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Abstract
In this paper, we employ some ansatz transformations to investigate various nonlinear waves
for a well-known model, the generalized reaction Duffing model, including lump soliton,
rogue waves, breather waves, Ma-breather, and Kuznetsov-Ma-breather. The standard Duff-
ing equation is expanded upon in the generalized Duffing model, which adds more terms
to take into consideration for more complex behaviors. The generalized reaction Duffing
model is useful in many domains, such as electrical engineering, biomechanics, climate
research, seismic research, chaos theory, and many more, due to its rich behavior and nonlin-
ear dynamic. Lump soliton is a robust, confined, self-reinforcing wave solution to non linear
partial differential equations. Breather waves are periodic, specific solutions in nonlinear
wave systems that preserve their amplitude and structure. Rogue waves, which pose a hazard
to marine safety, are unexpectedly strong and sharp ocean surface waves that diverge greatly
from the surroundingwave pattern. They frequently appear in solitary and apparently random
situations. The solutions are graphically displayed using contour, 3D, and 2D graphs.
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1 Introduction

A vast variety of scientific phenomena can be modeled, examined, and explained with the use
of nonlinear partial differential equations (NLPDEs). A lively area of research that is essential
for comprehending the applications of nonlinear partial differential equations (NLPDEs) in
practical settings is the investigation of exact solutions to these equations [1–4]. The role of
non-linearity in waves is extremely essential generally over nonlinear sciences; advancing
the study of exact solutions to PDEs has been top priority in recent years. Therefore, the
finding of accurate analytical solutions for NLPDEs remains one of the foremost topics of
popular interest. The majority of previous studies have focused on creating novel approaches
to existing techniques in order to generate fresh, exact analytical frameworks thatmay specify
challenging and intricate physical implementations. The majority of research has seemed to
be based on direct methods to determine exact analytical solutions for NLPDEs in the last
few years, regardless of whether this is due to the development of symbolic computational
programs that help us to perform laborious and complex calculations on computer systems.
Moreover, a number of potent, effective, and credible techniques have been developed to
find analytical solutions for travelling waves, such as exp-function technique [5, 6], there are
multiple techniques to observe the voltage in transmission line problems [7], the sine-cosine
approach [8, 9], the Lie symmetry analysis scheme [10, 11], the sine-Gordon expansion
technique [12, 13], tanh approach [14, 15], the modified Kudryashov method [16–18], the
extended hyperbolic function approach [19, 20], andmany others [21–25]. Zhao et al. studied
lump chain solutions of the (2 + 1)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili
(BKP) equation [26]. Recently, Zhao and He investigated an integrable (2+ 1)-dimensional
generalized KdV equation using Hirota’s bilinear method [27]. Recent developments in the
field of soliton dynamics extend across several scientific fields and technology domains.
In the field of optics, scientists are working to improve modulation strategies for soliton-
based communication networks to increase data speeds and improve signal integrity [28, 29].
Furthermore, the study of solitons in plasma physics has significance for comprehending
the dynamics of magnetized plasma and space weather [30]. Experiments in the field of
Bose-Einstein condensates (BECs) are providing important insights into soliton behavior
and explain phenomena such as quantum turbulence and superfluidity [31, 32].

