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Abstract In this paper, we propose a novel primary user

emulation (PUE) detection approach which employs a

distributed sensor network, where each sensor node oper-

ates as an independent PUE detector. Distributed nodes

collaborate in order to obtain the final detection results for

the whole network. A voting algorithm is used to improve

the performance of energy detection, while the classifica-

tion is conducted by the nearest node in order to improve

the efficiency of the detector. As a result of voting, if a

potential primary user exists, then the features of the

unknown user is compared with entries from the database

in order to obtain a solid detection match. An artificial

neural network (ANN) is used for the classification of an

unknown user. To assess the accuracy of the detection

result, we implement a reliability check at the output of

ANN. The proposed algorithm is validated via computer

simulations as well as by experimental hardware imple-

mentations using the Universal Software Radio Peripheral

(USRP) software-defined radio (SDR) platform. The

experiment results show that the distributed network

detector detects the PUE 180–200%, depending on the

number of primary users, faster than single node detector.

Keywords Cognitive radio network � Primary user

emulation � Relational database � Frequency domain action

recognition � Distributed sensor network

1 Introduction

Given the rapid growth of the wireless sector, the amount

of available wireless spectrum to support a wide range of

applications and services continues to decrease at a sig-

nificant rate. This is partially due to the static, inflexible

nature of wireless spectrum assignments defined by legacy

regulatory guidelines and processes. With most wireless

spectrum ranging between 0 and 3 GHz already allocated

via static assignments to a range of governmental, corpo-

rate, and academic entities [1], and numerous instances

exist where multiple spectrum assignments have been

made for several frequency bands, this frequency assign-

ment situation has resulted in fierce competition for the use

and access of wireless spectrum. This is especially true in

frequency bands located below 3 GHz, which is considered

to be ‘‘prime’’ spectral real estate. Conversely, a large

portion of the assigned spectrum has been observed during

several spectrum measurement campaigns [2, 3] to be

sparsely and sporadically utilized. In particular, spectrum

occupancy by licensed transmissions are often concen-

trated across specific frequency ranges while a significant

amount of the spectrum remains either underutilized or

completely unoccupied. To remedy this spectrum scarcity

issue, dynamic spectrum access (DSA) has been proposed

as a solution, where wireless access is provided to unli-

censed applications and users (i.e., secondary users) by

allowing them to temporarily borrow unoccupied licensed

spectrum while simultaneously guaranteeing the rights of

incumbent licensed users (i.e., primary users). These pri-

mary users (PUs) possess a substantially higher priority or

legacy rights across their assigned portion of wireless

spectrum. Nevertheless, the secondary users (SUs) are

permitted to access this spectrum as long as they do not
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interfere with PUs, thus enabling efficient utilization of

spectral resources [4–6].

One of the major technical challenges regarding spec-

trum sensing is the problem of accurately distinguishing

between primary user signals and secondary user sig-

nals [7]. In cognitive radio networks, primary users possess

priority access to the channel, while secondary users must

always relinquish access to the channel to the primary user

and ensure that no interference is generated. Consequently,

if a primary user begins to transmit across a frequency band

occupied by a secondary user, the secondary user is

required to leave that specific spectral band immediately.

Conversely, when there is no primary user activity present

within a frequency range, all the secondary users are per-

mitted some level of access to the unoccupied frequency

channel. Based on this principle, there exists the potential

for malicious secondary users to mimic the characteristics

of the primary users in order to gain priority access to the

wireless channels occupied by other secondary users. This

scenario is referred to in the literature as a primary user

emulation (PUE) attack [8–10].

In order to overcome the problem of PUE, the FCC

currently employs a centralized control approach [11, 12].

However, there are several issues related to this approach.

