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Abstract Of all the challenges faced by wireless sensor

networks (WSN), extending the lifetime of the network has

received the most attention from researchers. This issue is

critically important, especially when sensors are deployed

to areas where it is practically impossible to charge their

batteries, which are their only sources of power. Besides

the development and deployment of ultra low-power

devices, one effective computational approach is to parti-

tion the collection of sensors into several disjoint covers, so

that each cover includes all targets, and then, activate the

sensors of each cover one at a time.. This maximizes the

possible disjoint covers with an available number of sen-

sors and can be treated as a set-K cover problem, which has

been proven to be NP-complete. Evolutionary program-

ming is a very powerful algorithm that uses mutation as the

primary operator for evolution. Hence, mutation defines the

quality and time consumed in the final solution computa-

tion. We have applied the self adaptive mutation strategy

based on hybridization of Gaussian and Cauchy distribu-

tions to develop to develop a faster and better solution. One

of the limitations associated with the evolutionary process

is that it requires definition of the redundancy covers, and

therefore, it is difficult to obtain the upper bound of a

cover. To solve this problem, a redundancy removal

operator that forces the evolution process to find a solution

without redundancy is introduced. Through simulations, it

is shown that the proposed method maximizes the lifespan

of WSNs.

Keywords Wireless sensor network � Life enhancement �
Evolutionary programming � Gaussian mutation � Cauchy
mutation

1 Introduction

Rapid development in the field of micro-electro-mechani-

cal and microelectronics in the past few decades has

influenced a lot of applications that have improved peoples

lives. A WSN is one such technology that has influenced

many applications readily used in research, health moni-

toring and control, simple home appliances, and by the

military. A WSN is made up of small-sized multifunctional

sensor nodes that communicate over short distances. These

sensor nodes are equipped with sensing, data processing,

and communicating capabilities. The on-board processor in

sensor nodes is responsible for taking raw data as input

from its environment, performing simple processing of raw

data and transmitting only desired partially processed data.

Sensor nodes are equipped with on board batteries with

very limited energy and recharging or replacing these

batteries that have very limited energy, and replacing and

recharging these batteries is impossible to do when sensors

are used in certain environments like erupting volcanoes,

nuclear reactors and areas that have experienced disasters.

Since it is very difficult to change batteries of sensor nodes,

it is very important to prolong the lifetime of sensor nodes

for as long as possible once the sensors are deployed.

A large number of sensors are densely deployed in and

around the targets to form a WSN that monitors a finite

number of targets in its range [9, 10]. The random
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distribution and deployment is possible as there is no

constraint on the positioning of sensors, and this provides

access to inaccessible terrains or areas that are the focus of

disaster relief operations.

On the ot her hand, sensor network protocols and

algorithms must possess self-organizing capabilities, and

cooperative effort is expected from sensor nodes to achieve

the required functionality [14, 23]. If the network supports

all these features, then it ensures a wide range of applica-

tions. It also provides the end user with enough intelligence

and a better understanding of the environment that is being

monitored. In the near future, wireless sensor networks

may become an integral part of our lives, serving many

purposes in the same manner as the present-day computers

and mobiles.

The wireless sensor node is a microelectronic device

that has a limited power source, and designers of networks

must ascertain that it works for long durations once it is

established. In other words, a WSNs lifetime depends on

each sensor nodes lifetime or the batterys lifetime. There-

fore, if the battery of each sensor node is efficiently utilized

then it increases the lifetime of a WSN. Hence, power

conservation and power management is of at most impor-

tance and requires significant attention while addressing

this problem. Many researchers nowadays are focusing on

the design of power-aware protocols and algorithms for

sensor networks because of the above mentioned

importance.

In this paper, we propose algorithms for finding the

maximum number of disjoint set-K covers that can enhance

the lifetime of a wireless sensor network. The paper is

organized as follows: Section 2 discusses related studies

that have explored maximization of the lifetime of WSNs;

Sects. 3 and 4 discuss disjoint set cover problems and

evolutionary programming respectively; Sect. 5 discusses

the proposed model for enhancing the lifetime of WSN;

Sect. 6 deals with result analysis and inference from the

proposed model; and Sect. 7 deals with the conclusion and

future direction in the similar line of study.