In this research, lump soliton (LS), rogue waves (RWs), breather waves (BWs), Ma-
breather, and Kuznetsov-Ma-breather solutions of generalized reaction Duffing model
(gRDM) are found by using distinct types of ansatz transformations. The innovative aspect
of the research is the utilization of tailored ansatz transformations for the generalized reac-
tion Duffing model. A deeper investigation of the behaviors and dynamics of the system
is made possible by these customized transformations, which allow the study to examine
particular wave phenomena that are exclusive to this model. The transformations employed
in the article for studying nonlinear waves in the generalized reaction Duffing model present
several challenges and areas for improvement when compared to the methods discussed in
the reference. One significant challenge is the complexity of the ansatz transformations used
in the paper, which can require complex computations and careful parameter selection. Lump
waves (LWs) have been observed in many domains as superior nonlinear wave occurrences.
LWs are considered to be a particular type of soliton that propagate with more energy than
regular solitons. As a result, LWs have the potential to be disastrous in some systems, such as
the financial and oceanic domains. Finding and anticipating LWs in real-world applications
is crucial. In a variety of disciplines, including as solid-state physics, quantum mechanics,
and electromagnetic, the lump soliton solutions are useful for the mathematical description
of wave phenomena. These solutions appear as localized energy concentrations in the wave,
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and are solutions to specific NLEEs. They shed light on the stability of plasma in fusion
experiments as well as the structure of plasma waves. In order to more fully comprehend
extreme wave events and their effects on the ecosystem, the RWs are investigated. Early
warning mechanisms and maritime operations readiness are aided by this modeling. Design-
ing coastal infrastructure, such as wind turbines and oil rigs, to withstand the impact of rogue
waves requires an understanding of these waves. The investigation of breathers advances
knowledge of nonlinear wave dynamics in general. They provide information about the
behavior of waves in the presence of nonlinear influences. They are fundamental to the the-
ory of soliton, which is applied in domains such as water waves and optical fibers. The
behavior of some materials, especially those having nonlinear features, can be modeled and
studied using the BWs in material science. There is a wide variety of NLPDEs that are
specifically designed to explain various physical phenomena. There are two forms of freak
waves in nonlinear media, the Ma-breathers and the Kuznetsov-Ma (KM) breathers [33, 34].
The Ma-breather is a localized, explicit periodic solution. For instance, Ma-breathers are
present in the generalized Boussinesq equation. KM breather, also known as KM soliton,
was discovered for the first time in the 1970. KM breather, often referred to as “temporal
periodic breather” [35], is localized in space and periodic in temporal variable. It does not
exhibit a traveling wave. In this manuscript, some ansatz transformations will be applied to
obtain the multiple soliton such as, rogue waves, lump soliton, breather waves, Ma-breather,
and Kuznetsov-Ma-breather solutions of the generalized reaction Duffing model (gRDM) of
the form

wt t + awxx + bw + cw2 + dw3 = 0, (1)

where a, b, c, and d are all constants. The wave profile is represented by w, and the spatial
and temporal coordinates are depicted by the independent variables x and t . The behavior
of specific dynamic systems can be described mathematically by the generalized reaction-
Duffingmodel,which is utilized in nonlinear dynamics and employed in physics, engineering,
and biology. Researchers are interested in this model because it can display a broad range of
complicated behaviors, and it is a generalization of several well-known physics equations.
TheDuffing equation has its origins in thework ofGermanmathematician and engineerGeorg
Duffing,who developed the idea of theDuffing oscillator in the early 20th century. Themotion
of a damped driven oscillator is described by the second-order nonlinear differential equation
known as theDuffing oscillator. Based on the basic Duffing equation, the generalized reaction
Duffing model has additional nonlinear features and reaction-diffusion components. A more
thorough investigation of nonlinear dynamics and wave propagation in physical systems
is made possible by this expansion. The gRDM has been studied by researchers to find
novel periodic solutions, shock waves, solitary waves, and other intriguing characteristics.
The analysis of this model has shed light on the interactions between solitary waves, the
dynamics of nonlinear systems, and the impact of various coefficients on wave propagation.
The rest of the paper is organized as follows: In Section 2, the lump soliton solution will
be obtained. In Section 3, rogue waves solution will be obtained. In Section 4, the breather
waves solution will be studied. In Section 5, types of breather waves will be provided. In
Section 6, we will discuss our results. The conclusion will be provided in Section 7.

2 Lump Soliton Solution

In this section, we will find the lump soliton solutions of proposed model. Among the several
exact solutions, lump solutions are a type of rational function solution to nonlinear partial

123



  234 Page 4 of 15 International Journal of Theoretical Physics           (2024) 63:234 

differential equations (NLPDEs) that are localized in all directions in the space. The lump
soliton solution can be found by applying the following transformation:

w = 2(ln f )xx . (2)

The lump soliton solution of (1) can be found using (2), which will yield the bilinear form
of the equation.