First, in some cases this type of centralized control is not

feasible, such as an emergency/disaster relief situa-

tion [13–15], or a military application [16–18], where there

is no Internet or base station infrastructure available. Sec-

ond, this type of centralized control may potentially be

inefficient. The request and acknowledgement process

could incur significant overhead to the network, and the

detection process may suffer from latency issues before it

receives an acknowledgement from the central. In [19], the

voting algorithm to detect PUE is introduced. However,

this approach does not have any reliability check. In [20],

genetic algorithms are applied to VSUs in the presence of

PUEA. Although the genetic algorithms are robust mech-

anisms, long convergence time makes it unpractical. In

[21–23], the physical layer characteristics are used to

detect PUE.

Given the published solutions currently available in the

open literature, there still exists several technical chal-

lenges associated with enabling primary user emulation

detection in cognitive radio networks, namely:

• Simple energy detector-base schemes possess a signif-

icant probability of missed detection.

• Signature-based detection and most of the feature

detection methods require special hardware and

software.

• Analytical model-based detection approach works well

for a specific network model, but it may not work well

for the other models.

• Localization-based detection can only be employed for

stationary primary transmitters with known

coordinates.

To resolve these issues, in this paper we propose a dis-

tributed PUE detection algorithm, where each node detects

the energy levels across the spectrum. All nodes vote based

on their spectrum sensing measurements due to the possi-

ble existence of PUE [24, 25]. In case of a potential PU

being present, the data from the unknown user is collected

from the nearest node, and this data is compared with the

primary user database. If its feature matches with the

database, an artificial neural network analyzes the tempo-

ral-spectral actions of unknown user. In the meantime, the

reliability of this analysis is also assessed. Finally, the

proposed approach decides whether the unknown user is an

authentic PU or a malicious PUE. The proposed detector

possesses the following novel contributions:

• The distributed nodes in the network collaborate in

order to detect the unknown user but only the node

nearest to the unknown user is employed to collect the

data. Using this approach, we show later on in the

results section that the detection duration is approxi-

mately 200% faster than the single node detection.

• The proposed approach does not need any special

hardware or software required in order to operate. In

addition, it can be employed without significant struc-

tural and functional modifications.

• The detection reliability increases by the increasing

number of distributed nodes in the network.

• The proposed approach is robust in the presence of

noise since the voting is performed across many

different nodes.

The rest of this paper is organized as follows: In Sect. 2,

we present the system model used in this work. In addition,

we denote the hypothesis testing framework used for per-

forming the detection process. In Sect. 3, the proposed

algorithm is derived. In Sect. 4 we obtain the probability of

detection and false alarm to evaluate the performance of

proposed algorithm. We present the both computer and

hardware experiment results in Sect. 5. Finally, we con-

clude the paper with several comments in Sect. 6.

2 System Model

Most PUE detection approaches assume there is a single-

node PUE detector within the network. However, in order

to improve the efficiency and accuracy of the detection

process, we can alternatively employ a distributed sensor

network for the purposes of detection, as shown in Fig. 1,

where each sensor node works as an independent PUE
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detector. For an unknown user in this network, each sensor

node makes its own decision concerning whether it is a

primary user emulator or not. Based upon this approach, a

final detection result can be made.

Each node of this sensor network can employ one of the

approaches proposed in [9, 10]. However, the emphasis of

this work is how these nodes collaborate with each order in

order to obtain the final detection results for the whole

network.

We consider a cognitive radio network as shown in

Fig. 2. All the users, including the primary users, primary

user emulators, and secondary users, as well as the PUE

detectors, are distributed in a circular grid. In order to avoid

interference, we assume at each time that there is only one

user transmitting in this network.

We denote x(t) as the transmitted signal. If it is an

authentic PU signal, the notation of the signal is

xðtÞ ¼ sðtÞ. Otherwise, it is the PUE signal and the notation

is xðtÞ ¼ s0ðtÞ. Since the PUE signal is very similar to a PU

signal, we assume that both the s(t) and s0ðtÞ signals are

independently and identically distributed (iid) random

processes with mean zero and variance r2s , namely:

sðtÞ; s0ðtÞ�N 0; r2s
� �

; ð1Þ

where Nð�Þ denotes the normal distribution. Since the

secondary users have a significant lower transmitted power

than the primary users, we assume xðtÞ ¼ 0 when the SU is

transmitting.