2 Related Work

Kumar and Chatuverdi [12] proposed two algorithms called

k-means and fuzzy c-means for network routing under

severe energy constraint situations in WSNs. Here, the total

sensor nodes are divided into several clusters, and the

cluster head is chosen based on the residual energy status

of sensors and Euclidean distances. Anitha and

Kamalakkannan [3] proposed an have proposed an algo-

rithm called low energy adaptive clustering hierarchy—

mobile (LEACH-M), which is an enhanced cluster-based

algorithm for optimal routing in WSNs. Chen et al. [6]

proposed a routing algorithm for WSNs that uses neural

networks, and here, the cluster head is selected after a

result of competitive learning among nodes. In this algo-

rithm, the residual energy of the sensors and distances

among neighbor nodes are considered for cluster

processing.

Multimedia messages are very common over the internet

and, in turn, WSNs. Studies have explored a wireless

personal area network that supports many multimedia

applications which are low cost and support low-power

operations [21]. Berger-Wolf et al. [5] used sensor network

to detect and identify the source of contamination with two

variants to address this problem namely sensor constained

and time constrained. They also showed that both variant

problems are polynomially equivalent. Shu et al. [20] used

Fuzzy logic system to optimally distribute the randomly

placed sensors. They also showed that their approach

provides faster and energy efficient sensing of the area of

interest or the area to be sensed.

Halder et al. [11] proposed an energy conservation

algorithm that avoids energy holes and enhances WSN

lifetime. Others have proposed scheduling the sensor nodes

into disjoint set-K covers to extend the lifetime of WSNs

[13], using a selfstabilizing algorithm in an efficient opti-

mization technique [4] and utilizing a coverage algorithm

that creates both disjoint and non-disjoint set-K covers, and

improves network functionality by using a cost function

that checks the monitoring capabilities of a sensor node and

poorly monitored targets [25]. Dietrich and Dressler [8]

presented a survey on WSNs lifetimes using a simulation

model.

Alshawi et al. [2] proposed a routing algorithm for

increasing the lifetime of WSNs that was based on fuzzy

logic and star algorithms. An algorithm based on duty

cycle [18] and a method that uses the residual battery

energy of sensor nodes to adaptively adjust their trans-

mission range have been proposed to increase the lifetime

of WSNs, as well. Wang et al. [22] proposed a mechanism

that works in both the physical layers and the MAC of data

link layers of WSNs to increase their lifetimes. They for-

mulated the problem of lifetime extension as a mixed

integer convex optimization problem and used time divi-

sion multiple access (TDMA). Other studies exploited the

advantages of the imperialist competitive algorithm(ICA)

to determine set-K covers [24].

Cheng and Yang [7] present an opportunistic reception

(OR) algorithm for achieving energy efficiency in WSNs.

Here number of packets sent and received by node(s) is

opportunistically reduced by forcing the intermediate

cluster to generate independent coding vectors through

simple decoding and recoding. Mehra and Dabas [15]

proposed energy efficiency. Energy efficiency in WSNs

improves their lifetime, and a method that uses this
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approach based on the SPIN-I protocol was proposed by

Pattani and Chauhan [17]. A metaheuristic population

based soft computing algorithm has been proposed has

been proposed as an optimization technique for extending

the lifetimes of WSNs [19]. It uses a bat swarm opti-

mization technique to reduce intra-cluster compactness

and, thus, reduce energy consumption.

Extending WSNs lifetime by disjoint set-K cover was

first proposed by Abrams et al. [1]. Padmavathy and Chitra

[16] centralized scheduling algorithm for forming disjoint

or non-disjoint K covers to maximize the lifetime of

WSNs. Network performance was also improved by turn-

ing on redundant nodes only when required, otherwise they

were in an inactive mode.

3 Disjoint Set Cover (DSC) Problem

The main goal of a WSN is to cover all targets with a

minimum number of sensors, which means a network must

use few sensors to cover all targets at any one time. In

practice, a large number of sensors are randomly dropped,

which may result in more than one sensor covering the

same target. In turn, this may result in collection of

redundant information about a single target by many sen-

sors, and moreover, many sensors waste their limited

power collecting information that might have already been

collected by other sensors.

