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Abstract In target node localization problem, conven-

tional methods based on received signal strength indicator

(RSSI) assume a prior knowledge of a channel model and

values of its parameters specific for an environment. This

limits the conventional localization system to be set up

quickly and effectively due to a necessary pre-measure-

ment step to determine both the channel model and the

values of its parameters. To address the limitation, a two-

stage iterative algorithm which allows to localize a target

node without any prior knowledge of the parameter values

has been propose. Each stage of the algorithm can be

implemented using different estimation methods, such as

maximum likelihood (ML) and least square (LS) estima-

tion which provides four different combinations. To

determine the best combination, the location estimation

performance for all four combinations is evaluated using

experimental data collected in measurement campaigns on

various indoor locations. The results reveal that the com-

bination of ML estimation method implemented in both

stages provides the best location estimation accuracy and

the fastest convergence rate.

Keywords IEEE 802.15.4 � RSSI � Location estimation �
Parameters estimation � Channel model �
Least square estimation � Maximum likelihood estimation

1 Introduction

Localization systems utilizing wireless sensor networks

(WSNs) have been proposed as one of the solutions for

indoor localization [1]. In indoor environments, the abso-

lute location of an object, called ‘‘the target node’’, is

estimated through wireless sensor network nodes whose

locations are known, called ‘‘the anchor nodes’’.

To localize a target node, a location estimation system

exploits measurement which indicates location or distance,

such as time of arrival (TOA) [2, 3], time difference of

arrival (TDOA) [4], angle of arrival (AOA) [3, 5] and

received signal strength indicator (RSSI) [3]. The TOA

technique provides an accurate measurement, however, it

requires a precise time synchronization among the nodes

and an additional hardware, such as an ultrasound trans-

ceiver, which further increases the system cost. The TDOA

eliminates the requirement of time synchronization, how-

ever, an additional hardware, such as an ultrasound

transceiver, is still required. The AOA technique requires

nodes equipped with an antenna array and does not perform

well in indoor environments due to multi-path propagation.

Finally, the RSSI technique does not provide as accurate

measurement as TOA and TDOA techniques due to signal

fading caused by multi-path propagation, however, the

system implementation is simple and inexpensive.

Since the cost of a single wireless sensor node is an

important constraint in a system of a large number of

nodes, many researchers have decided to focus on the

localization techniques utilizing RSSI measurement. In
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addition, many IEEE 802.x wireless communications

standards support RSSI measurement to evaluate link

quality such as the IEEE 802.15.4 standard for low-rate

wireless personal are network (LR-WPAN) [6].

In the RSSI-based localization, several estimation

methods have been proposed, such as multilateration [7, 8],

fingerprinting [9–11] and probability based, namely max-

imum likelihood (ML) estimation [4, 12, 13]. The

multilateration method is a very simple one which justifies

its poor accuracy. The fingerprinting method is a deter-

ministic method which requires an intensive measurement

campaign for its database construction before the locali-

zation system is used. In addition, an update of the database

may be required whenever the environment changes.

Finally, the ML estimation method is more precise than the

multilateration method [14] and does not require as inten-

sive measurement campaign as the fingerprinting method.

A localization system based on RSSI measurement uti-

lizes the fact that the power of a transmitted radio

frequency (RF) signal attenuates with distance. The rela-

tionship between the RF signal power and the distance is

expressed by a path loss model [15], which is characterized

by several parameters. The path loss model and its

parameters are specific to the area where a target node is

localized. Hence, a pre-measurement campaign is required

to determine them. This prohibits a conventional RSSI-

based localization system to be set up quickly. In addition,

pre-measurement campaigns are sometimes impossible,

e.g. when anchor nodes are installed in harsh environments.