Suppose we let hiðtÞ and niðtÞ denote the impulse

response and the noise of the channel between the trans-

mitted signal and the ith PUE detector. Furthermore, we

assume that the channel is a slow flat fading channel during

the observation process. Such that hiðtÞ becomes a constant

gain, i.e., hi, and niðtÞ is additive white Gaussian noise

(AWGN) with mean zero and variance r2n, namely:

niðtÞ�N 0; r2n
� �

: ð2Þ

Using these models, there are three possible received sig-

nals for the ith (1� i�M) PUE detector, namely [26]:

yiðtÞ ¼
niðtÞ ! SU,

hi � sðtÞ þ niðtÞ ! PU,

hi � s0ðtÞ þ niðtÞ ! PUE,

8
><

>:
ð3Þ

where yiðtÞ is the received signal at the ith PUE detector.

The PUE detection algorithm presented in Sect. 3 will

differentiate between these three cases at each detector, and

then combine their results into a single final decision.

2.1 Hypothesis Testing

Spectrum sensing is employed for the purpose of identi-

fying unoccupied licensed spectrum, which is equivalent to

detecting the frequency locations of the primary user sig-

nals. Therefore, spectrum sensing process can be inter-

preted as a signal detection problem. Since most signal

detection problems can be formulated in the framework of

an M-ary hypothesis test, where we have an observation

(possibly a vector or function) upon which we wish to

decide among M possible statistical situations describing

the observations [27]. According to this criterion, the

spectrum sensing performs a binary hypothesis test in order

to decide whether or not there are primary signals in a

particular channel. The two hypotheses are denoted as

follows:

H0 : no primary signals;

H1 : primary signals exist;
ð4Þ

whereH0 is usually referred to as a null hypothesis, andH1

is usually called the alternative hypothesis. On the other

hand, for the alternative hypothesis, the received signal

Fig. 1 A contention based dynamic spectrum access network that

employs a three-node distributed sensor network for performing PUE

detector, where each sensor node works as an independent PUE

detector. For an unknown user in this network, all sensor nodes

perform the initial detection of the device, but the node closest to the

device makes the final decision result

Fig. 2 A cognitive radio network in a circular grid
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would be the superposition of the noise and the primary

user signals. Thus, the two hypotheses in Eq. (4) can be

represented as:

H0 : xk ¼ nk;

H1 : xk ¼ sk þ nk;
ð5Þ

for k ¼ 1; . . .;N, where N is the number of received sig-

nals, xk is the received signal, nk is the noise in the RF

environment, and sk is the primary signal. Consequently,

the spectrum sensing process can be considered as a

detection problem, such that based on the observation x, we

need to decide among two possible statistical situations

describing the observation, which can be expressed as:

dðxÞ ¼
1 x 2 C1;

0 x 2 Cc
1:

�
ð6Þ

When the observation x falls inside the region C1, we will

choose H1. However, if the observation falls outside the

region C1, we will choose H0. Therefore, Eq. (6) is known

as a decision rule, which is a function that maps an

observation to an appropriate hypothesis [27]. In the con-

text of spectrum sensing, different spectral detectors and

classifiers are actually the implementations of different

decision rules. In this paper, we consider energy detection

as a decision rule.

Regardless of the precise signal model or detector used,

sensing errors are inevitable due to additive noise, limited

observations, and the inherent randomness of the observed

data [28]. By testingH0 versusH1 in Eq. (4), there are two

types of errors that can be made, namely H0 can be falsely

rejected or H1 can be falsely rejected [27]. In the first

hypothesis, there are actually no primary signals in the

channel, but the testing detects an occupied channel, so this

type of error is called a false alarm or Type I error. In the

second hypothesis, there actually exist primary signals in

the channel but the testing detects only a vacant channel.

Thus, we refer to this type of error as a missed detection or

Type II error. Consequently, a false alarm may lead to a

potentially wasted opportunity for the SU to transmit while

a missed detection could potentially lead to a collision with

the PU [28].

