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Abstract Wireless Local Area Network (WLAN) position-

ing has become a popular localization system due to its low-

cost installation and widespread availability of WLAN

access points. Traditional grid-based radio frequency (RF)

fingerprinting (GRFF) suffers from two drawbacks. First it

requires costly and non-efficient data collection and updating

procedure; secondly the method goes through time-con-

suming data pre-processing before it outputs user position.

This paper proposes Cluster-based RF Fingerprinting

(CRFF) to overcome these limitations by using modified

Minimization of Drive Tests data which can be autono-

mously collected by cellular operators from their subscribers.

The effect of environmental changes and device variation on

positioning accuracy has been carried out. Experimental

results show that even under these variations CRFF can

improve positioning accuracy by 15.46 and 22.30% in 95

percentile of positioning error as compared to that of GRFF

and K-nearest neighbour methods respectively.

Keywords RF fingerprint positioning · K-nearest

neighbors · K-means clustering · Hierarchical clustering ·

Fuzzy C-means clustering

1 Introduction

Location systems have long been identified as an important

component of a wide set of applications such as for E-911

emergency positioning, personal navigation and Location-

Based Services in outdoor environments. The role of a

positioning system is to estimate and report geographical

location information pertaining to the user for the purposes

of management, enhancement, and personalization of ser-

vices. At present Global Navigation Satellite System

(GNSS) is the most popular positioning system for mobile

devices in outdoor environments. However, GNSS geolo-

cation performs poorly in dense urban areas and inside

buildings, where satellites are not visible by mobile user

equipment (UE) [1]. With the rapid increase in Wireless

Local Area Network (WLAN) access points (AP) in

metropolitan areas and due to their ubiquitous coverage in

large environments, outdoor location systems based on

WLAN have gained recent attention in research and com-

mercial applications [2–4]. WLAN positioning works

better than GNSS in dense metropolitan areas, both out-

doors and indoors owing to its greater received signal

strength and lower attenuation [3]. WLAN received signal

strength (RSS) measurements can be obtained relatively

effortlessly and inexpensively without the need for addi-

tional hardware [5]. Moreover, RSS-based positioning is

non-invasive, as all sensing tasks can be carried out on the

mobile UE, eliminating the necessity for central processing

[6]. Skyhook [7] has used Wi-Fi signals emitted from

residential homes and offices to build a cost-effective

location system on a global scale. Several existing WLAN

methods have aimed to use theoretical path loss (PL)

models whose parameters are estimated based on training

data [8]. Given an RSS measurement and PL model, the

distances from the UE to at least three APs are determined,

and trilateration is used to obtain the UE position. The

limitations of such an approach are the dependence on prior

topological information and assumption of isotropic RSS

contours [9]. Alternatively, the RSS-position relationship

has been characterized implicitly using a training-based
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method known as location fingerprinting. Positioning

results from urban and sub-urban areas with WCDMA and

GSM networks in [10] shows that radio-frequency (RF)

fingerprinting is a better method than PL model based

localization. An RF fingerprint-based positioning system

has two phases. First, offline training phase: RSS and

corresponding location data are collected to create a ‘radio

map’ with sufficient representation of spatiotemporal RSS

properties of the area. Second, online location determina-

tion phase: the system uses the signal strength samples

received from a test UE to ’search’ the radio map to esti-

mate the user location.

In order to enhance WLAN RSS based indoor posi-

tioning pedestrian dead reckoning (PDR) is often used.

PDR uses an inertial measurement unit (IMU) which has

three-axis accelerometers and gyroscopes to detect a user

direction changes between footsteps. The user heading

change is computed by projecting the gyroscope mea-

surements to the horizontal plane. Authors [42] have

proposed a novel linear model for PDR and compared it to

conventional nonlinear models. For this purpose they have

used Kalman filter (KF), the extended Kalman filter (EKF),

and the unscented Kalman filter (UKF). The evaluation

shows that despite being simpler than the traditional

methods, it performs especially well in situations where the

initial heading and position are not known.

