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The effectiveness of distributed wireless sensor networks highly depends on the sensor
deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will

provide sufficient sensor coverage and ameliorate the quality of communications. In this
paper, we apply fuzzy logic systems to optimize the sensor placement after an initial random
deployment. We use the outage probability due to co-channel interference to evaluate the

communication quality. Fenton–Wilkinson method is applied to approximate the sum of
log-normal random variables. Our algorithm is compared against the existing distributed
self-spreading algorithm. Simulation results show that our approach achieves faster and

stabler deployment and maximizes the sensor coverage with less energy consumption. Outage
probability, as a measure of communication quality gets effectively decreased in our algorithm
but it was not taken into consideration in the distributed self-spreading algorithm.
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method; outage probability

1. INTRODUCTION

Wireless sensor networks consist of certain
amount of small and energy constrained nodes.
Sensor nodes are deployed in support of various
missions such as environment and habitat monitor-
ing, industrial process control, infrastructure security
[1] and automation in the transportation. One net-
worked sensing experiment on Great Duck Island [2]
provides a small lens into an expansive future of such
applications. The experiment was conducted by a
team of computer engineers from the University of
California, Berkeley. Up to date, 190 wireless sensors
have been deployed on a small island 10 miles off the
coast of Maine to study the nesting behaviors of
petrels. Biologists are now monitoring the petrels on
the island from their offices, browsing data from
sensors linked by satellite.

The deployment of sensors varies with different
applications. A number of applications require the
placement of sensors at desired locations like data
collection [3] and infrastructure security [1], where
critical area, buildings and facilities are monitored by
a network of sensors placed adequately. For such
placement-friendly applications, sufficient knowledge
of the environment is assumed to be available before
deployment is carried out.

In other applications where prior knowledge of
the environment can not be obtained, sensors may
have to be randomly air-dropped and human inter-
vention after deployment to recharge or replace node
batteries may not be feasible. Mobile sensors are
practically desirable in this situation because they
have the capability to move around and re-adjust
their positions for high quality communication and
better coverage and surveillance [4]. However mobile
sensor deployment itself is an energy consuming
process because of the motion and communication
between sensors. An efficient sensor re-deployment
scheme is a necessity to save energy resources and
improve the quality of communications.
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Some prior research proposed sensor deployment
strategies based on virtual forces for target localization
[5–7]. One example of virtual force concept was
presented in [7]. The pair-wise interaction between
sensor nodes is governed by two kinds of virtual forces
– one causes the nodes to repel each other to improve
their coverage and the other is an attractive force that
prevents the nodes from losing connectivity. Later
Cheng et al. [8] formulated a constrainedmultivariable
nonlinear programming problem to determine both
the locations of the sensor nodes and data transmission
pattern. In [9, 10], Heo and Varshney developed a
distributed self-spreading algorithm (DSSA) and an
intelligent deployment and clustering algorithm
(IDCA) for sensor deployment. Recently, a voronoi
diagram (VD)-based deployment algorithm was
included in [11]. All the above algorithms have made
lots of efforts to formulate the virtual forces, however
none of which can well handle the uncertainties with
the random move and unpredictable oscillation in
sensor deployment. For the purpose of stability and
convergence, various parameters or constraints such as
oscillation limit, stable status [9–11], and number of
neighbors [7] have to be imposed to avoid excessive
sensor oscillation.

In this paper, we apply fuzzy logic systems
(FLSs) to handle these uncertainties in distributed
sensor deployment. Instead of attempting to formu-
late the virtual forces, we propose to apply FLSs to
re-deploy the sensors. Each individual mobile sensor
uses a FLS to self-adjust its location. For a single
sensor node, neighboring nodes� location is the only
information needed to make the movement decision.
Therefore the deployment scheme based on FLSs is a
fully distributed approach. After applying FLSs,
exhaustive move and unpredictable oscillation is
efficiently avoided and fast deployment is achieved.

As a result, the entire sensor network survives for
longer lifetime and the quality of communication in
terms of outage probability is greatly ameliorated. A
concept of coherence time is introduced for the
purpose of synchronization among sensors.