−2b f 4 f 2x −12 f 2 f 2t f 2x +4 f 3 ftt f
2
x −12a f 2 f 4x +4c f 2 f 4x −8d f 6x +16 f 3 ft fx fxt −4 f 4 f 2xt −4 f 4 fx fxtt

+2b f 5 fxx +4 f 3 f 2t fxx −2 f 4 ftt fxx +24a f 3 f 2x fxx −8c f 3 f 2x fxx +24d f f 4x fxx −6a f 4 f 2xx +4c f 4 f 2xx−
24d f 2 f 2x f 2xx + 8d f 3 f 3xx − 4 f 4 ft fxxt + 2 f 5 fxxtt − 8a f 4 fx fxxx + 2a f 5 fxxxx . (3)

Now, using the function ζ1, ζ2 and f given as [36]:

⎧
⎪⎨

⎪⎩

f = ζ 2
1 + ζ 2

2 + a7,

ζ1 = a1x + a2t + a3,

ζ2 = a4x + a5t + a6.

(4)

where 1 ≤ ai ≤ 7, are the real parameters to be found. After replacing f into (3), we are
able to derive the subsequent sets of parameters by eliminating the coefficients of x and t .

When a1 = a6 = 0, we obtain the following solutions:

a2 = a2, a3 = 2

3

√

15a − 2c + √
225a2 − 60ac − 18bd + 4c2

b
, a4 = a4, a5 = 0,

a7 = −10

9

15a − 2c + √
225a2 − 60ac − 18bd + 4c2

b
a24 .

By using the above values in (2), we get

w = 2
(ζ 2

1 + ζ 2
2 + a7)(2a24) − (2a24x)

2

(ζ 2
1 + ζ 2

2 + a7)
2 , (5)

where

ζ1 = 2

3
a4

√

15a − 2c + √
225a2 − 60ac + 4c2 − 18bd

b
+a2t, ζ2 = a4x, 225a

2 −60ac−18bd+4c2 > 0.

Here, a few graphical representations of the above solution are examined.

3 RogueWaves Solution

Rogue waves, sometimes referred to as freak, monster, or killer waves, are unusually huge,
erratic, and abruptly arising surface waves that pose a serious risk to ships, including
large ones. They are frequently nearly undetectable in deep waters and are brought on by
the displacement of water as a result of other occurrences, such as earthquakes. Due to
their unpredictable nature and powerful impact, they might appear suddenly. The following
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transformation will be used for rogue wave solution:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x, t) = ζ 2
1 + ζ 2

2 + m1 cosh(α(x, t)) + a7,

ζ1 = a1x + a2t + a3,

ζ2 = a4x + a5t + a6,

α(x, t) = b1x + b2t,

(6)

where 1 ≤ ai ≤ 7, b1, b2, and m1 are real parameters to be determined. Inserting (6) into (3)
will provide the specific equations that yield parameter values.

When a1 = b2 = a6 = 0, we obtain the following solutions:

a2 = a2, a3 = a3, a4 =
√

3

4c − 21a
, a5 = a5, a7 = a7, b1 =

√

−b

a
,m1 = m1.

By substituting the above values in (2), yields

w = 2
�κ1 − κ2

�2 , (7)

where
f (x, t) = � = ζ 2

1 + ζ 2
2 + m1 cosh(α(x, t)) + a7,

κ1 = 6a52

4c − 21a
−

bm1 cosh

(

b2t +
√

− b
a x

)

a
,

κ2=
(

2
√
3a5

√
1

4c − 21a

(

a5t+
√
3a5

√
1

4c − 21a
x

)

+
√

− b

a
m1 sinh

(

b2t +
√

− b

a
x

))2

, ζ1 = a3 + a2t,

ζ2 = a5t + √
3a5

√
1

4c − 21a
x, α(x, t) =

√

− b

a
x, 4c − 21a > 0, ab < 0.