In this work, cluster-based RF fingerprinting (CRFF)

method is used with data similar to Minimization of Drive

Tests (MDT) data [11]. CRFF method divides a group of a

MDT data-set into a certain number of subsets or clusters,

so that the members in the same cluster are similar in terms

of their RSS values. The proposed CRFF confronts the

following main challenges of RF fingerprint based UE

positioning:

1.1 RF Fingerprint Collection and Updating

The conventional way of creating fingerprint training data-

base is to periodically conduct extensive drive test cam-

paigns which are time-consuming and unpractical for

building a metropolitan-scale radio map of the locating

system [12, 41]. A major drawback of this method is to

update the training radio map when new APs are deployed

and existing APs are decommissioned. The accuracy of any

location estimation system is highly dependent on the

density of the set of collected fingerprints which is difficult

to achieve through conventional drive test methods [13].

To solve this issue we have used generalized MDT

(GMDT) data that allows UEs to collect location-aware

radio measurements from LTE BSs as well as WLAN

access networks [14]. GMDT allows cellular operators to

collect and update big RF fingerprint data-base autono-

mously using subscribers UE without any additional

hardware instalment. This is the most cost effective solu-

tion to build and maintain fine-grained radio map to

increase the accuracy of UE localization.

1.2 Pre-processing of Training Data

In most cellular-communication systems the basic posi-

tioning method is based upon cell-identity (cell-ID) which

reports the identity of the cell to which the terminal is

connected to [15]. It has sort response time but the accu-

racy is low [16]. Author in [17] has proposed an adaptive

enhanced cell-ID localization method which uses an offline

cluster based fingerprinting to enhance the positioning

performance. To reduce computational complexity and

search space in WLAN positioning authors in [18] and [19]

have conducted offline clustering of locations based on the

training data. However the operation of these systems are

hampered over time since WLAN infrastructures are highly

dynamic and APs can be easily moved or discarded, in

contrast to the BS counterparts in cellular systems, which

generally remain intact for long periods of time. Our pro-

posed CRFF method utilizes GMDT data to output result in

sort time and does not go through time consuming training

data processing phase.

1.3 AP Selection for UE Positioning

In a typical urban environment, the number of detected

WLAN APs is greater than usually necessary for UE

position estimation. RSS is dependent on the relative dis-

tance of the UE and each AP. It is affected by the topology

of the surrounding environment in terms of obstacles

causing non line-of-sight RF signal propagation; thus

subsets of available APs may report correlated readings.

Hence considering all available APs for position estimation

increases the computational complexity of the positioning

algorithm [6]. To simplify the training data collection

process we have adopted the ‘Maximum RSS’ (MRSS)

based selection methodology where APs are sorted in

descending order based on their maximum RSS value and a

certain part is chosen to create the training database [20].

1.4 Position Estimation Using New RSS Observation
and Radio Map

This essentially involves a distance calculation between the

RSS observation of a test UE and the training records;

Euclidean distance has been used in this study [21]. UE

location estimation using RSS measurements is a difficult

task due to the noisy characteristics of signal propagation

and absorption by surrounding structures and human bod-

ies. Even changes in the environmental conditions, such as

temperature or humidity, affect the signals to a large

414 Int J Wireless Inf Networks (2017) 24:413–423

123



extent. As a consequence, the signal strength recorded from

an AP at a fixed location varies with [19]. Moreover RSS

values measured from WLAN APs may differ significantly

with the UE’s hardware even under the same wireless

conditions [22, 23]. In order to study the effect time and

device variation on UE positioning we have collected

GMDT data using different devices in two different times

of a year.

The main goal of this research is to use four popular

clustering algorithms namely: k-means, Hierarchical

Clustering, Fuzzy C-Means Clustering and Self-Organizing

Map based clustering in conjunction to our proposed CRFF

method and also to compare these CRFF methods with

GRFF and KNN in terms of positioning accuracy and

computational time complexity. Thereby we can evaluate

which clustering algorithm performs the best using the

proposed CRFF technique. The rest of the paper is orga-

nized as follow. Section 2 describes the GMDT data

collection and pre-processing steps. The conventional grid-

based RF fingerprinting (GRFF) method, K-nearest

neighbours (KNN) based positioning and CRFF methods

are explained in Sect. 3. Section 4 presents the experiment

results and their performance comparison. Finally, Sec-

tion 5 concludes the paper and gives some future directions

to this effort.