The rest of this paper is organized as follows. In
Section 2, we briefly review the basic concept of
FLSs. Section 3 details the FLSs design for distrib-
uted sensor deployment. Simulation and discussion
are presented in Section 4. Section 5 concludes this
paper with a summary. Fenton–Wilkinson method to
tackle the outage problem is expatiated in Appendix.

2. OVERVIEW OF FLSS

Figure 1 shows the structure of a rule-based
type-1 FLS [12]. It contains four components: fuzz-
ifier, rules, inference engine and defuzzifier. When an
input is applied to a FLS, the inference engine
computes the output set corresponding to each rule.
The defuzzifer then computes a crisp output from
these rule output sets.

Rules are the heart of a FLS and may be
provided by experts or can be extracted from
numerical data. In either case, the rules that we are
interested in can expressed as a collection of
IF-THEN statements, e.g. [13]

IF the total average input rate of real-time voice
and video traffic is a moderate amount, and the total
average input rate of the non-real-time data traffic is
some, THEN the confidence of accepting the tele-
phone call is a large amount.

The IF-part of a rule is its antecedent and the
THEN-part of a rule is its consequent.

The process of making a crisp input fuzzy
is called fuzzification. The most widely used
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Fig. 1. The structure of a fuzzy logic system.
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fuzzification is the singleton fuzzification. All fuzziness
for a particular fuzzy set is essentially characterized
by the membership functions (MFs). The shapes used
to describe the fuzziness have very few restrictions
but with the help of mathematical structure, some
standard terms related to the shape of MFs have been
developed over the years [14]. The most common
forms of MFs are those that are normal and convex.

Consider a type-1 FLS having p inputs and one
output. Let us suppose that it has M rules, there the
lth rule has the form:

Rl: IF x1 is F1
l and x2 is F2

l and � � � and xp is Fp
l ,

THEN y is Gl. l ¼ 1; . . . ;M
Assuming singleton fuzzification is used, when

an input x0 ¼ fx01; . . . ; x0pg is applied, the degree of
firing corresponding to the lth rule is computed as

lFl
1
ðx01Þ ? lFl

2
ðx02Þ ? � � � ? lFl

p
ðx0pÞ ¼ T

p
i¼1lFl

i
ðx0iÞ ð1Þ

where ? and T both indicate the chosen t-norm.
The last but not the least process in a FLS is

called defuzzification. Defuzzification is the conver-
sion of fuzzy output sets to crisp output sets. There
are many defuzzification methods including maxi-
mum, mean-of-maxima, centroid, center-of-sums,
height, modified height and center-of-sets. In this
paper, we focus, for illustrative purposes, on the
center-of-sets defuzzifier [13]. It computes a crisp
output for the FLS by first computing the centroid,
cGl , of every consequent set Gl, and, then computing a
weighted average of these centroids. The weight
corresponding to the lth rule consequent centroid is
the degree of firing associated with the lth rule,
T p

i¼1lFl
i
ðx0iÞ, so that

ycosðx0Þ ¼
PM

l¼1c
l
GT

p
i¼1lFl

i
ðx0iÞ

PM
l¼1Ti¼1

plFl
i
ðx0iÞ

ð2Þ

where M is the number of rules in the FLS.
In the next section, we will detail the design of

the rule-based type-1 FLSs for distributed sensor
deployment issue.

3. DESIGN OF FLSS FOR DISTRIBUTED

SENSOR DEPLOYMENT

3.1. Assumptions and Notations

In this research, we make several assumptions:

• Sensor field is denoted by a two-dimensional
grid. Sensing and communication is modeled
as a circle on this grid.

• Coverage discussed in this paper is grid
coverage. A grid point is covered when at
least one sensor covers this point.

• A sensor can detect or sense any event within
its sensing range, denoted by Rs. Coverage is
determined based on Rs.

• Two sensors within their communication
range, denoted by Rc can communicate with
each other. Neighbors of a sensor are defined
as nodes within its communication range.

• All sensor nodes are assumed peer to peer.
• Sensor nodes have certain mobility and are

capable of computing, detection and commu-
nication.

• Sensor node can obtain the knowledge of its
location.

• Sensors are synchronized by coherence time.
One-time move is made within each coherence
period.