To increase the life span of sensor network, many dis-

joint subsets of sensors are created in such way that each

subset covers all targets. Therefore, when one subset is

activated, it will cover all targets, providing functionality to

the WSN.

However, in order for the sensors to have a maximum

lifetime, they should have a maximum number of disjoint

subsets, and forming the maximum number of disjoint

subsets from the available sensors is considered as disjoint

set cover problem. Technically, it can be described as

follows: ’’if there are T number of targets which has to be

covered by S number of sensors, then divide the S sensors

into K different sets in such a manner that there is no

common sensors in any set and each set can meet all the

objectives by itself’’.

4 Evolutionary Programming

Evolutionary computation is part of the natural computing

intelligence that is applied to various optimization prob-

lems. In evolutionary computation, a population progresses

with time through an iterative process. When we use

evolutionary computation to solve a problem, we may

provide guidelines that dictate how change must take place

in each iteration so that a new and improved solution is

obtained with each iteration.

During the evolutionary process, evolution is achieved

through random change and selection of the fitness func-

tion. Initially, a population called the parent population is

defined randomly. Members of population creates the off-

spring either at the individual level or in combination form

by the random variation operator through crossover,

mutation or both. This random variation operator basically

works as an exploration in the solution computation phase,

and it is used to create a new solution in the solution space.

It is also responsible for maintaining the diversity of the

population.

Different types of distributions can be considered in the

development of the random search operator, which is also

considered to be the offspring creator. In order to assume

that the population for the next generation is limited, it is

necessary to apply some type of selection criteria. Fitness

becomes the primary parameter for selection of a solution,

but care needs to be taken to make sure the selection process

is unbiased, otherwise there may be a loss of exploitation of

a search process and evolution may not work properly.

Termination may be forced, where by a limited number of

iterations are allowed (but there is no guarantee of optimal

evolution) where as in case of self termination process, or or

it may be self-determined, where by the evolution itself

decides when to stop. Generally, when there is no

improvement in fitness with a number of iterations, then the

evolution may be considered to be terminated.

The procedure for evolutionary process to create the

new solution can be defined mathematically by Eq. 1

Xðt þ 1Þ ¼ fsðrðX½t�ÞÞ ð1Þ

where X[t] is taken as the population at time t, fs is the

selection operator and r is a random variation operator. A

number of possibilities can define the variation and selec-

tion functions that play a role in the quality of evolution.

Different methods of evolutionary computation exist, like

evolutionary programming, evolution strategies and

genetic algorithms, where the nature of evolution is dif-

ferent under same evolution structure.

In genetic algorithms, crossover is the primary operator

for random variation and mutation is the second, whereas in

evolutionary programming and strategy, mutation is the key

operator for random variation. Some differences also occur

in the representation of the solution or chromosome in a

population: either it is coded in some form, or it may take a

real value of a parameter that is available in the solution.

4.1 Mutations and Distributions

In the heuristic method, the fundamental principles of

exploration and exploitation play a central role. With better

248 Int J Wireless Inf Networks (2016) 23:246–256

123



exploration, there is a good chance of getting the better

solution, and with proper exploitation, the best solution can

be selected from the explored solutions; however, when

exploration is emphasized the program takes a long time to

converge, and it converges prematurely when exploitation

is emphasized. The balance between these two operations

decides the quality of the solution obtained at the end. In

the proposed solution, the central heuristic operator, the

mutation operator, is a hybrid of the Gaussian and Cauchy

probability distributions.

In evolutionary programming, mutation plays a primary

role in the creation of offspring. The quality of the muta-

tion mechanism will decide the generated offsprings

diversity and genetic inheritance. It is obvious that the

balance between genetic inheritance and defined diversity

will decide the quality of exploration. Mathematically, the

mean centric distribution is used for defining the mutation.

For example, Gaussian distribution (with Mean 0 and

Standard Deviation of 1) is the traditional choice for the

mutation mechanism; however, its large variation has low

probabilities that prevent a quick exploration of solutions.

To overcome this issue one can consider Cauchy distri-

bution as an optimal choice since it is mean centric and has

a longer tail.

As shown in Fig. 1, the Gaussian distribution has a

shorter tail that makes the probability values low for high

numbers on either side of the mean value. In comparison,

the Cauchy distribution, whose shape is similar to that of

the Gaussian distribution, has a longer tail that provides a

better chance for obtaining high probability values on both

sides of the mean value.