2 Offline Data Collections and Pre-processing

2.1 GMDT Data Measurement

The 3rd Generation Partnership Project (3GPP) has been

studying solutions for enhancing the interworking between

WLAN and LTE in Release 12 and 13 [24]. Authors in [14]

have proposed an enhancement to the LTE MDT referred

to as GMDT with minor changes to the 3GPP MDT

framework which enables WLAN APs to be added to the

MDT report containing LTE network measurements as

well as the UE location information.

To build the GMDT data-base commercially available

mobile phones installed with drive test software known as

‘Nemo Handy’ was used [25]. This enabled us to measure

reference signal received power (RSRP) values of Long

Term Evolution (LTE) serving and detected Base Stations

(BS) and received signal strength indicator (RSSI) values

of WLAN APs with corresponding GNSS locations of the

UEs. Both LTE and WLAN signal strengths were recorded

in dBm and GNSS latitude and longitude values were

converted to Universal Transverse Mercator (UTM) coor-

dinate system values. About 150 km of measurements were

recorded by feet, bicycle and car from a residential urban

area in Tampere, Finland. In order to collect enough

measurement samples from the area of interest every route

was repeated at least twice during the data recording per-

iod. Table 1 summarizes the parameters of two data

collection campaigns.

2.2 GMDT Data Pre-processing

Our proposed positioning system is network-based system

where a positioning server (GMDT server) is used to store

and update the ‘radio map’ through merging multiple

GMDT samples recorded from the same x–y coordinate

comprising of similar LTE BS and WLAN AP IDs to form

a single fingerprint of mean RSS values of the constituent

GMDTs. Since the strongest APs provide good probability

of coverage over time [18]; we have chosen a subset of APs

with the highest observation RSS values. In indoor WLAN

positioning seven WLAN RSSI values were used by

authors in [20] to obtain acceptable positioning accuracies.

Authors in [14] have noticed that increasing WLAN APs

after ten provides little to no gain in UE positioning per-

formance. Hence in this study we have compare the UE

positioning performances of two different sets of RSS

values Sj,n where, j = 1 and 2 refers to different GMDT

data-sets and n is the total number of GMDT samples. The

first set S1,n comprises of serving LTE RSRP and six

WLAN RSSI values while the second set S2,n contains

serving LTE RSRP and ten WLAN RSSI values. We can

represent a GMDT sample of a set by a row vector:

Sj;n ¼ fLWID; RSSLW ; PXYg ð1Þ
where, LWID denotes the LTE BS IDs and WLAN AP IDs,

RSSLW corresponds to RSRP and RSSI values, and PXY

Table 1 Summary of two different data recording campaigns

Time of data

collection

Area of

interest

(km2)

No. of BSs

and APs

No. of

GMDT

samples

Mobile

device

Wi-Fi module LTE and WLAN signal

frequency

Sampling frequency of

LTE and WLAN

Sept. 2014

(5 days)

0.33 16 and

1776

21,954 Samsung

GT-I9305

Murata

M2322007

LTE-1800 and 800 MHz

WLAN-2.4 and 5 GHz

2 samples/sec. and 1

sample/5 s

May 2015

(6 days)

0.34 13 and

2280

87,930 Samsung

SM-

G900F

Murata

KM4220004

LTE-1800 and 800 MHz 4

and 5 GHz

2 samples/sec. and 1

sample/5 s
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contains x–y coordinates of the UEs obtained from GNSS

positioning information.