Given these two types of errors, the performance of a

detector can be characterized by two parameters, namely,

the probability of false alarm (PF), and the probability of

missed detection (PM) [29], which corresponds to Type I

and Type II errors, and can be defined as:

PF ¼PfDecideH1jH0g; ð7Þ

PM ¼PfDecideH0jH1g: ð8Þ

Note that based on PM , another frequently used parameter is

the probability of detection, which can be derived as follows:

PD ¼ 1� PM ¼ PfDecideH1jH1g; ð9Þ

which characterizes the detector’s ability to identify the

primary signals in the channel, where PD is usually referred

to as the power of the detector.

As for the detectors, we would like their probability of

false alarm to be as low as possible, and at the same time

their probability of detection to be as high as possible.

However, in a real-world situation, this is not achievable

because these two parameters are constraining each other.

To show their relationship, a plot called the receiver

operating characteristic (ROC) is usually employed [30],

as shown in Fig. 3, where its x-axis is the probability of

false alarm and its y-axis is the probability of detection.

From this plot, we observe that as PD increases, the PF is

also increasing. There does not exist such an optimal

point that reaches the highest PD and the lowest PF .

Therefore, the detection problem is also a trade off, which

depends on how the Type I and Type II errors should be

balanced.

3 Proposed PUE Detection Algorithm

The proposed PUE detection algorithm in this work uses a

voting process across all nodes within the sensor network.

A flow diagram of the algorithm is provided in Fig. 4.

Although we show the database approach in the flow chart,

the nearest node can employ any of the three approaches

proposed in [9, 10] when working as a classifier in the

second step. According to the system model, our proposed

approach makes the following assumptions: (i) All the

users, including the malicious users and primary users, are
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Fig. 3 A typical receiver operating characteristic (ROC), where the

x-axis is the probability of false alarm (PF), and the y-axis is the

probability of detection (PD)

Int J Wireless Inf Networks (2017) 24:344–355 347

123



located within the same frequency band; (ii) For each

period of time, there is only one user transmitting.

The algorithm begins with an initialization stage, which

uses energy detection in order to determine the frequency

location of the potential primary user. For each given

interval, all the detector nodes scan the same frequency bin

and try to differentiate the following two cases of the

received signal:

yiðtÞ ¼
niðtÞ ! SU,

hi � xðtÞ þ niðtÞ ! PU & PUE,

�
ð10Þ

where yiðtÞ is the received signal at the ith detector, xðtÞ ¼
sðtÞ or s0ðtÞ.

In this step, each sensor node will make a detection

decision concerning whether the received signal belongs to

a potential PU or not. Suppose there are M sensor nodes in

the network, and the detection result is either ‘‘1’’, i.e.

(potential PU present) or ‘‘0’’, i.e. (potential SU present).

For an unknown received signal, the result is:

r ¼ 1
XM

i¼1

ri �
M

2
;

0 otherwise,

8
><

>:
ð11Þ

where ri is the detection result from the ith sensor node.

In other words, if the majority of the sensor nodes

decide this is a potential primary user, the algorithm will

continue to the second step and this signal will be recorded

by its nearest node. After a certain period of time T, this

observation process is terminated and the recorded signals

are passed on to the classifier.

This proposed algorithm features the energy detection

by all the nodes and data collection by only the nearest

node. Thus, it eliminates substantial amount of the over-

head across a long sensing time period caused by energy

detection and high computation levels due to feature cal-

culations. The collected data is used for calculating the

feature vector, which defines the temporal-spectral action

of the user. The feature vector of primary user is compared

with the data in the database system, which stores the

feature vectors of the primary users. In most applications,

primary users possess routine wireless transmissions, so

they have a limited number of feature vectors, which

means the resulting database is stable and limited in size. In

case an unknown user feature vector has a match entity in

the database, this approach will continue to double check

its action in the frequency domain using artificial neural

network. Otherwise, this unknown user will be classified as

a PUE. Binary Multilayer Perception (MLP) classifies the

users to detect whether it is PUE or PU. The hidden layers

calculates the output based on the weights of input values.