To overcome the limitation, joint target node locations

and channel model parameters estimation algorithms have

been proposed [16, 17]. The authors of both the papers

propose iterative localization algorithms which require no

prior knowledge of the channel model parameter values,

although a channel model have been assumed valid. Both

of the algorithms are structured into two stages; target node

locations are estimated in stage one, and channel model

parameters are estimated in stage two. The authors of both

the papers use ML estimation in stage one, however, they

use different estimation methods in stage two, namely,

least square (LS) [16] and ML estimation methods [17].

As the experimental setup and equipment are different

between the two papers, and one of the papers discusses the

estimation accuracy only for three different target node

locations in a room, it is difficult to determine which

estimation method can potentially provide the best per-

formance. Therefore, we evaluate the two different

estimation methods in the stage two using identical

experimental setup and equipment. In addition, we also

compare different estimation methods in the stage one,

namely, LS and ML estimation methods. This provides the

opportunity to compare four different combinations of

estimation methods used in the stage one–stage two, such

as LS–LS, LS–ML, ML–LS and ML–ML.

The rest of the paper is organized as follows. A channel

model is described in Sect. 2. The iterative localization

estimation algorithms are presented in Sect. 3. Section 4

presents the results and discussion. Finally, Sect. 5 draws

the conclusions.

2 Channel Model and Conventional Location

Estimation Method

Localization systems based on RSSI measurements exploit

the property of RF signal power attenuation with traveled

distance. The average received signal power PðdÞ received

at distance d can be expressed as [15]:

PðdÞ ¼ a � d�b (mW); ð1Þ

where a is a parameter proportional to the received signal

power at a reference distance from the transmitter, and

parameter b is a path loss exponent [15]. The values of the

parameters is particular to an environment and condition

[15, 17–19].

LS location estimation method utilizes only the trans-

mitted signal power attenuation with the near–far principle

expressed by Eq. 1. However, received signal power fluc-

tuates due to multi-path propagation and does not uniquely

correspond to distance d. On the other hand, ML estimation

utilizes not only Eq. 1, but also a channel model which is

represented by a conditional probability density function

(PDF) p(P|d) expressing the probability of receiving a

signal with measured power P when a distance d is given.

To be able to use the localization based on ML esti-

mation, a channel model which describes well the RF

signal propagation characteristics is required. Based on

experiments conducted in various environments a two-

layered channel model is expressed as [20]:

pðPjdÞ ¼ 1

PðdÞ
exp � P

PðdÞ

� �
: ð2Þ

The first layer of the model corresponds to Eq. 1, and

the second layer of the model is given by Eq. 2 which

expresses the fading characteristics of the received signal

power. An example of power attenuation and fading

characteristics can be found elsewhere [17, 20].

Although, a channel model is known, conventional LS

and ML location estimation methods still require a prior

knowledge of channel model parameter values a and b
since these parameters are particular to an environment.

The values of parameters are typically obtained by a pre-

measurement campaign which prohibits quick and effec-

tive system set up.
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3 Two-Stage Algorithm

Estimating target node locations without a knowledge of

the channel model parameters is based on a joint target

nodes locations and channel model parameters estimation

where not only the unknown locations of O target nodes

but also the values of a and b parameters are estimated.

The joint target node locations and channel model

parameters estimation is separated into two stages.

Namely, target node locations are estimated in stage one

using tentatively-decided common values of a and b
parameters, whereas the values of the channel model

parameters are estimated in stage two using tentatively-

estimated target node locations. This two-stage algorithm is

iteratively processed by alternating between the two stages.

Figure 1 shows the flowchart of the algorithm.

Different estimation methods can be implemented in

both of the stages and in the following we consider using

different combination of LS and ML estimation methods as

is listed in Table 1. The four combinations are referred to

as LS–LS, LS–ML, ML–LS and ML–ML.