Training phase of GRFF method: We have used a con-

ventional single grid-cell layout based fingerprinting. The

whole geographical area of interest is segmented into 10 m-

by-10 m square grid-cell units (GCU). As shown in Fig. 1a

the GMDT samples of a given data-set Sj,n are grouped in

different GCUs. For any particular GCU a single training

signature TrainSig is formed from all its samples. This

shortens the searching time during the UE position esti-

mation phase and reduces the computational cost. The

TrainSig formed from all the GMDT samples of ith GCU

can be defined by:

Trainisig ¼ TSLWID ; RSSLWTS ; PXY
Ref

� � ð2Þ
where, TSID

LW contains all unique LTE BS IDs and WLAN

AP IDs obtained from samples of the GCU, RSSLWTS is a

vector of the corresponding mean LTE RSRP and WLAN

RSSI values, and PXY
Ref is the reference x–y coordinate

calculated from the mean values of x and y coordinates of

the samples.

Training phase of CRFF method: The GMDT samples

of a given data set Sj,n are grouped according to unique

LTE serving BS IDs. Hence literally it does not require any

data-processing during the training phase.

3 Position Estimation Phase

The test UE first sends a positioning request to the GMDT

server along with the recorded cell-IDs and associated

RSS values. After matching and data processing GMDT

server sends the position estimation information to the test

UE.

3.1 Test Phase of GRFF Method

As shown in Fig. 1b the LWID of test GMDT sample

(TestSam) is compared to TSID
LW of all the training signatures

of the data server to select those signatures which meet a

minimum matching threshold (MT) value. In our study this

minimum MT number for both GMDT sets were set to two.

Therefore for MT-2 all the training signatures that contain

at least two or higher number of LWID as compared to the

test GMDT are selected: a partial ID match procedure. The

maximum MT numbers for S1,n and S2,n were four and five

respectively. Euclidean distance was used to measure the

statistical difference between a test sample and selected

training signatures which was found to be effective in

WLAN-based indoor UE positioning [26]. Here we have

used a simplified Mahalanobis distance (MD) equation

where the inverse covariance matrix is replaced by an

identity matrix:

d TestSam;TrainSig
� � ¼ pf uTe � uTrð ÞT I uTe � uTrð Þg ð3Þ

where, uTe and uTr denotes the RSRP and RSSI values of

the TestSam and a TrainSig respectively and I is the identity

matrix. Separate calculations are done to measure all the

distances between a TestSam and training signatures. The

TrainSig that corresponds to the smallest Euclidean distance

is chosen for UE positioning. The estimated position of the

TestSam is obtained from PXY
Ref of the chosen TrainSig.

3.2 Test Phase of KNN Based Positioning

The most well-known pattern matching algorithm is K

nearest neighbour (KNN) [5]. In order to satisfy the

acceptable localization accuracy with low computation

effort KNN has been used for WLAN UE positioning by

UE GMDT 
Server

Testing Phase

Selection of Matched 
Training Signatures 

from GCUs

Distance Calculation 
between Test GMDT & 

Training Signatures

Conventional GRFF

GMDT Group is 
Chosen According to 
Test Sample LTE ID

Proposed CRFF 

UE Positioning 
from Selected 

TrainSig GMDT

Clustering is 
Performed on 

Selected Group

Cluster Selection and 
UE Position 
Estimation

(b) 

UE positioning phase

(a)

Training phase

UE GMDT 
Server

GCU Creation and grouping of 
GMDTs in separate GCUs

GCU-wise Training 
Signature Formation

Conventional GRFF

GMDT Group Formation according to Serving LTE BS ID

Proposed CRFF 
Training Phase

Fig. 1 Block diagram of GRFF

and CRFF positioning methods.

a Training phase, b UE

positioning phase
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several researchers [3, 21, 27, 28]. Here first we select the

training GMDT group (TrainGrp) according to the LTE

serving BS ID of the TestSam. Then multiple GMDT sam-

ples are selected from TrainGrp according to the partial ID

matching. The partial matching begins with the highest MT

number and until multiple partially matched training

samples (GMDTPM) are obtained MT number is sequen-

tially lowered towards the minimum. Now according to the

lowest Euclidean distance a maximum of five closest

GMDTs are chosen using the following KNN equation:

dðGMDTPM ; TestSamÞ ¼ pf
Xn

j¼1
ðGMDTRSS � TestRSSÞg2

ð4Þ
where, GMDTRSS and TestRSS are vectors of LTE RSRP and

WLAN RSSI values of GMDTPM and TestSam respectively.