The number of layers in hidden levels and the number of

hidden perceptrons in one layer are predefined by the

designer [31, 32]. In this work, we used MATLAB MLP

toolbox to detect PUEs [33]. Our approach operates on

intercepted signals and analyzes it in the frequency domain

over a time interval. Besides the benefits of our previous

approach, our new approach takes the stability of primary

Fig. 4 Proposed PUE detection algorithm based on distributed sensor

network
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users into account and creates a database system such that

it is can reduce the level of computational complexity [10].

Artificial neural networks are used to classify the signal

based on the temporal-spectral action. If the reliability of

the testing result is less than a constant number c specified

at the beginning, we need to collect some new received

data and run these procedures again. Otherwise, the neural

network will output the classification result. Since the

temporal-spectral action type of primary users is known,

we can readily identify whether the observed signal is from

a real primary user or a malicious secondary user.

4 Probability of Detection and False Alarm

In this paper, we study how the sensor network will impact

the energy detector performance in terms of probability of

the false alarm and probability of detection. For each

detector node, the probability of false alarm and probability

of detection will be derived. Since both nk and xk are iid

normal random variables, yk has the following distribution:

yk �
N 0; r20
� �

H0;

N 0; r21
� �

H1;

(

ð12Þ

where r20 ¼ r2n and r20 ¼ h2r2s þ r2n. Consequently, a

decision statistic for energy detector can be defined as:

Y ¼
XN

k¼1

jykj2; ð13Þ

where xk and N follow the definitions in Eq. (5). Under

both hypotheses, the decision statistic Y is the sum of the

squares of N mutually independent normal random vari-

ables, where Y has the central chi-square distribution with

2N degrees of freedom.

Given the decision statistic Y and a threshold T , the per-

formance of this energy detector can be characterized by two

parameters, namely, the probability of false alarm (PF), and

the probability of detection (PD), which can be defined as:

PF ¼PðDecide H1jH0Þ ¼ PðY[TjH0Þ
¼P Y [ T jY �X 2

2Nr
2
0

� �
:

ð14Þ

PD ¼PðDecide H1jH1Þ ¼ PðY[TjH1Þ
¼P Y [ T jY �X 2

2Nr
2
1

� �
:

ð15Þ

We already know that the cumulative distribution function

(CDF)of a standard central chi-square distribution is given by:

Fðx; kÞ ¼ cðk=2; x=2Þ
Cðk=2Þ ; ð16Þ

where k is the degree of freedom, cð�; �Þ is the lower

incomplete gamma functions, and Cð�Þ is the ordinary

gamma function. Since Eqs. (14) and (15) are complement

of the CDF defined in Eq. (16), they can be obtained by:

PF ¼1� F
T

r20
; 2N

� �
¼

C N; T
2r2

0

� �

CðNÞ
ð17Þ

PD ¼1� F
T

r21
; 2N

� �
¼

C N; T
2r2

1

� �

CðNÞ
ð18Þ

where Cð�; �Þ is the upper incomplete gamma function and

Cð�Þ is the ordinary gamma function. Since we use voting

to determine the result of energy detection, the overall

probability of false alarm and probability of detection can

be calculated using the law of total probability:

QF ¼
XM

i¼M
2

M

i

� �
Pi
Fð1� PFÞM�i; ð19Þ

and

QD ¼
XM

i¼M
2

M

i

� �
Pi
Dð1� PDÞM�i: ð20Þ

5 Experimental Setup and Results

In this section, two experiments are conducted in order to

validate the performance of the classifier conducted by the

nearest node. The first experiment uses a computer simu-

lation based on Simulink, while the second experiment is

based on a hardware implementation using the Universal

Software Radio Peripheral (USRP) software-defined radio

(SDR) platform [34]. The classifier is tested in two

aspects: accuracy and efficiency. Note that these tests

possess with an emphasis on the impact of distance, i.e.,

nearest node.