Here, a few graphical representations of the above solution are examined.

4 Breather Waves Solution

This section will provide the breather wave (BW) solution for (1). Breathers are nonlinear
waves characterized by localized, oscillating energy concentrations. Breathers are solitonic
structures. A breather soliton can be found in several natural scientific subfields, includ-
ing solid-state physics, chemistry, plasma physics, fluid dynamics, nonlinear optics, and
molecular biology. The following transformation will be applied for breather wave solu-
tions:

⎧
⎪⎨

⎪⎩

f (x, t) = m1eqζ1(x,t) + e−qζ1(x,t) + m2 cos(q1ζ2(x, t)) + a6,

ζ1 = a1x + a2t + a3,

ζ2 = a4x + a5t,

(8)

where m1,m2, and ai are real parameters to be determined. By inserting (8) into (3), some
equations that yield coefficient values are found.

When a2 = a6 = 0, the subsequent solutions are obtained:

a1 =

√

− 1
4

− 1
5

−6ac+5bd+2
√

−60a2bd+9a2c2
d

a + b

q
, a3 = a3, a4 =

√

− 1
4

− 1
5

−6ac+5bd+2
√

−60a2bd+9a2c2
d

a − b

q1
,
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a5 =
√

−6ac+5bd+2
√−60a2bd+9a2c2
d√
5q1

,m1 = 0,m2 = m2.

By inserting the above values in (2), we get

w = 2
�κ1 − κ2

�2 , (9)

where
� = f (x, t) = m1e

qζ1(x,t) + e−qζ1(x,t) + m2 cos(q1ζ2(x, t)) + a6,

κ1 = (b + λ) e
−q

(
a3+

√
b+λx
q

)

− (−b + λ)m2 cos

⎛

⎝q1

⎛

⎝

√
−6ac+5bd+2

√
9a2c2−60a2bd
d t√
5q1

+
√−b + λx

q1

⎞

⎠

⎞

⎠ ,

κ2 =
⎛

⎝−√
b + λe

−q
(
a3+

√
b+λx
q

)

− √−b + λm2 sin

⎛

⎝q1

⎛

⎝

√
−6ac+5bd+2

√
9a2c2−60a2bd
d t√
5q1

+
√−b + λx

q1

⎞

⎠

⎞

⎠

⎞

⎠

2

,

λ = −6ac + 5bd + 2
√
9a2c2 − 60a2bd

20ad
,−60a2bd + 9a2c2 > 0.

Here, a few graphical representations of the above solution are examined.

5 Types of Breather

In this section Ma-Breathers and Kuznetsov-Ma-Breathers solutions for (1) are discussed.

5.1 Ma-breather

The Ma-breather is a localized, explicit periodic solution. For instance, Ma-breathers are
present in the generalized Boussinesq equation. The following transformation will be used
for Ma-Breather:

f (x, t) = e−i(p1x)ek1t+k2 + m1e
2(k1t+k2) + ei(p1x) + a1, (10)

where a1, p1, k1, k2, and m1 are real parameters. By inserting (10) into (3), some equations
are obtained to determine coefficient values. The subsequent solutions are then derived:

a1 = a1, b = −38

69
dp41 − 15

23
ap21 + 50

69
cp21, k1 =

√
8

69
dp21 + 8

23
a + 4

69
c,

m1 = 2(−14dp21 + 27a − 30c)

(28dp21 + 15a − 9c)a31
, p1 = p1, k2 = k2.

By substituting the above values in (2), we get

w = 2
�κ1 − κ2

�2 , (11)

where

� = f (x, t) = e−i(p1x)ek1t+k2 + m1e
2(k1t+k2) + ei(p1x) + a1,
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κ1 = −eip1x p21 − ek2+p1

√

8a
23 + 4c

69+ 8dp21
69 t−ip1x p21,

κ2 =
⎛

⎝ieip1x p1 − iek2+p1

√

8a
23 + 4c

69+ 8dp21
69 t−ip1x p1

⎞

⎠

2

,
8

69
dp21 + 8

23
a + 4

69
c.