3.2. FLSs Design for Distributed Sensor Deployment

FLS is well known to be able to handle uncer-
tainty and ambiguity. Practically not all uncertainty
is random. Some forms of uncertainty are non-
random and hence not suited to treatment or
modeling by probability theory. Fuzzy set theory is
a marvelous tool for modeling uncertainty associated
with vagueness, or with a lack of information
regarding a particular element of the problem at
hand. Upon concerning the distributed sensor
deployment, the moving distance and direction of
each sensor are distributed and full of uncertainty
which can barely be described by some random
distribution. FLS is well known as model free. Their
MFs are not based on statistical distributions. There-
fore we propose to apply FLS to the distributed
sensor deployment problem. Each sensor makes fully
distributed decision on its movement based on FLS.

Our algorithm starts with random deployment.
Assume a two-dimensional sensor field is the target
area of surveillance. In the initial condition, a given
number of sensors are randomly deployed such as air-
dropping. Because of the randomness in initial
deployment, very likely the sensor field will not be
fully covered. Part of the sensor field might be over
crowded with the sensors. Such unbalanced deploy-
ment brings difficulty in target detection and
tracking, and increases the interference during com-
munications. Figure 2 gives an example of randomly
deployed field. As shown in Figure 2, targets in the
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uncovered area can not be detected while in the over
crowded area, communication between sensors is
corrupted by the interference from neighboring
nodes.

Our algorithm then intends to re-deploy the
sensors such that maximum field coverage and high
quality communication could be achieved. Each
individual sensor in the network needs to fine-tune
its location such that densely deployed sensors can be
evenly spreaded in the field. Two critical procedures
are considered in our algorithm:

• Determine the next-step move distance for
each sensor.

• Determine the next-step move direction for
each sensor.

The next-step move distance is hard to deter-
mine. Too small or big move distance each step
consumes the network more time and energy to get
stable deployment. Excessive move and oscillation is
unavoidable in previous work with no fuzzy system.
In this paper, we design a FLS to determine the
next-step move distance for each sensor.

An ideal sensor deployment will have uniform
distribution for better coverage. But in random
deployment, coverage uniformity is hardly to achieve
initially. In sensor network composed of mobile
sensors, each sensor detects the number and location
of its neighbors and decides its neighborhood density.
If the sensor has a high density of neighboring nodes,
it makes decision using FLSs to shift a certain

distance away from the high density area. If the
neighborhood density is low, the sensor might stand
still or shift a little distance away from the current
location.

As illustrated in Figure 2, the neighborhood
density of a sensor node is determined by two factors:
the number of neighbors and the distance between
sensor node and its neighbors. The more the neigh-
boring nodes, the higher the neighborhood density.
The closer the neighboring nodes, the higher the
neighborhood density. Based on this knowledge, we
choose two antecedents as follows:

Antecedent 1. Number of neighbors of each sensor.
Antecedent 2. Average Euclidean distance between
sensor node and its neighbors.

The linguistic variables to represent the number
of neighbors for each sensor are divided into three
levels: high, moderate and low; and those to represent
the average Euclidean distance between sensor node
and its neighbors are divided into three levels: far,
moderate and near. The consequent – the shift
distance normalized by sensing range Rs is divided
into three levels: far, moderate and near. Table 1
summaries the rules and consequents.

One example of rules is as follows:
IF the number of neighbors of sensor i is high

and average Euclidean distance between sensor i and
its neighbors is moderate, THEN the normalized shift
distance of sensor i should be moderate.

We setup 9 rules for this FLS because every
antecedent has 3 fuzzy sub-sets and there are 2
antecedents. Trapezoidal MFs are used to represent
high, low, far and near and triangle MFs to
represent moderate. Two antecedents are normalized
to the range [0,10]. We show these MFs in
Figures 2 and 3.
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Fig. 2. An example of random deployment: targets in the uncov-

ered area can not be detected; In the over crowded area commu-

nication between sensors has lots of interference.