5.1 Computer Simulation

In this section, the ROC curve analysis is shown for different

number of users. Additionally, a Simulink model is con-

structed in order to collect the FFT plot of a user. Before

presenting the results, the path-loss modeling will be intro-

duced since path-loss block is used in the experiments.

5.1.1 Path-loss Modeling

In most environment, it is observed that the radio signal

strength falls as some power a of the distance, called the

power-distance gradient or path-loss gradient. Depending

on the radio frequency, there are additional losses, and in

general the relationship between the transmitted power Pt

and the received power Pr in free space is given by:

Int J Wireless Inf Networks (2017) 24:344–355 349
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Pr

Pt

¼ GtGr

k
4pd

� �2

; ð21Þ

where Gt and Gr are the transmitter and receiver antenna

gains, k is the wavelength of the carrier, and d is the

distance between the transmitter and receiver. Since all

the detector nodes are equipped with the same antenna, it

turns out that Gr is the same. According to our assump-

tions, for each period of time, there is only one user

transmitting, which means that Gt and k are the same.

Therefore, given the transmitted power, the only variable

for the received power is d. We can rewrite Eq. (21) in

decibels (dB) as:

10 logðPrÞ ¼ 10 logðP0Þ � 20 logðdÞ; ð22Þ

where P0 is the received power at the first meter (d ¼ 1),

which applies to all the detector nodes. Therefore, there is a

20 dB per decade loss in signal strength as a function of

distance in free space. It is known that the performance of

the classifier is highly related to the signal-to-noise ratio

(SNR) on the receiver, namely, higher SNR value yields

better classification performance. Broadly speaking, SNR

is the ratio of the average signal power to the average noise

power:

SNR ¼ Pr

Pnoise

: ð23Þ

Since the average noise power Pnoise is fixed for all the

detector nodes, in order to get a higher SNR value, a larger

Pr is required. According to Eq. (22), a minimum distance

d will lead to a maximum Pr, thus the nearest node is

picked up to perform the classification.

5.1.2 ROC Curve Analysis

This section provides the numerical results of the pro-

posed PUE detector. The results are based on Eqs. (19) and

(20), presented in terms of the ROC curves (i.e., QD versus

QF) for an AWGN fading channel.

For each sensor node, PF and PD are calculated. Since

Eqs. (17) and (18) are the complement of the binomial

cumulative distribution function [35], there is a useful

MATLAB function binocdf that we can use in to obtain

numerical results.1

In order to have a quick evaluation of the sensor net-

work, we perform the following calculation, where PF ¼
0:1 and PD ¼ 0:8. Assuming we use a sensor network of 4

nodes, then:

QD ¼ 1� binocdfð2; 4; 0:8Þ ¼ 0:82[PD; ð24Þ

QF ¼ 1� binocdfð2; 4; 0:1Þ ¼ 0:0037\PF ; ð25Þ

which means that by employing the sensor network, we not

only improve the overall probability of detection, but also

decrease the overall probability of false alarm.

Based on the ROC curves of single node detector, the

ROC curves of the distributed sensor network can be

obtained by changing the number of sensor nodes M. The

ROC curves in Fig. 5a are plotted by changing M from 4 to

10 when N ¼ 5, SNR ¼ 5 dBm, and the ROC curves in

Fig 5b are plotted by changing M from 4 to 10 when

N ¼ 5, SNR=3 dBm. In these two figures, the ROC curves

of the single node detector (M ¼ 1) are also provided for

reference.

Based on Fig. 5, we can come to the following

conclusions:

• Employing the distributed sensor network is an effec-

tive way of improving the performance of the energy

detection if each sensor node of this network has a

reliable performance, as shown in Fig. 5a.

• If the sensor node does not have a good PD, the overall

performance of the sensor network can be even worse.

For example, in Fig. 5b, when M=4, the distributed

sensor network has a lower PD than the single node

detector in the area of QF\0:3. Therefore, we need to

make sure that each sensor node in this network has an

acceptable performance.