4.2 Cauchy and Gaussian Distribution

The one dimensional Cauchy density function centered at

the origin with t = 1 is defined by equation 2

f1ðxÞ ¼
1

pð1þ x2Þ ; �1\x\1 ð2Þ

The corresponding distribution function is defined by

equation 3

F1ðxÞ ¼
1

2
þ 1

p
ðarctanðxÞÞ ð3Þ

Similarly, the Gaussian density function with Mean ðlÞ = 0

and Standard Deviation ðrÞ = 1 is given by Eq. 4

f2ðxÞ ¼
e
�x2

2

ffiffiffiffiffiffi

2p
p ; for all x 2 R ð4Þ

The shape of f1ðxÞ resembles that of the Gaussian density

function but approaches the axis so slowly that an expec-

tation does not exist. As a result, the variance of the

Cauchy distribution is infinite. The comparison of Cauchy

and Gaussian density function is shown in Fig. 1.
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Fig. 1 Cauchy and Gaussian density function
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5 Proposed Model for Life Enhancement of WSN
with Evolutionary Programming

It is possible to know the upper bound of disjoint cover

since it is equal to the minimum number( say K) of sensors

which track a target ðTxÞ, and there are more than K

number of sensors available to track all the other targets.

The upper bound of the disjoint cover can be used as a

reference in designing the solution and conducting com-

parative analyses. We have used the phenotypic represen-

tation of chromosomes, which we have represented as

sensor numbers. The fitness function is a very important

part of evolutionary computation because the evolutions of

solutions occur according to the fitness functions fitness

judgment. Essentially, the description of the fitness func-

tion is problem-dependent and defined over the objectives.

To enhance the lifetime of a WSN, the objective is to have

a maximum number of covers so that in the fitness func-

tion, we can take the maximum number of disjoint covers

available in a chromosome. Here, estimation of the covers

started from the first sensor and sequentially progressed to

the last sensor.Because of the mutation and rounding

effects, some sensors in the chromosome may be repeated

or not considered. To overcome this issue, a two-step

correction process is applied. First, repeated sensors are

identified and removed, and their positions remembered as

Current Parents

Cauchy
Mutation based offspring

Chromosome
correction process

Tournament selection

Next generation

Fig. 3 EVCM

Current Parents

Tournament selection

Gaussian Muta-
tion based offspring

Cauchy Mutation
based offspring

Chromosome
correction process

Fitness FunctionBest offspring

Next Generation

Fig. 4 EVHM
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places of vacancy. In the second step, sensors that were not

part of the earlier solution are randomly allocated to the

vacant positions. We have used four different sets of

algorithms to develop the disjoint covers: (1) evolutionary

programming with Gaussian mutation (EPGM); (2) evo-

lutionary programming with Cauchy mutation (EPCM); (3)

evolutionary programming with winner hybrid mutation

(EPHM); and (4) evolutionary programming with winner

hybrid mutation with redundancy reduction (EPHMRR).

The functional block diagrams for all the algorithms are

given in Figs. 2, 3, 4 and 5. The algorithmic approach of

the evolutionary computation is described in Sect. 5.1.

We conducted a series of simulations to estimate the set-

K cover under two different conditions. (Note that a sensor

Current Parents

Tournament selection

Gaussian Muta-
tion based offspring

Cauchy Mutation
based offspring

Chromosome
correction process

Fitness FunctionBest offspring

Next Generation

Redundancy removal process
with Forward Scanning

Fig. 5 EVMHHR
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network is usually deployed at random.) In the first case, as

shown in Fig. 6, we used 15 randomly defined targets, 200

sensors and a sensing range of 20 m, while in the second

case, which is shown in Fig. 9, we used 10 randomly

defined targets, 100 sensors and a sensing range of 50 m.