Table 1. Fuzzy rules and consequent

Antecedent 1 Antecedent 2 Consequent

Low Near Moderate

Low Moderate Near

Low Far Near

Moderate Near Far

Moderate Moderate Moderate

Moderate Far Near

High Near Far

High Moderate Moderate

High Far Moderate
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Applying center-of-sets defuzzification [7], for
every input (x1, x2), the output is computed using

yðx1;x2Þ ¼
P9

l¼1 c
l
GlFl

1
ðx1ÞlFl

2
ðx2Þ

P9
l¼1 lFl

1
ðx1ÞlFl

2
ðx2Þ

ð3Þ

Repeating these calculations for 8xi 2 ½0; 10�,we
obtain a decision surface y(x1, x2) as shown in
Figure 4.

Generally, the decision surface is time-varying
and nonlinear. From Figure 4, we can see that
although the number of neighbors for a particular
sensor is high, the move distance can be smaller than
some sensor with fewer "crowded" neighbors, i.e.

very close average Euclidean distance between the
sensor and its neighbors. With the assist of decision
surface, the next-step move distance can be deter-
mined.

Comparing to move distance, the next-step move
direction is much easier to decide. Coulomb�s law in
physics becomes a useful tool to tackle the problem.
For instance, assume sensor i has 2 neighbors in its
communication range as shown in Figure 5.

The coordinate of sensor i is denoted as
Ci = (Xi,Yi).

The next-step move direction of sensor i could be
represented as follows:

~v ¼
X2

j¼1

~Cj � ~Ci

j~Cj � ~Cij2
ð4Þ

tanðaÞ ¼
Yð~vÞ
Xð~vÞ

ð5Þ

After getting distance and direction (angle a) , sensor
i clearly knows his next-step move information. In
order to prolong the battery life of each individual
sensor, we introduce a coherence time as the duty
cycle during which the changes of two antecedents
can be ignored. Sensors are put into idle or sleep
mode if within the coherence time, the information of
neighbors remains unchanged.

near, low moderate far, high

0 2 4 6 8 10
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1

Fig. 3. Antecedent membership functions.
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4. SIMULATION AND DISCUSSION

We investigate various number of sensors
deployed in a field of 250 � 250 m2 area. We assume
each sensor is equipped with an omni-directional
antenna to carry out the task of detection and
communication. Evaluation of our scheme follows
three criteria: field coverage, converging speed, mean
travel distance per node and outage probability.
Results are averaged over 200 Monte Carlo simula-
tions.

We compare the performance of our algorithm
with the Distributed Self Spreading Algorithm
(DSSA) proposed in [9]. DSSA is known as a good
solution in the self-deployment of mobile sensor
nodes. The main idea of DSSA is to define a partial
force for the movement of sensors during the
deployment process. The force a node receives from
a closer neighbor node is greater than that from a
farther neighbor. For N sensor nodes deployed in a
square field with area A, DSSA formulates the partial
force sensor node i receives from neighbor node j as:

fi;jn ¼
D

l2
ðRc � pin � pjn

�
�

�
�Þ p

i
n � pjn

pin � pjn
�
�

�
�

ð6Þ

where Rc stands for communication range,
l ¼ N � p � R2

c=A is called the expected density while
D is the local density, and pin stands for the location
of node i at time step n. Each node makes decision to
move by adding up all partial forces from its neigh-
boring nodes. DSSA sets up two criteria: stable status

limit (Slim) and oscillation limit (Olim) to stop a
sensor�s movement.

Figure 6 shows at 50 m sensing range
(Rs = 50 m) and 100 m communication range
(Rc = 100 m), the coverage of the initial random
deployment, the coverage after DSSA is implemented
and the coverage after using FLSs. We ran three
iterations for all three schemes. When 20 sensors are
deployed, the coverage after random deployment was
initially around 85% and the DSSA increased it to
93%. After FLSs were used, the coverage reached
approximate 98% after three iterations.

Figure 7 gives the results when 10 iterations are
completed for the three deployment schemes. We
observe that the performance of DSSA gets closer to
our FLSs after 10 iterations. Both FLSs and DSSA
can dramatically increase the network coverage in the
low density network. Figures 6 and 7 also indicates
that instead of deploying large amount of sensors, the
desired field coverage could be achieved with fewer
sensors. Comparing Figures 6 and 7, we noticed that
our FLSs increases the network coverage faster than
DSSA in terms of iteration times.