A localization scenario with O target nodes located

within a WSN area is assumed. Every anchor node mea-

sures M RSSIs for each of the target node locations

forming a vector P = [P11
(1), P11

(2),…, P11
(M), P12

(1), P12
(2),…,

P12
(M),…, P1N

(1), P1N
(2),…, P1N

(M), P2N
(1), P2N

(2),…, P2N
(M),…, PON

(1) ,

PON
(2) ,…,PON

(M)] composed of k-th RSSI measured at j-th

anchor node corresponding to i-th target node location,

Pij
(k), and N is the total number of anchor nodes. In addition

to this, vector d = [d11, d12,…, d1N, d21, d22,…, d2N,…,

dO1, dO2,…, dON] is composed of distances dij between i-th

unknown target node location [Xi, Yi, Zi] and j-th known

anchor node location [xj, yj, zj] defined as:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi � xjÞ2 þ ðYi � yjÞ2 þ ðZi � zjÞ2

q
: ð3Þ

For the sake of simplicity, we assume that the height Zi

of the target node is known and constant for all O target

node locations, hence the target node locations are

estimated in a plane. In addition, all anchor nodes are

placed at the same height z, therefore (Zi - zj) = (Z - z)

= h.

3.1 Stage One: Target Node Locations Estimation

The target node locations are estimated in stage one which

implementation is similar to a conventional algorithm.

However, in the joint target node locations and channel

model parameters estimation algorithm, the values of

channel model parameters are unknown and are being

estimated. Therefore, in the initial iteration, n = 0, arbi-

trary a0 and b0 initialization values are used to estimate

target nodes locations. In the following iterations, n ¼
1; 2; . . .; ân and b̂n estimated in stage two are used.

3.1.1 Realization by LS Location Estimation Method

The target node locations [Xi, Yi] are estimated using LS

estimation by minimizing the sum of the squared error eij:

min
Xi;Yi

XO

i¼1

XN

j¼1

ðeijÞ2
( )

: ð4Þ

The error eij is defined as:

eij ¼ dij � rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi � xjÞ2 þ ðYi � yjÞ2 þ h2

q
� rij; ð5Þ
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Fig. 1 Algorithm’s flowchart

Table 1 Different combinations of estimation methods in the two

stages

Stage one Stage two

LS parameter

estimation

ML parameter

estimation

LS location estimation LS–LS LS–ML

ML location estimation ML–LS MS–ML
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where rij is the measured distance between i-th target node

and j-th anchor node locations. Minimizing the error eij

separately for each unknown target node location [Xi, Yi]

produces the same result when minimizing Eq. 4.

Considering an ideal case when the error eij is equal to

zero and rearranging Eq. 5 results in:

r2
ij � x2

j � y2
j � h2 ¼ X2

i þ Y2
i � 2Xixj � 2Yiyj: ð6Þ

To generate a set of linear equations, Eq. 6 for the N-th

anchor node is subtracted from the rest:

r2
ij � x2

j � y2
j � r2

iN þ x2
N þ y2

N

¼ 2XiðxN � xjÞ þ 2YiðyN � yjÞ: ð7Þ

This leads to a system of N - 1 linear equations

expressed as:

ci ¼ Abi; ð8Þ

bi ¼ ðAT AÞ�1AT ci; ð9Þ

where AT denotes the transposition of A,

A ¼ 2

xN � x1 yN � y1

xN � x2 yN � y2

..

. ..
.

xN � xN�1 yN � yN�1

2
6664

3
7775; ð10Þ

bi ¼
Xi

Yi

� �
; ð11Þ

and

ci ¼

r2
i1 � x2

1 � y2
1 � r2

iN þ x2
N þ y2

N

r2
i2 � x2

2 � y2
2 � r2

iN þ x2
N þ y2

N

..

.

r2
iN�1 � x2

N�1 � y2
N�1 � r2

iN þ x2
N þ y2

N

2
6664

3
7775: ð12Þ

The solution to bi is the estimated i-th target node

location ½X̂i; Ŷi�T .