The simulation platform was MATLAB 7.6.0 in a Win-

dows XP operating environment. In all cases, the k cover

was estimated with different solutions for 5 independent

trails. The region of the experiment was defined as a 100 �
100 unit, and the solution was based on the evolution of

100 generations. In all cases, the sensor dropping distri-

bution was assumed to be a uniform random distribution. In

Table 1, the performance of all the algorithms is tabulated

and compared for the first case, which had an upper bound

value for the disjoint cover as 37. It is clear, from the result,

that both EPGM and EPCM could not achieve the upper

bound in any of the tails. EPHM showed a comparative

advantage, achieving the upper bound in two trails, and

EPHMRR clearly outperformed the other algorithms,

achieving an upper bound in all trails. EPHMRR, also, left

extra unused nodes that can be utilized in the future.

Convergence towards a final solution for all trails is shown

in Fig. 7. It can be observed that EPGM and EPCM have

more fluctuations in solution development in comparison

of EVHM and EVHMRR. The mean convergence charac-

teristics of all the defined algorithms are given in Fig. 8.

Tables 2 and 3 show comparisons of the number of K

covers obtained in case 2 under two population sets. The

corresponding convergence characteristics are given in

Figs. 10, 11 respectively. It was difficult to obtain the

Fig. 7 Solution convergence

characteristics of different

algorithms for five independent

trails

Table 1 Performance of different algorithms for Case 1

Trail no. EVGM EVCH EVHM EVHMRR

DC RS DC RS DC RS DC RS

1 36 1 35 1 36 4 37 3

2 36 0 36 0 37 2 37 1

3 36 0 36 0 36 0 37 3

4 36 1 36 1 36 1 37 1

5 36 0 36 0 36 0 37 5

Fig. 8 Mean convergence characteristics of different algorithms for

Case 1
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upper bound of 36 with fewer sensors; however, as in the

first case, EPHMRR outperformed the other algorithms,

which was due to its hybrid mutation and redundancy

removal capabilities.
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Fig. 9 WSN simulation development for Case 2

Table 2 Performance of different algorithms for Case 2 with popu-

lation size 100

Trail no. EVGM EVCH EVHM EVHMRR

DC RS DC RS DC RS DC RS

1 33 1 34 2 35 0 36 1

2 34 0 34 1 34 0 35 0

3 34 0 33 0 34 1 35 3

4 35 0 34 0 35 0 36 3

5 34 1 34 0 34 0 36 5

Table 3 Performance of different algorithms for Case 2 with popu-

lation size 200

Trail no. EVGM EVCH EVHM EVHMRR

DC RS DC RS DC RS DC RS

1 34 0 34 0 35 1 36 1

2 34 0 34 0 36 0 36 0

3 34 0 36 0 35 1 36 0

4 34 0 35 1 36 0 36 4

5 34 0 34 1 35 0 36 2

Fig. 10 Mean convergence characteristics of different algorithm for

Case 2 with population size 100

Fig. 11 Mean convergence characteristics of different algorithm for

Case 2 with population size 200
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5.1 Algorithmic Approach

Step 1: A population of N trial solutions was initialized.

Each solution was taken as a pair of real-valued vectors

ð �xi; �riÞ, 8i 2 f1; 2; 3; . . .;Ng with their dimensions cor-

responding to the number of variables. The initial

components of each �xi; 8i 2 f1; 2; 3; . . .;Ng were selec-

ted in accordance with a uniform distribution ranging

over a presumed solution space. The values of

�ri; 8i 2 f1; 2; 3; . . .;Ng, the strategy parameters, were

initialized with some random values.

Step 2: The fitness score for each solution �xi was

evaluated in light of an objective function /ð �xiÞ.
Step 3: Two offspring were generated from each parent,

and they are given by Eqs. (5) and (6). Self adaptiveness

is given by Eq. (7).

�x0iðjÞ ¼�xiðjÞ þ �riðjÞCj ð5Þ

�x00i ðjÞ ¼�xiðjÞ þ Njð0; 1Þ ð6Þ

�r0iðjÞ ¼�ri:expðs0Nð0; 1Þ þ sNjð0; 1ÞÞ ð7Þ

8j 2 f0; 1; 2. . .; rg
where, �x0iðjÞ; �xiðjÞ; �x00i ðjÞ; �r0iðjÞ and �riðjÞ denote the jth

component of vectors �x0i; �xi; �x
00
i ; �r

0
i and �ri respectively. Cj

is the Cauchy random variable with scale parameter t =

1. N(0,1) denotes a standard Gaussian random variable.

Njð0; 1Þ indicates that the random variable is sampled for

each new value of the counter j. The scaling factors s
and s0 are robust exogenous parameters which have been

set to ð
ffiffiffiffiffiffiffiffiffi

2
ffiffiffi

n
pp

Þ�1
and ð

ffiffiffiffiffi

2n
p

Þ�1
respectively.