Figures 8–10 are the real pictures of 20 sensors
from random deployment, after implementing FLS
and DSSA respectively. Both FLS and DSSA can
spread the densely deployed sensors but the deploy-
ment after using FLS demonstrates more uniformity
than the one using DSSA.

We then simulated two cases when 30 sensor
nodes and 60 sensor nodes are deployed respectively.
Network coverage according to these two cases are
presented in Figurs 11 and 12.

move direct ion v

X(v)

Y(v)

Rc
sensori

neighbor 2

neighbor 1

not a neighbor
of sensori

Rc: communication range

Fig. 5. Example of next step move direction for sensor having two

neighbors.
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It is fairly clear in Figures 11 and 12 that our
FLSs increase the network coverage much faster than
the DSSA. For instance, when 30 sensor nodes were
deployed, our FLSs boost the network coverage from
initial 93% to around 98.5% in only 1 iteration
whereas the DSSA takes 6 iterations to reach the
same coverage.

The average distance traveled by each sensor
node is also important in energy saving problem. For
energy constrained wireless sensor nodes, less travel
distance leads to less energy consumption. Our goal is
to adjust sensors� positions appropriately such that
the maximum coverage is achieved with minimum

energy dissipation in deployment. We calculated the
average distance traveled by each sensor node for our
FLS and compared it against the DSSA as both reach
the same network coverage. Results in Figure 13
indicate that for the FLS scheme, each sensor node
travels less average distance than that in DSSA.
Furthermore, in FLS scheme, the average travel
distance by each node varies little when the number
of sensors changes which implies that the energy
consumed in deployment is nearly independent of
network density.
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Fig. 7. Coverage vs. number of sensors deployed (after 10 itera-

tions, Rc = 100 m).
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(after three iterations, Rc = 100 m).
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Fig. 9. Deployment with 20 sensors after implementing FLS (after

three iterations, Rc = 100 m).
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In wireless sensor networks, the radio link
performance is usually limited by interference rather
than noise, therefore, the probability of outage due to
co-channel interference is of primary concern. Mea-
surements [16] have shown that at any value of di,j
(the Euclidean distance between sensor i and sensor
j), the path loss PLðdi;jÞ is random and distributed
log-normally (normal in dB) about the mean distance
dependent value. That is:

PLðdi;jÞ½dB� ¼PLðdi;jÞ þ Xr ¼ PLðd0Þ
þ 10n log

di;j
d0

� �

þ Xr
ð7Þ

and

Prðdi;jÞ½dBm� ¼ Pt½dBm� � PLðdi;jÞ½dB� ð8Þ

where Xr is a zero-mean Gaussian distribution ran-
dom variable (in dB) with standard deviation r (also
in dB).

The log-normal distribution describes the ran-
dom shadowing effects on the propagation path which
implies that measured signal levels at certain distance
have a Gaussian (normal) distribution about the
distance-dependent mean and standard deviation r.
Since PLðdi;jÞ follows normal distribution, so is
Prðdi;jÞ, and the Q function may be used to determine
the probability that the received signal level will
exceed (or fall below) a particular level.

The probability that the received signal level will
exceed a certain value c can be calculated from the
cumulative density function as

Pr½Prðdi;jÞ>c� ¼ Q
c� Prðdi;jÞ

r

� �

ð9Þ

For sensor i with N neighbors, if sensor i acts as the
destination node during one communication, the
signal to interference ratio (SIR) is represented as:

SIRðiÞ ¼ Prðdi;jÞ
PN

k¼1 Prðdi;kÞ
; k 6¼ j ð10Þ

The denominator denoting the effect of co-channel
interference is a sum of N)1 log-normal signals.
Evaluating the outage probability requires the prob-
ability distribution of the interference power. There is
no known exact expression for the probability distri-
bution for the sum of log-normal random variables,
but various authors have derived several approaches
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which approximate the sum of log-normal random
variables by another log-normal random variable.

In this paper, we used Fenton–Wilkinson
method [17]. The co-channel interference can now
be approximated by one log-normal random variable.
SIR(in dB) as a result follows log-normal distribution
as well. We expatiate the Fenton–Wilkinson method
in the Appendix. Results of outage probability are
presented in Figure 14.