3.2 Realization by ML Location Estimation Method

The target node locations [Xi, Yi] are estimated using ML

estimation by maximizing the joint conditional PDF

p(P|dn). Assuming received signal powers Pij
(k) are tempo-

rally and spatially independent and target nodes locations

[Xi, Yi, Zi] are independent too, the conditional joint PDF is

written as:

pðPjdnÞ ¼
YO
i¼1

YN
j¼1

YM
k¼1

pðPðkÞij jdijnÞ: ð13Þ

To obtain the target nodes location estimates ½X̂i; Ŷi� , the

log-likelihood function L1ðdnÞ ¼ log pðPjdn; an; bnÞ is

maximized with respect to the target node locations [Xi,

Yi] written as:

oL1ðdnÞ
oXi

� �
Xi¼X̂i

¼
XO

i

o

oXi

XN

j

M ln
1

ân �d�b̂n
ijn

0
@

1
A�

PM
k P
ðkÞ
ij =M

ân �d�b̂n
ijn

8<
:

9=
;

2
4

3
5

Xi¼X̂i

¼0;

oL1ðdnÞ
oYi

� �
Yi¼Ŷi

¼
XO

i

o

oYi

XN

j

M ln
1

ân �d�b̂n
ijn

0
@

1
A�

PM
k P
ðkÞ
ij =M

ân �d�b̂n
ijn

8<
:

9=
;

2
4

3
5

Yi¼Ŷi

¼0:

ð14Þ

Because the target nodes locations [Xi, Yi] are

independent of each other, their locations can be estimated

separately.

3.3 Stage Two: Channel Model Parameters Estimation

Channel model parameters an?1 and bn?1 are estimated in

stage two. To estimate these parameters, the estimated

target node locations, or precisely the distances d̂n , esti-

mated in stage one are used.

3.3.1 Realization by LS Channel Model Parameters

Estimation Method

To estimate the values of an?1 and bn?1 parameters using

LS estimation, the problem is considered as minimizing the

sum of the squared error �ij:

min
a;b

XO

i¼1

XN

j¼1

ð�ijÞ2
( )

: ð15Þ

The error �ij is defined as:

�ij ¼ adBmnþ1 � bnþ1 � 10 � logðd̂ijnÞ � PdBmij; ð16Þ

where adBmn?1 is defined as:

adBmnþ1 ¼ 10 � logðanþ1Þ; ð17Þ

and PdBmij is defined as:

PdBmij ¼ 10 � log
1

M

XM
k¼1

P
ðkÞ
ij

 !
: ð18Þ

The transformation from watt units to decibel units

allows linear LS estimation written in a matrix form as:

g ¼ Ef; ð19Þ

f ¼ ðET EÞ�1ET g; ð20Þ

where
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E ¼ 2

1 �10 � logðd̂11nÞ
1 �10 � logðd̂12nÞ
..
. ..

.

1 �10 � logðd̂1NnÞ
1 �10 � logðd̂21nÞ
1 �10 � logðd̂22nÞ
..
. ..

.

1 �10 � logðd̂2NnÞ
..
. ..

.

1 �10 � logðd̂O1nÞ
1 �10 � logðd̂O2nÞ
..
. ..

.

1 �10 � logðd̂ONnÞ

2
66666666666666666666666664

3
77777777777777777777777775

; ð21Þ

f ¼ adBmnþ1

bnþ1

� �
; ð22Þ

and

g ¼ ½PdBm11;PdBm12; . . .;PdBm1N ;PdBm21;PdBm22; . . .;PdBm2N ;
. . .;PdBmO1;PdBmO2; . . .;PdBmON �T :

ð23Þ

The estimated values âdBmnþ1 and b̂nþ1 are then used in

stage one of the following iteration cycle n = n ? 1. Note

that the estimated âdBmnþ1 is in decibel units, however,

watts units are used in stage one, therefore:

ânþ1 ¼ 10
âdBmnþ1

10 : ð24Þ

3.3.2 Realization by ML Channel Model Parameters

Estimation Method

The same channel model used for estimating target node

location can be used in this stage providing that the channel

model describing propagation characteristic of a signal

defined by the IEEE 802.15.4 standard is valid, which was

confirmed in [17].