• Given a probability of false alarm, the larger number of

sensor nodes M will yield higher overall probability of

detection.

5.1.3 Simulink Experiments

If there are N different users, then we need to have N dif-

ferent parameter settings for this model. Figure 6 shows the

structure of this model.

In this model, there are three blocks on the transmitter

side: a random number generator, a modulator, and a pulse-

shaping filter. By picking up the different modulation type

and filter type, or by setting the different parameters for

these three blocks, we can express different users and get

different FFT plots. Then, a free space path loss block2 and

an AWGN channel block are applied to emulate the

transmission environment. Specifically, the free space path

loss block is employed to simulate the loss of signal power

due to the distance between transmitter and receiver as

expressed in Eq. (22). This block reduces the amplitude of

the transmitted signal by an amount related to d. Then, the
1 Y = binocdf(X,N,P) computes a binomial CDF at each of the

values in X using the corresponding number of trials in N and

probability of success for each trial in P [36].

2 The free space path loss block belongs to the RF Impairments

Library.

350 Int J Wireless Inf Networks (2017) 24:344–355

123



AWGN channel block represents the noise level by setting

the variance of the white Gaussian noise. In the end, a sink

block is used on the receiver side to save the FFT plots.

These plots are stored away in the workspace for post

processing.

For each sensor node, a relational database is created to

store the feature vectors of the primary users that are close

to this node. In most cases, the primary users are stationary

in the system, so the database is quite stable. Compared to

the centralized approach, there is a significant advantage

brought by the distributed sensor network. With the single

node detection approach, all the feature vectors exist in one

large database. However, with the distributed sensor net-

work, those feature vectors will be divided into smaller

databases. Therefore, it will greatly reduce the time to

search the database. Although there are several widely used

database management tools, such as MySQL, Oracle and

Access, in order to facilitate the connection with the

Simulink model, we build this database using

MATLAB [37, 38]. We can use the read function to

search the database and the write function to update the

database, if there exists new primary user.

In this paper, an multi-layer perceptron (MLP) neural

network with 256 input nodes, one layer of 6 hidden nodes,

and one output node is employed [39]. f ðxÞ ¼ tanhðxÞ is

selected as the activation function. For training, the back

propagation algorithm is used with a fixed training constant

of g ¼ 0:5, and momentum constant f ¼ 0:75 [40]. The

log-covariance descriptor vector is fed into the system of

artificial neural networks, and the system outputs a clas-

sification result along with a reliability parameter. If the

reliability parameter is larger than 0.75, the classification

result is accepted.

The most important performance metric of a classifier is

the percentage of correct classifications, which shows

whether an approach is accurate. In most cases, we would

like this percentage as high as possible. The first experi-

ment will show how distance affects this percentage. In

order to incorporate the variable of distance in a free space

path loss block, we choose ‘‘Distance and Frequency’’ in

the ‘‘Mode’’ field, and then specify the distance between

transmitter and receiver. For a specific distance value, we

can change the parameter settings on the transmitter side to

generate different FFT plots such that we can repeat the

experiment several times and average the resulting per-

centages. Figure 7 shows the percentage of correct classi-

fications given by different distances d. Based on this

figure, with distance values ranging from 1 to 10 m, the

percentage of correct classifications drops dramatically

from around 90–20%. More specifically, smaller distance

values yield better algorithm performance in terms of

successfully classifying primary signals and PUE signals.

Therefore, in order to get the optimal classification per-

formance, we need to pick up the nearest node to be the

classifier.Moreover, if there is not a neighbor node whose

reliability parameter is at least 75%, the algorithm does not

take the neighbor node’s input and trust only the individual

transmitter’s decision.
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Fig. 6 The structure of the

Simulink model used to collect
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The second most important performance metric of a

classifier is the time spent to classify the known signals,

which shows whether an approach is efficient. In most cases,

we would like this time as short as possible. The second

experiment will show how distributed sensor network

affects this time. As mentioned at the beginning of this

section, one of the advantages of the nearest node classifi-

cation is that all the feature vectors are divided into smaller

databases. In many cases, we can get the result by just

searching one or several small databases, and thus avoiding

going through all the feature vectors. In Fig. 8, we compare

the time to classify an unknown signal using the proposed

distributed network detector and the single node detector.