The estimated position of a test UE is calculated from

mean x–y coordinates of the selected GMDTPM samples.

3.3 Test Phase of CRFF Methods

The main steps of the proposed CRFF method is depicted

in Fig. 2.

3.3.1 K-means Cluster Based Positioning

The k-means method is a widely used clustering technique

in scientific and industrial applications [29]. Although it

offers no accuracy guarantee, its simplicity and speed are

very appealing in practical RF fingerprint positioning. It

has been successfully used in indoor mobile localization

and also in outdoor positioning as an energy efficient RF

fingerprinting method [30, 31]. Here k-means++ algorithm

was used which is faster to implement and also improves

the performance of Lloyd’s algorithm [32]. The methods

begins with a set of xi data points where i = 1,2,…,n and a

pre-defined maximum cluster number K. The task is to

choose K centres ck so as to minimize the following dis-

tance function,

d x; cð Þ ¼
Xn

i¼1
jxi � ck j: ð5Þ

Here each centroid is the component-wise median of the

sample points in that cluster. Assuming D(xi) denotes the

shortest distance from a data point to the already chosen

cluster centre k-means++ algorithm performs the following

steps:

1. The first centre c1 is chosen uniformly at random from

x.
2. A new centre ck is chosen from x with probability

DðxiÞ2
Pn�1

i¼1

DðxiÞ2
:

3. Step (2) is repeated until all k centres are chosen.

4. For each ck, data points are assigned to it which are

closer to it than any other ck.
5. New ck is computed from the mean of all data points

that belongs to the previous ck.
6. Steps (4) and (5) are repeated until c no longer

changes.

Depending upon number of GMDTPM samples

(GMDTPM
num) differentK values were assigned for k-means++

algorithm so that clustering takes place even with less

GMDTPM
num. K is set to 6 if GMDTPM

num ≥ 20, K is 3 if 20[
GMDTPM

num ≥ 10 and K is 2 if 10[GMDTPM
num ≥ 2.

3.3.2 Agglomerative Hierarchical Cluster Based
Positioning

Hierarchical clustering is a technique that constructs a tree-

like nested structure of clusters. In agglomerative hierar-

chical clustering (AHC), one starts by considering each

data point as a single cluster and follows by merging two

neighbouring clusters at each step of the process [33]. In

this study we have used weighted-linkage based AHC

clustering since it has shown good positioning performance

in GSM outdoor UE localization [34]. The neighbouring

clusters are chosen based on a linkage criterion where

1. To estimate the position of a test sample, a GMDT group is selected from training data according to the 
serving LTE BS ID of the test sample 

3. The test sample is added to this group and clustering is done 

4. Clustering criteria is checked: a cluster is valid only if it contains multiple GMDTs. If the TestSam does not 
belong to any cluster reduce matching threshold and go-to Step 2 

2. For a particular MT number GMDT samples are selected which have enough common cell-ID/APs as 
compared to the test sample  

5. Select the cluster which contains the TestSam; the estimated UE position is obtained from the mean x-y 
coordinates of the GMDTs of that cluster 

Fig. 2 Block-diagram of CRFF

based UE fingerprint

positioning
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weighted average distance determines the distance between

two clusters. In order to select the optimal cluster number

in AHC method we have used Davies-Bouldin criterion

[35]. This criterion is based on a ratio of within-cluster and

between-cluster distances. Minimum Davies–Bouldin

index (DB) indicates the potential number of clusters in the

data:

DB Kð Þ ¼ 1=Kð Þf
Xk

i¼1
maxj 6¼iðDi;jÞg ð6Þ

where, K is the initial maximum number of clusters, Di,j is

the within-to-between cluster distance ratio for the ith
and jth clusters. Di,j is given by; Di,j = (di¯ + dj¯)/di,j,
where,di¯ is the average distance between each point in ith
cluster and centroid of the ith cluster dj¯ is the average

distance between each point in jth cluster and centroid of

the jth cluster di, j is the Euclidean distance between cen-

troids of the ith and jth clusters. Here we have selected

K = 6 if GMDTPM
num[10 and K = 2 when GMDTPM

num\10,

so that clustering still takes place when there is lees number

of GMDTPM
num samples.