The ML estimates ânþ1 and b̂nþ1 are obtained when the

log-likelihood function of stage two L2(an?1, bn?1)

= logp(P | dn, an?1, bn?1) is maximized with respect to the

two channel model parameters an?1 and bn?1:

Maximizing the log-likelihood function L2(an?1, bn?1)

yields the parameter estimates ânþ1 and b̂nþ1 common to

the desired location estimation area.

After the channel model parameters are estimated, the

target node locations are reestimated using the updated

values of the channel model parameters ânþ1 and b̂nþ1 in

the following iteration n = n ? 1.

3.4 Termination of the Algorithm

The iterative algorithm terminates when:

ân � ânþ1j j\tolerancea;

b̂n � b̂nþ1

��� ���\toleranceb;
ð26Þ

where tolerancea and toleranceb are the required accuracies

of the estimated parameters. The recommended values are

tolerancea = 1 � 10-8 and toleranceb = 1 � 10-3 [17].

Smaller values do not improve target node location esti-

mation accuracy.

4 Results and Discussion

To evaluate the various combination of LS and ML esti-

mation methods used in the two stages of the joint target

node locations and channel model parameters estimation

algorithm, we used RSSI measurements collected during

measurement campaigns conducted in four different envi-

ronments. The environments were a corridor of a shopping

center, an office room, a meeting room and a classroom.

Detailed descriptions of the environments, measurement

campaign and WSN node specification are reported else-

where [17, 21]. The experiments were conducted when

people were present in the environments which represent a

practical scenario.

Various a0 and b0 initialization values were used to

evaluate the performance of the four different combination,

namely LS–LS, LS–ML, ML–LS and ML–ML estimation

methods used in the two stages of the algorithm. In addi-

tion, we measured the true values of the a and b parameters

for each of the environment to compare the location esti-

mation accuracy using the conventional and proposed

oL2ðanþ1; bnþ1Þ
oanþ1

� �
anþ1¼ânþ1

¼ o

oanþ1

XO

i

XM
j

N ln
1

anþ1 � d̂�bnþ1

ijn

 !
�
PN

k P
ðkÞ
ij =N

anþ1 � d̂�bnþ1

ijn

( )" #

anþ1¼ânþ1

¼ 0;

oL2ðanþ1; bnþ1Þ
obnþ1

� �
bnþ1¼b̂nþ1

¼ o

obnþ1

XO

i

XM
j

N ln
1

anþ1 � d̂�bnþ1

ijn

 !
�
PN

k P
ðkÞ
ij =N

anþ1 � d̂�bnþ1

ijn

( )" #

bnþ1¼b̂nþ1

¼ 0:

ð25Þ
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estimation methods. The total number or RSSI measure-

ments M was equal to 10.

Figures 2–9 show the average location estimation error

in meters against the number of iteration n for LS–LS,

LS–ML, ML–LS and ML–ML combinations. Each curve in

the figure represents different a0 and b0 initialization values.

For brevity, figures for only two different environments are

presented; the figures for other two environments are very

similar.

We can observe in Figs. 2 and 6 that the combination of

LS–LS estimation methods is not as precise as other

combinations. This is due to the fact that the neither stage

one nor stage two utilize the channel model. LS location

estimation method in stage one performs a simple multi-

lateration which does not utilize the propagation properties

of RF signal on contrary to ML location estimation

method. Therefore, the LS location estimation method is

less accurate than ML location estimation method [14].

Moreover, LS channel model parameters estimation does

not utilizes the channel model in stage two, and the channel

model parameters are estimated considering only average

received signal power and distance as expressed by Eq. 1.

The LS–ML combination performs better than the

LS–LS one, as Figs. 3 and 7 show. The ML channel model

parameters estimation in stage two utilizes not only the

RSSI measurements but as well a probability of obtaining

such measurements employing the channel model, and it

can be explained as follows. Because the LS location

estimation in stage one does not utilize the channel model,

the target node location estimation accuracy is low.