Assuming the distributed network detector consists of two

sensor nodes, this time we do not include the training time of

the artificial neural network because this process can be

conducted offline with some previously known training

signals. Once the artificial neural network has been trained,

it only needs to be evaluated rather than both trained and

evaluated with any newly intercepted signals.

It can be observed that for both approaches, the classi-

fication time is related to the number of primary users.

When there are more primary users in the system, it costs

more time to reach a conclusion. However, it should be

noted that given a fixed number of primary users, it always

takes less time for the nearest node approach to classify.

According to the cost model introduced in [41], the data-

base searching time is proportional to the number of

tables to scan. Since each primary user has one corre-

sponding table, when there are N primary users, there are

N corresponding tables. Given an unknown user, the single

detector approach has to scan all the tables in order to make

the classification. However, the nearest node approach in

this section only needs to scan the tables stored in the

unknown user’s nearest detector node to make the decision,

thus saving a substantial amount of time.

5.1.4 Software-Defined Radio Experiment

The Simulink model in Fig. 9 was then used as a starting

point for the design of a hardware implementation. For

simplicity, a small scale distributed sensor network is con-

structed in this paper, which includes one unknown user as a

transmitter and two sensor nodes as receivers. Based on

Fig. 9, this was achieved by changing the AWGN channel

block with a real-life fading channel, setting up the radios in

different locations to represent the impact of the free space

path loss block, and by using the Simulink SDRu blocks

available in the Communications System Toolbox. Conse-

quently, our resulting Simulink design that operates on the

USRP SDR platform is shown in Fig. 9. In order to incor-

porate the USRP2 hardware into the existing Simulink

model, two Simulink blocks called SDRu Transmitter

andSDRuReceiver are used here as interfaces. These two

blocks are developed by The MathWorks and have been

available since the R2011a release of MATLAB [42]. With

these two blocks, the USRP SDR platforms can be used in

conjunction with the previous Simulink design environment.

The rest of the Simulink model remains the same,

including the random number generator, baseband modu-

lator, pulse shaping filter as shown in Fig. 9a, and FFT

storage as shown in Fig. 9b. The next steps, including the

database search as the feature vectors of the primary users

are distributed in two databases.
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Since there are two sensor nodes in the network, given

an unknown user, there is one closer node, and one further

node. In Table 1, the percentage of correct classifications

of the two nodes is shown and compared with the hardware

implementation. Similar to the results derived from com-

puter simulations in Fig. 7, the closer node has a much

better performance than the further node. Note that for the

closer node, even without the reliability check, the per-

centage of correct detection can be as high as 85%, which

means that the majority of the classification results are

correct, so the proposed nearest node classification pos-

sesses the potential to be a viable component of the PUE

detector operating under real world conditions.

In terms of execution and convergence times, we do not

take the training time for the artificial neural network into

account.When the FFT plot of an unknown user is collected,

it takes 0.2 s for the nearest node to output the result, which

is faster than that of the single detector approach. Consid-

ering both the efficiency and the performance, the nearest

node classification approach proposed in this section is a

good candidate for the real world implementation.

6 Conclusion

A novel algorithm for detecting non-intelligent primary

user emulation attack based on distributed sensor network

has been presented in this paper. This approach does not

require any special hardware or software, and can be

applied to mobile transmitters with unknown coordinates.

Using USRP2 hardware experimentation, our work features

an analysis in real-life channel with the effect of multipath

fading and interference. Numerical results, computer sim-

ulations, and hardware implementations all demonstrate

that the proposed approach possesses better performance

related to the single detector in terms of the accuracy and

efficiency. The future work of this approach will be focus

on the node selection of the distributed sensor network.
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