3.3.3 Fuzzy C-Means Cluster Based Positioning

Fuzzy C-means (FCM) is a data clustering technique—a

dataset is partitioned into multiple clusters with every data-

point in the dataset belonging to every cluster to a certain

degree. Authors in [36] and [37] have used FCM in WLAN

indoor localization to obtain good positioning accuracy and

also to reduce the computation time as compared to a

conventional GRFF method. We have assigned different

initial cluster size c depending on number of GMDTPM
samples: c = 6 if GMDTPM

num ≥ 20; c = 3 if GMDTPM
num\20

and GMDTPM
num ≥ 10; and c = 2 if GMDTPM

num \ 10 and

GMDTPM
num [ 2. FCM starts with an initial guess for the

cluster centres, which are intended to mark the mean

location of each cluster and it also assigns every data point

a membership grade for each cluster. By iteratively

updating the cluster centres and the membership grades for

each data point, it moves the cluster centres to the right

location. This iteration is based on minimizing the objec-

tive function for subdividing the selected GMDT data-set

[38]:

Jm u; vð Þ ¼
Xc

i¼1

Xn

k¼1

umi;k jjDk � vijj2 ð7Þ

where, n is the number of samples in the data set, c is the

number of clusters (1 ≤ c ≤ n),ui,k is the element of partition

matrix U of size (c x n) containing membership function, vi
is the centre of ith cluster, and m is a weighting factor that

controls fuzziness of membership function. The matrix U is

constrained to contain elements in the range of [0, 1] such

that
Pc

i¼1 uik ¼ 1 for each uik(1 ≤ k≤n). The norm jjDk �

vijj is the distance between the sample Dk and the clusters

centre vi.

3.3.4 Self-Organizing Map Based Positioning

SOM was introduced as an unsupervised competitive

learning algorithm of the artificial neural networks by

Finnish Professor Teuvo Kohonen in the early 1980s, SOM

is also called the Kohonen map. A Self Organizing Map

(SOM) is a single layer neural network, where neurons are

set along an n-dimensional grid. Each neuron has as many

components as the input patterns. Training a SOM requires

a number of steps to be performed in a sequential way. For

an input sample the SOM training phase consists of three

steps: (1) to evaluate the distance between input sample

and each neuron of the SOM; (2) to select the neuron

(node) with the smallest distance from the sample; and (3)

to correct the position of each node according to the results

of step 2), in order to preserve the network topology. Steps

1–3) can be repeated more than once for each input sample

until stopping criteria is reached. The SOM technique is

simple yet effective in capturing the properties of the input

space and it can be used for clustering input data.

In [43] and [44] authors have used SOM to compute

virtual coordinates that are effective for location-aided

routing in Wireless Sensor Networks (WSN). In [44] syn-

chronous readings collected by all the sensor nodes were

used to build the training set for the SOM. After training

the model, the localization task was performed using new

sensor readings to sort nodes on the basis of their proximity

to a virtual grid of nodes. In [45] authors have used SOM to

develop an indoor locating and tracking system using Wi-

Fi RSS values. They have achieved good positioning

accuracy by using SOM technique. In this study we have

employed SOM as another CRFF method for outdoor user

localization using GMDT data.

4 Experimental Results and Discussion

To evaluate the robustness of the positioning methods with

changes in recording device and surrounding environment

two experimental studies (ExStudy-1 and ExStudy-2) were

carried out. In ExStudy-1 both training and test samples

were selected from the same time period—September

2014. Here training and test data-sets comprises of ran-

domly choosing data chunks of 20 sequentially recorded

samples.