0 2 4 6 8 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0
A

ve
ra

ge
 L

oc
at

io
n 

E
st

im
at

io
n 

E
rr

or
 (

m
)

Iteration

 1.79E-6, 1.63
 1.00E-5, 1.50
 1.00E-5, 2.00
 1.00E-5, 2.50
 1.00E-5, 3.00
 1.00E-6, 1.50
 1.00E-6, 2.00
 1.00E-6, 2.50
 1.00E-6, 3.00

Fig. 2 Average location estimation error of LS–LS combination

versus number of iteration and various a0 and b0 initialization values

for the experiment conducted in the office room
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However, ML parameters estimation in stage two utilize

the channel model and provides for better channel model

parameters estimation. Consequently, target node location

estimation is improved. The effect can be well observed in

Fig. 3 where the target node location estimation accuracy

improves every time the channel model parameters are

reestimated until the iteration n = 6.

Figures 4 and 8 indicate that the accuracy of ML–LS

combination is superior or equal to any of the two previous

combinations. This is due to the fact that ML location

estimation method in stage one is superior to LS location

estimation method [14]. However, using LS channel model

parameters estimation in stage two leads to slower con-

vergence rate which is well observed by comparing results

of ML–LS combination to ML–ML combination results

depicted in Figs. 5 and 9. The slow convergence rate is

caused by the fact that LS channel model parameters

estimation does not utilize the channel model in stage two,

but only path loss model expressed by Eq. 1. The accuracy

of ML–ML combination is comparable to ML–LS esti-

mation; however, the convergence rate is faster than of the

ML–LS combination. This means that less number of

iterations is needed for the algorithm to converge which is

advantageous in dynamically changing environments.

To conclude, the ML–ML combination is the preferred

one. This is due to the fact that the LS location estimation

does not perform as well as the ML location estimation in

stage one. In addition, the convergence rate of the ML

channel model parameters estimation in the stage two is

faster than of the LS channel model parameters estimation.
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Fig. 6 Average location estimation error of LS–LS combination

versus number of iteration and various a0 and b0 initialization values

for the experiment conducted in the meeting room
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Fig. 7 Average location estimation error of LS–ML combination

versus number of iteration and various a0 and b0 initialization values

for the experiment conducted in the meeting room
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Fig. 8 Average location estimation error of ML–LS combination

versus number of iteration and various a0 and b0 initialization values

for the experiment conducted in the meeting room
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Fig. 9 Average location estimation error of ML–ML combination

versus number of iteration and various a0 and b0 initialization values

for the experiment conducted in the meeting room
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Table 2 summarizes the accuracy of the various combina-

tions after 10 iterations. In addition, Table 2 shows the

location estimation accuracy of the conventional location

estimation method when the values of a and b parameters

are known, obtained by a pre-measurement campaign. We

can observe that the accuracy is superior or equal to the

conventional localization methods even without a prior

knowledge of a and b parameter values.

The algorithm assumes that channel model parameters

are the same at any place of an environment (at any target

node location). Unfortunately, this is true only for a

homogeneous environments and such assumption can lead

to inaccuracy. Therefore, a future work can extend the

algorithm to situations where channel model parameters

are assumed unique for different areas of an environment

or for a set of target node locations.

5 Conclusions

Two-stage joint target node locations and channel model

parameters estimation algorithm overcomes the drawback of

RSSI-based conventional target node location estimation

methods which require a prior knowledge of channel model

parameter values. The two stages of the algorithm can be

implemented using different estimation methods, and we

have evaluated four combination of LS and ML estimation

methods.

The ML–ML combination is superior to any other com-

binations due to the fact that ML location estimation method

performs better than LS method in stage one. Moreover, ML

channel model parameters estimation method converges

faster than LS estimation method in stage two. This is

advantageous for highly-dynamic environments where the

channel model parameter values constantly fluctuate.
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