Observe Figure 14, the FLSs scheme successfully
reduced the outage probability by nearly 15% com-
paring to DSSA when the number of sensors is 60,
which implies a higher probability that the received
signal level will exceed the SIR threshold using our
FLSs scheme. The DSSA did not perform well
considering the outage probability because it did
not take the outage probability into performance
evaluation [9].

We have introduced earlier that DSSA stops a
sensor�s movement by two criteria: stable status limit
(Slim) and oscillation limit (Olim). Ref. [9] shows that
it takes more than 10 times iteration to termination.
Our fuzzy approach gains a distinct advantage over
DSSA by converging in around three iterations. Thus
stop criteria is not required in our fuzzy approach.
These facts indicate that our FLS scheme is much
faster and simpler to implement comparing to DSSA
and more significantly, the FLS scheme maximizes
the network coverage with less energy consumption
in deployment.

5. CONCLUSIONS

In this paper, we proposed a sensor deployment
strategy based on FLS. Our approach has a great
advantage to deal with the uncertainty in distributed
sensor deployment which is particularly useful when
emergency rescue or redeployment over hostile situ-
ation is needed. We believe that in an energy
constrained wireless sensor network, fast and efficient
deployment strategy is a necessity to save energy and
extend network lifetime. Our FLSs scheme is capable
to model all distributed sensor deployment with a
FLS. The network coverage and quality of commu-
nication in term of outage probability are greatly
improved as a result. Moreover, the FLSs scheme
brings the whole network to a stable and optimal
deployment very soon which will significantly reduce
the energy consumption. Our future work will focus
on modeling the random deployment with some
existing pattern so that the energy consumption can
be further studied in the deployment problem.
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Appendix Multiple Log-Normal Interferers Consider
the sum of NI log-normal random variables

I ¼
XNI

k¼1
Xk ¼

XNI

k¼1
10XkðdBmÞ=10 ð11Þ

where the XkðdBmÞ areGaussian random variables with
mean lXkðdBmÞ

and variance r2
Xk
, and the Xk ¼

10XkðdBmÞ=10 are the log-normal random variables.
Unfortunately, there is no known closed form expres-
sion for the probability density function (pdf) of the
sum of multiple ( NI � 2) log-normal random vari-
ables. However, there is a general consensus that the
sum of independent log-normal random variables can
be approximated by another log-normal random
variablewithappropriately chosenparameters.That is,

I ¼
XNI

k¼1
10XkðdBmÞ=10 � 10ZðdBmÞ=10 ¼ Î ð12Þ

where ZðdBmÞ is a Gaussian random variable with
mean lZðdBmÞ and variance r2

Z. The problem is to
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Fig. 14. Outage probability vs. number of sensors (Rc = 100 m).
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determine lZðdBmÞ and variance r2
Z in terms of the

lXkðdBmÞ
and variance r2

Xk
, k ¼ 1; . . . ;NI. Several

methods have been suggested in the literature to solve
this problem including those by Fenton, Schwartz
and Yen, and Farley. Each of these methods provides
varying degrees of accuracy over specified ranges of
the shadow standard deviation rX, the sum I, and the
number of interferes NI.

Fenton–Wilkinson Method With the Fenton–Wilkin-
son method, the mean lZðdBmÞ and variance r2

Z of
ZðdBmÞ are obtained by matching the first two
moments of the sum I with the first two moments
of the approximation Î. To derive the appropriate
moments, it is convenient to use natural logarithms.
We write

Xk ¼ 10XkðdBmÞ=10 ¼ e�XkðdBmÞ ¼ eX̂k ð13Þ

where � ¼ ðln 10Þ=10 ¼ 0:23026 and X̂k ¼ �XkðdBmÞ.
Note that lX̂k

¼ �lXkðdBmÞ
and r2

X̂k
¼ �2r2

Xk
. The nth

moment of the log-normal random variable Xk can
be obtained from the moment generating function of
the Gaussian random variables X̂k as

E½Xn
k� ¼ E½enX̂k � ¼ e

nlX̂k
þð1=2Þn2r2

X̂k ð14Þ

To find the appropriate moments for the log-normal
approximation we can use (14) and equate the first
two moments on both sides of the equation

