4, ○ represents the true loca-
tion, * represents the first calculated location, + represents 
the second calculated location.

In order to reduce the accumulative error caused by the 
multiple beacon nodes, Eq. (10) is modified to Eq. (11) to 
obtain the average localization error.

Figure 5 compares the average localization error between 
iterative localization algorithm based on improved PSO 
algorithm in this paper, the maximum likelihood estima-
tion method, the localization algorithm based on improved 
genetic algorithm [19] and the iterative localization algo-
rithm based on adaptive mesh [20]. In that simulation, 20% 
of the total nodes are beacon nodes based on improved 
genetic algorithm, two original beacon nodes based on the 
mesh adaptive iterative localization algorithm arranged in 
the edge of location area. The results show that, the position-
ing error of the four algorithms is increased with the increase 
of distance measurement error. Overall, the average position 
error of the proposed iterative localization algorithm based 
on improved particle swarm optimization algorithm and the 
maximum likelihood estimation method is relatively small, 
and the algorithm proposed in this paper is more effective. 
Because of the continual usage of the iterative method for 

(11)
ERR =

∑N

i=1

��
(xn − xn,i)

2 + (yn − yn,i)
2 − dn,i

�2

N

Fig. 8   Relationship between the communication range and the aver-
age location error

Fig. 9   Optimal path of mobile 
node
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localization algorithm based on improved genetic algorithm 
and localization algorithm based on adaptive grid, the results 
show that the average location error is good when range error 
is small, however, the average location error becomes much 
worse quickly when the average location error increases. 
Obviously, it is able to reduce the localization error effec-
tively by raising the number of beacon nodes.

The evolution time of iterative localization algorithm 
based on improved PSO algorithm, standard PSO algo-
rithm and genetic algorithm are compared in Fig. 6. For 
the fairness, three algorithms have the same parameters as 
possible. The learning factor c1 = c2 = 2, the number of itera-
tions is 100, the population size is 40, the maximum inertia 
weight coefficient ωmax = 0.9, the minimum inertia weight 
coefficient ωmin = 0.6. It can be seen from the results that 
the iterative localization algorithm based on improved PSO 
converges faster than the algorithm based on standard PSO. 
The improved PSO algorithm balance the global searching 
ability and the local improvement of the PSO algorithm due 
to the nonlinear dynamic inertia weight coefficient formula. 
GA has similar performance to the improved PSO algorithm, 
but the PSO retains a population-based global search strat-
egy. It is easy to operate the speed–displacement model and 
avoid the complicated genetic operations.

Figure 7 shows the performance comparison of the three 
algorithms when the size of the population dropped to 5. 
The result shows that the performance of PSO algorithm 
still maintains its excellent performance compared with GA 
algorithm. It can be seen that the PSO algorithm is not very 
sensitive to the size of the population, i.e. the performance 
decline is not significant when the number of populations 
is decreasing.

Figure 8 shows the relationship between the communication 
range and the average location error. It can be seen from the 
results that with the increase of the communication range, the 
location error decreases. Overall, the downtrend of location 
error is nonlinear, with the communication range increase, the 
location error decrease very fast at the beginning, when the 
communication range increases to a certain extent, the location 
error tends to be stable. Through the simulation, after bal-
ancing location error, power consumption and other aspects, 
we consider the best communication range should be set as 
90–95 m. Figure 9 shows the optimal path of the mobile node.

6 � Conclusions

This paper proposes a new iterative localization algorithm 
based on PSO in the applications of environment monitor-
ing. We focus on absorbing the features and advantages of 
locating algorithms nowadays and finding a suitable solution 
in our application. To the best of our knowledge, we divide 
the monitoring area into two kinds of grids according to 

coverage density and connectivity, which are densely dis-
tributed grid and sparsely distributed grid. Then we present 
an iterative localization method based on improved PSO 
algorithm to locate the unknown nodes in densely distrib-
uted grid. For those isolated unknown nodes in sparsely 
distributed grid, which is named island node in this paper, a 
localization method with the help of adaptive mobile node is 
introduced. The simulation results show that the algorithm 
has the advantages of small location error and little influ-
ence by environmental factors. Due to the low cost of this 
method, we hope it would have broader application prospect 
in future.
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