Table 2 shows the UE positioning results of ExStudy-1

obtained from 10 fold cross-validations. In this study only

GMDT data-set S1,n was used. In each of experimental

studies the number of training and test GMDTs were

23,080 and 2565 respectively. Table 2 shows the 68th and

418 Int J Wireless Inf Networks (2017) 24:413–423
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95th percentile cumulative distribution function (CDF)

values of positioning error (PE) for each of the positioning

methods along with the percentage of analysed TestSams
corresponding to different MT values.

Table 3 shows results of ExStudy-2 where both S1,n, and
S2,n datasets were used. These datasets contain 32,791

training GMDTs of September 2014 and 3574 TestSams of
May 2015. Here each of the selected TestSam is surround by

more than ten training GMDTs within its 3 m circular

radius area to ensure the presence of sufficient number of

training samples in its vicinity. It is found from Tables 2, 3

and 4 that for MT-2 all the methods have analyze maxi-

mum amount of TestSams.
The bar plot of Fig. 3a, b shows 68th and 95th percentile

PE values respectively corresponding to MT-2 of both

studies using dataset S1,n. In every study AHC based RFFP

has outperformed other positioning methods in both 68%-

ile and 95%-ile of PE. For MT-2 in ExStudy-1 AHC has

shown an improvement of 40.52% and 21.66% in 68%-ile

and 95%-ile of PE respectively as compared to that of the

GRFF method. For the same MT value and using S1,n in

ExStudy-2 AHC improves positioning accuracy by 19.71%

and 15.46% in 68%-ile and 95%-ile of PE respectively over

that of GRFF method. In ExStudy-2 AHC outperforms

KNN by 18.54% and 22.30% in 68%-ile and 95%-ile of PE

respectively. However in both of the studies AHC has

analyzed lower percentages of TestSams. From Table 3 it

was found that when S2,n is used in ExStudy-2 positioning

performences of K-means and FCM does not differ sig-

nificantly from that of the AHC method for MT values of 2,

3 and 4. It is also noticeable that corresponding to each of

these MT values K-means and FCM have analyzed more

TestSams than AHC based positioning.

In Table 4 gives the PEs of SOM based RFFP for

ExStudy-2 using GMDT dataset S1,n and S2,n. It has given
better positioning accuracies when compared to GRFF,

Table 2 Positioning error results of ExStudy-1 using GMDT dataset S1,n

MT GRFF KNN K-means AHC FCM

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

4 15.3 43.1 99.3 15.0 45.5 98.6 10.0 36.3 84.6 8.2 31.2 74.9 11.0 38.8 84.6

3 15.3 43.3 99.8 15.2 46.0 99.7 11.5 40.4 94.9 9.0 33.8 80.8 12.8 42.6 96.2

2 15.3 43.4 99.9 15.2 46.0 99.8 11.5 40.5 95.0 9.1 34.0 81.0 12.8 42.7 96.3

Table 3 Positioning error results of ExStudy-2 using GMDT dataset S1,n and S2,n

D. S. MT GRFF KNN K-means AHC FCM

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

S1,n 4 26.6 47.0 80.3 25.8 47.3 69.7 24.1 47.2 66.8 20.8 39.8 26.8 24.5 43.4 41.8

3 27.2 49.2 96.5 27.0 53.4 94.6 25.2 51.2 93.7 21.5 41.7 60.5 25.5 50.2 78.1

2 27.9 51.1 99.7 27.5 55.6 99.4 25.5 55.4 99.3 22.4 43.2 76.6 26.7 53.3 95.7

S2,n 5 25.7 46.1 57.0 24.7 44.3 89.6 23.8 41.6 86.9 20.8 38.7 43.1 23.5 42.2 62.4