I ¼
XNI

k¼1
eX̂k � eẐ ¼ Î ð15Þ

where Ẑ ¼ �ZðdBmÞ. For example, suppose that X̂k,
k ¼ 1; . . . ;NI have mean lX̂k

, k ¼ 1; . . .NI and
identical variances r2

X̂
. Identical variances are often

assumed because the standard deviation of log-
normal shadowing is largely independent of the
radio path length. Equating the means on both
sides of (15)

lI ¼ E½I� ¼
XNI

k¼1
E½eX̂k � ¼ E½eẐ� ¼ E½Î� ¼ lÎ ð16Þ

gives the result

XNI

k¼1
e
lX̂k

 !

e
ð1=2Þr2

X̂ ¼ elẐþð1=2Þr2

Ẑ ð17Þ

Likewise, we can equate the variances on both sides
of (15) under the assumption that the X̂k,
k ¼ 1; . . . ;NI are independent

r2
I ¼ E½I2� � l2

I ¼ E½Î2� ¼ r2
Î

ð18Þ

giving the result

XNI

k¼1
e
2lX̂k

 !

e
r2

X̂ðer2

X̂ � 1Þ ¼ e2lẐ er2

Ẑðer2

Ẑ � 1Þ ð19Þ

By squaring each side of (17) and dividing each side
of resulting equation by the respective side of (19) We
can solve for r2

Ẑ
in terms of the known values of lX̂k

,
k ¼ 1; . . . ;NI and r2

X̂
. Afterwards, lẐ can be

obtained from (17). This procedure yields the follow-
ing solution:

lẐ ¼
r2

X̂
� r2

Ẑ

2
þ ln

XNI

k¼1
e
lX̂k

 !

ð20Þ

r2
Ẑ
¼ ln ðer2

X̂ � 1Þ
PNI

k¼1 e
2lX̂k

ð
PNI

k¼1 e
lX̂k Þ2

þ 1

 !

ð21Þ

Finally, lZðdBmÞ ¼ ��1lẐ and r2
Z ¼ ��2r2

Ẑ
.

The accuracy of this log-normal approximation can
be measured in terms of how accurately the first two
moments of IðdBÞ ¼ 10 log10 I are estimated, and how
well the cumulative distribution function (cdf) of
IðdBÞ is described by a Gaussian cdf. In problems
relating to the co-channel interference outage in
cellular radio systems, we are usually interested in the
tails of both the complementary distribution function
(cdfc) FC

I ¼ PðI � xÞ and the cdf FIðxÞ ¼ 1� FC
I ¼

PðI<xÞ. In this case, we are interested in the accuracy
of the approximation

FIðxÞ � PðeẐ � xÞ ¼ Q
ln x� lẐ

rẐ

� �

ð22Þ

for large and small values of x. It will be shown later that
the Fenton–Wilkinson method can approximate the tails
of the cdf and cdfc functions with good accuracy.

REFERENCES

1. C. Y. Chong, and S. P Kumar, Sensor networks: evolution,
opportunities, and challenges, Proceedings of the IEEE, Vol.
91, No. 8, pp. 1247–1256, 2003.

2. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler and J.
Anderson, Wireless sensor networks for habitat monitoring,
Proceedings of the WSNA�02, Atlanta, Georgia, Sep 28, 2002.

3. E. Biagioni and G. Sasaki, Wireless sensor placement for
reliable and efficient data collection. Proc. Hawaii Int. Conf.
Syst. Sci., Jan., 2003.

172 Shu, Liang, and Gao



4. H. Qi, S. S. Iyengar, and K. Chakrabarty, Distributed sensor
fusion – a review of recent research, Journal of the Franklin
Institute, Vol. 338, pp. 655–668, 2001.

5. Y. Zhou, and K. Chakrabarty, Sensor deployment and target
localization based on virtual forces, IEEE Twenty-Second
Annual Joint Conference of the Computer and Communications
Societies, Vol. 2, pp. 1293–1303, 2003.

6. T. Wong, T. Tsuchiya, and T. Kikuno, A self-organizing
technique for sensor placement in wireless micro-sensor net-
works, 18th International Conference on Advanced Information
Networking and Applications, Vol. 1, pp. 78–83, AINA 2004.