Here, a few graphical representations of the above solution are examined.

5.2 Kuznetsov-Ma-breather

The Kuznetsov-Ma breather is an explicit time-periodic solution. For instance, Kuznetsov-
Ma breathers are present in the fully integrable Ablowitz-Ladik (AL) model. The following
transformation will be used for Kuznetsov-Ma-Breather:

f (x, t) = e−p1(x−b1t) + a1 cos (p (x + b1t)) + a2 cos (p (x − b1t)) , (12)

where a1, p1, p, a2, and b1 are real parameters. Certain equations that yield coefficient values
can be acquired by inserting (12) into (3). The subsequent solutions are obtained:

a1 = a1, a2 = 0, p =
√
b

2
, b > 0, p1 =

√−b

2
, b1 = −6

√−b, b < 0.

By substituting the above values in (2), we get

w = 2
�κ1 − κ2

�2 , (13)

where

� = f (x, t) = e−p1(x−b1t) + a1 cos (p (x + b1t)) + a2 cos (p (x − b1t)) ,

κ1 = −1

4
be− 1

2

√−b
(
6
√−bt+x

)

− 1

4
a1b cos

(
1

2

√
b

(
−6

√−bt + x
))

,

κ2 =
(

−1

2

√−be− 1
2

√−b
(
6
√−bt+x

)

− 1

2
a1

√
b sin

(
1

2

√
b

(
−6

√−bt + x
)))2

.

Here, a few graphical representations of the above solution are examined.

6 Result and Discussion

The generalized reaction Duffing model has been extensively studied.The functional vari-
able approach was developed by Attaf et al. [37, 38] to provide analytical solutions for an
extensive variety of linear and nonlinear wave equations.Numerous authors improved this
technique [39, 40].Aminikhah et al. studied gRDM to acquire the exact solutions using func-
tional variable approach [41].Tian and Gao [42] studied gRDM to obtain soliton solutions
by using generalized hyperbolic-function approach.In this research, we studied generalized
reaction Duffing model for lump soliton, rogue waves, breather waves, Ma-breather, and
Kuznetsov-Ma-breather by using some distinct ansatz transformations.In the generalized
reaction Duffing model, the derived results provide significant insights into the behavior of
nonlinear waves.
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Fig. 1 The visual depiction of w(x, t) for (5) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
a4 = −0.5, a2 = 0.5, a = −0.5, b = 0.5, c = 0.5, d = 5

Fig. 2 The visual depiction of w(x, t) for (5) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
a4 = 0.5, a2 = −0.5, a = 0.7, b = 5.5, c = −0.5, d = 20.5

Fig. 3 The visual depiction of w(x, t) for (5) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
a4 = 0.5, a2 = 0.5, a = −0.7, b = −0.5, c = 6.5, d = 10.5
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Fig. 4 The visual depiction of w(x, t) for (7) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
a5 = 0.9, a7 = −0.5, m1 = 5.25, b2 = −0.7, c = −2.5, a = −0.05, a2 = −1.5, a3 = 5.5, b = 0.3

Fig. 5 The visual depiction of w(x, t) for (7) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
a5 = −0.9, a7 = 0.5, m1 = 3.25, b2 = −0.7, c = −2.5, a = −0.05, a2 = 1.5, a3 = −1.5, b = 0.3

Fig. 6 The visual depiction of w(x, t) for (7) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
a5 = −0.9, a7 = 0.5, m1 = 5.25, b2 = 0.7, c = −0.5, a = −0.05, a2 = −1.5, a3 = −5.5, b = 0.5
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Fig. 7 The visual depiction of w(x, t) for (9) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
q = 0.5, b = −0.09, m2 = −0.5, q1 = −1.5, a3 = −0.5, a = 0.5, c = −0.5, d = 10

Fig. 8 The visual depiction of w(x, t) for (9) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
q = 0.05, b = −0.1, m2 = 0.05, q1 = 1.5, a3 = 0.5, a = −0.5, c = 0.5, d = 10