4 26.7 47.6 85.5 25.8 46.8 97.5 24.5 42.8 96.6 22.0 42.0 67.0 24.3 43.0 87.4

3 27.6 49.5 96.8 26.0 47.5 98.9 24.7 44.1 98.8 23.0 43.7 78.4 24.8 44.1 97.5

2 28.1 50.8 99.7 26.2 49.3 99.9 24.9 46.2 99.9 23.4 45.2 82.9 25.2 46.4 99.4

Table 4 Positioning error

results of ExStudy-2 using SOM

with GMDT dataset S1,n and S2,n

Method SOM

Data set S1,n S2,n

Matching threshold 4 3 2 5 4 3 2

68% PE (m) 22.06 23.05 25.27 24.78 23.83 24.53 24.81

95% PE (m) 34.84 39.93 45.70 42.42 41.95 44.27 45.23

Analysed Samples (%) 2.96 15.44 39.22 4.92 15.52 31.00 48.57
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KNN, K-means and FCM based RFFP but with significant

reduction of analyzed TestSams. For MT-2 its 68%-ile and

95%-ile results closely resemble that of AHC results. For

higher MT values the analyzed percentages of TestSams are
even less.

The average computation time taken by the GRFF and

cluster based methods are shown in Table 5; where

n = 3574 is the total number of GMDT data samples;

NGCU = 5478 is the total number of GCUs in GRFF

method, d = 2–7 for data-set S1,n and d = 2–11 for data-set

S2,n—is the data dimension of a GMDT sample; K = 2–6 is

the number of initial clusters; Kn = 100 is the number of

neurons in SOM and T = 1 to 6 for data-set S1,n and T = 1–

10 for data-set S2,n—is the number of iterations taken by an

algorithm to converge. The computation time of all the

positioning methods other than GRFF depend upon the

T. We can find from Table 5 that only the GRFF needs

training time—which is very long compared to the testing

time of any method. It is also found that UE position

estimation time increases for all the methods when data-set

S2,n was used as compared to that of S1,n—due to the

increase in data dimension.

AHC has taken the least amount of time for UE positioning

in both of the experimental Studies. But due to its high com-

putational complexity, which is at leastO (N2) it may not be a

suitablemethod for a large-scale data-set. SinceK, d, andT are
usually much less than N, the time complexity of K-means

method is approximately linear; hence this algorithm scales

well to large-scale data-sets [39, 40]. SOM based RFFP has

taken much longer time to output position estimation as

compared to rest of the methods. It is worth mentioning that

depending upon the choice of the initial cluster sizeK both the

performances and execution time of themethodsmight differ.

Hence as a future work we intend to compare positioning

accuracies of the methods with variations inK numbers. Also

it worth comparing the results with less number of training

samples in the vicinity of a test sample.

5 Conclusion

The conventional grid-based RF fingerprinting positioning

heavily depends on training phase data-processing and also

the output result varies upon the chosen grid-cell size. In

Fig. 3 Comparison of PE results between ExStudy-1 and ExStudy-2 for MT-2. a 68th percentile PE values (meters), b 95th percentile PE values

(meters)

Table 5 Execution time analysis of different methods in ExStudy-2

Methods Time complexity Average elapsed time (seconds) for S1,n Average elapsed time (seconds) for S2,n

GRFF Depends on n, NGCU, and d 591.9551 (for training)

0.6062 (for testing)

1005.5040 (for training)

1.0145 (for testing)

KNN O(n d) 0.9367 1.7078

K-means O(n K d T) 1.1492 1.9058

AHC O(n2 logn) 0.0788 0.1302

FCM Near O(n) 1.1003 1.7887

SOM O(d + Kn) 5.94 12.24
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this study we have used GMDT data for outdoor UE

positioning in urban area using cluster-based fingerprint

positioning that does not go through a training phase data

processing. Proposed CRFF method can provide improved

positioning accuracy with less computational cost over

traditional GRFF and KNN methods. CRFF continues to

perform better than GRFF and KNN even when facing

recording device variation and environmental changes. For

lower MT value SOM performs similar to AHC method but

it fails to analyze considerable amount of test samples and

also it takes the longest execution time for positioning.

With data-set having eleven RSS K-means and FCM based

CRFF improves positioning accuracies and analyzes 99%

test data. From this study it is found that using GMDT data

consisting of seven RSS values AHC based CRFF has

given best positioning accuracy taking shortest time as

compared to other methods. Hence using GMDT data

cellular operators can utilize AHC based RF fingerprinting

to provide fast and acceptable results for outdoor UE

positioning.
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