Step 4: With developed offspring, the chromosome

correction process is applied if there is a requirement to

keep the sensors within the specified value.

Step 5: The fitness score for each offspring /ð�xiÞ is

determined.

Step 6: Comparisons of fitness were made between

two developed offspring to determine the best one, and

the process was repeated to create a population of

offspring.

Step 7: To develop a total of 2N solutions for each

solution, 10% of the population was randomly selected

as opponents from among all parents and offspring with

equal probability. In each comparison, if the conditioned

solution had at least as good a performance as the

randomly selected opponent, it received a win.

Step 8: The N best solutions out of 2N, based on the

number of wins received, were selected to be the parents

of the subsequent generation.

Step 9: The algorithm proceeded to step 3 if the available

time for execution ran out or the acceptable solution was

obtained.

5.2 Redundancy Removal Operation with Forward

Scanning

Redundant sensors were used to replace malfunctioning

sensors in the formed disjoint covers. The process of using

redundant sensors based on necessity is called Forward

scanning. The redundancy removal algorithm is given in

Algorithm 1.

Case 1: Sensing range = 20 m; targets = 15; deployed

sensors number = 200; and upper bound of cover = 37

Case 2: Sensing range = 50 m; targets = 10; deployed

sensors number = 100; and upper bound of cover = 36

6 Result Analysis and Inference

Our results show that the hybrid evolutionary programming

approach is one of the best techniques for creating disjoint

sensor covers to increase the lifetime of WSNs. Our

approach of increasing the lifetimes of WSNs by using

algorithms that employ hybrid evolutionary programming

is shown in terms of disjoint covers (DC) and redundant

sensors (RS) in Tables 1, 2 and 3 for different sets of input

data. Comparative performance analyses of the four algo-

rithms EVGM, EVCH, EVHM and EVHMRR are also

shown in Figs. 7, 8, 10 and 11. For different sets of input

data, it can be observed that solution convergence, the

number of disjoint covers created and the number of

redundant sensors that can replace similar malfunctioning

sensors in the active sensor cover increase from the first

algorithm, EVGM, to the last algorithm, EVHMRR. Thus,

we have shown in detail the performance comparisons of

the proposed algorithms, and to the best of our knowledge,

this study is the first to use algorithms with hybrid

Algorithm 1 Redundancy Removal
1: Pr = [ ];
2: while No. of sensed Target = Total Available Target do {
3: Xn ← A new sensor node from solution
4: Cn ← Total defined targets with Xn nodes
5: Xr = Cn ⊕ Pr ;
6: d1 = |Xr − Cn|;
7: d2 = |Xr − Pr|;
8: s1 = Cn;
9: s2 = Pr;

10: if (d1 == 0)&(s2 < s1) then
11: Selected Sensor Node Xn is redundant;
12: Remove from there and place at the end
13: end if
14: if (d2 == 0) then
15: All previous sensor nodes in the cover are redundant;
16: Remove redundant nodes from there and place at the end
17: end if
18: Pr = Xr }
19: end while

254 Int J Wireless Inf Networks (2016) 23:246–256
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evolutionary programming to enhance the lifetime of

WSNs (Fig. 9).

7 Conclusion

In this paper, a method that uses a hybrid evolutionary

approach to develop a maximum number of possible dis-

joint covers is proposed to enhance the lifetimes of wireless

sensor networks. The hybrid approach combines Gaussian

and Cauchy distributions to develop better offspring solu-

tions. The Cauchy distribution is useful in the early stages

of solution development because it delivers a large change,

while the Gaussian distribution, which delivers a small

change, is important for the later stage of solution devel-

opment. Here, a mechanism is developed to remove the

redundancy present in disjoint covers in the process of

solution development, and it achieves the upper bound of

the disjoint cover in a smooth and optimal manner. As a

future direction, it will be interesting to investigate other

optimization techniques, with an emphasis on those that

use a hybrid distribution approach.
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