Fig. 9 The visual depiction of w(x, t) for (9) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
q = 0.5, b = −0.09, m2 = 0.05, q1 = −0.5, a3 = 0.5, a = −0.5, c = 0.5, d = 10
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Fig. 10 The visual depiction ofw(x, t) for (11) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
p1 = 0.7, k2 = 1.5, a = 4, c = 0.5, d = 10, a1 = 1

Fig. 11 The visual depiction ofw(x, t) for (11) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
p1 = −0.5, k2 = −0.5, a = −4, c = −0.5, d = 10, a1 = 1

Fig. 12 The visual depiction of w(x, t) for (11) is given.(a) 3D profile (b) contour profile (c) 2D profile, when
p1 = 0.5, k2 = 0.5, a = −4, c = 0.5, d = 10, a1 = 1
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Fig. 13 The visual depiction ofw(x, t) for (13) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
b = 0.5, a1 = −10.5

Developing an understanding of the interaction and propagation of these waves can
enhance our comprehension of complex wave dynamics.

The found solutions, including breather waves, rogue waves, and lump solitons, have real-
world applications in a variety of disciplines, includingmaterial science, quantummechanics,
solid-state physics, and electromagnetic studies. These solutions can be used to represent
nonlinear wave dynamics and describe localized energy concentrations in waves. In Figs. 1,
2, and 3, the lump soliton solutions of w are obtained. Figure 1(a) depicts 3D profile of w

that illustrates bright face of lump solution. Figure 2(a) depicts 3D profile ofw that illustrates
two bright faces of lump solution. Figure 3(a) depicts 3D profile ofw that illustrates one dark
and one bright face of solution. In Fig. 1(b) depicts contour profile of w. Figure 1(c) depicts
2D profile of w. Figures 2 and 3 also describe the same properties of w.

In Fig. 4, (a) depicts the appearance of some non-periodic waves, Fig. 5(a) depicts the
appearance of a large, bright lump wave. Fig. 6 (a) shows bright and dark faces of rogue
wave solution. In Figs. 4, 5 and 6(b) depicts contour profile and (c) depicts 2D profile of w.
In Figs. 7, 8, 9, 10, 11 and 12(a) shows several bright and dark solitons as well as a periodic
wave, (b) depicts contour profile and (c) depicts 2D profile of w. In Fig. 13, (a) depicts 3D
profile of w which describes 2 bright faces of solution. Figure 13(b) depicts contour profile
and (c) depicts 2D profile of w. In Fig. 14, (a) depicts 3D profile of w which also describes
2 bright faces of solution. Figure 14(b) depicts contour profile and (c) depicts 2D profile of

Fig. 14 The visual depiction ofw(x, t) for (13) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
b = 0.7, a1 = 15.5
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Fig. 15 The visual depiction ofw(x, t) for (13) is given. (a) 3D profile (b) contour profile (c) 2D profile, when
b = 0.5, a1 = −2.5

w. In Fig. 15, (a) depicts 3D profile of w which describes 2 bright and one dark faces of
solution. Figure 15(b) depicts contour profile and (c) depicts 2D profile of w.

7 Conclusions

In this paper, we applied some ansatz transformations to the generalized reaction Duffing
model in order to derive the innovative soliton solutions such as lump soliton, rogue waves,
breather waves,Ma-breather and Kuznetsov-Ma-breather. In non linear evaluation equations,
the lump soliton is a form of solitary wave solution. Rogue wave represents for rare and
exceptionally large solutions to non linear waves equations in mathematics. These waves
have attracted a lot of attention because of their severe and erratic in nature. By customizing
the ansatz transformations to the characteristics of this specific dynamical system, the research
uncovers the complex nonlinear behaviors and dynamics that may not be easily observable
using standard methods. By selecting appropriate parameter values, specific findings are
displayed in 2D, 3D, and contour profiles to illustrate the physical behavior of solutions.
Finally, in the results and discussion section, we present the geometry of our solutions.
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