7. S. Poduri, and G. S. Sukhatme, Constrained coverage for
mobile sensor networks, IEEE International Conference on
Robotics and Automation, Vol. 1, pp. 165–171, 2004.

8. P. Cheng, C. Chuah, and X. Liu, Energy-aware node place-
ment in wireless sensor networks, IEEE Global Telecommuni-
cations Conference, Vol. 5, pp. 3210–3214, 2004.

9. N. Heo, and P. K. Varshney, A distributed self spreading
algorithm for mobile wireless sensor networks, IEEE Interna-
tional Conference on Wireless Communications and Networking,
Vol. 3, pp. 1597–1602, New Orleans, LA 2003.

10. N. Heo, and P. K. Varshney, An intelligent deployment and
clustering algorithm for a distributed mobile sensor network,
IEEE International Conference on Systems, Man and Cyber-
netics, Vol. 5, pp. 4576–4581, 2003.

11. N. Heo, and P. K. Varshney, Energy-efficient deployment of
Intelligent Mobile sensor networks, IEEE Transactions on Sys-
tems, Man and Cybernetics, Part A, Vol. 35, No. 1, pp. 78–92,
2005.

12. J. M. Mendel, Fuzzy logic systems for engeneering: a tutorial.
Proceedings of the IEEE, Vol. 83, No. 3, pp. 345–377, 1995.

13. J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Sys-
tems,Prentice-Hall, Upper Saddle River, NJ, 2001.

14. T. J. Ross, Fuzzy Logic with Engineering Applica-
tions,McGraw-Hill International Editions, Singapore, 1997.

15. E. H. Mamdani, Applications of fuzzy logic to approximate
reasoning using linguistic systems, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Vol. 26, No. 12, pp. 1182–1191,
1977.

16. T. S. Rappaport, Wireless Communications: Principles and
Practice,Prentice-Hall, Upper Saddle River, NJ, 2001.

17. G. L. Stuber, Principles of Mobile Communication,Kluwer
Academic Publishers, Boston, 2001.

Haining Shu received the B.S.

degree in Electronics and

Information Systems from

Peking University, China in

1996 and M.S. degree in Elec-

trical Engineering from the

University of Texas at Dallas

in 2002. Prior to the master

program, she was a System

Engineer at Telecom Planning

and Research Institute in Beij-

ing, China. She is currently

working toward the Ph.D

degree in Electrical Engineer-

ing at the University of Texas

at Arlington. Her research

interests include fuzzy logic systems and applications, distributed

source coding, sensor networks and collaborative radar system.

Qilian Liang received the B.S.

degree from Wuhan Univer-

sity, China, in 1993, M.S.

degree from Beijing University

of Posts and Telecommunica-

tions in 1996, and Ph.D degree

from University of Southern

California (USC) in May 2000,

all in Electrical Engineer-

ing.Dr. Liang joined the fac-

ulty of the University of Texas

at Arlington in August 2002.

Prior to that he was a Member

of Technical Staff in Hughes

Network Systems Inc at San

Diego, California. His research

interests include Sensor net-

works (energy efficiency, cross layer design, optimal sensor

deployment, etc), wireless communications, wireless networks,

communication system and communication theory, signal process-

ing for communications, fuzzy logic systems and applications,

multimedia network traffic modeling and classification, collabora-

tive and distributed signal processing.

Dr. Liang has published more than 100 journal and conference

papers, 5 book chapters, and has 6 U.S. patents pending. He

received 2002 IEEE Transactions on Fuzzy Systems Outstanding

Paper Award, 2003 Office of Naval Research (ONR) Young

Investigator Award and 2005 UTA College of Engineering

Outstanding Young Faculty Award.

Jean Gao is an Assitant Pro-

fessor in the Computer Science

and Engineering Department

at University of Texas at

Arlington. She is the recipient

of prestigious CAREER

Award from National Science

Foundation. She received her

Ph.D. in electrical engineering

from Purdue University, and

her M.S. and B.S. in biomed-

ical engineering from Rose-

Hulman Institute of Technol-

ogy and Shanghai Medical

University, respectively. Her

research interests in computer

vision and pattern recognition

are object motion estimation, shape classification, multi-dimen-

sional multi-object tracking, and reconstruction.

173Distributed Sensor Networks Deployment



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


