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Abstract
Nonlinear electrodynamics has been frequently employed in the study of black holes. Some
of these black holes may be regular, while others are singular. In this work, we consider
a nonlinear electrodynamics model known as inverse electrodynamics to obtain black hole
solutions. We demonstrate that, in addition to these solutions not being regular, they are also
not asymptotically flat. We investigate which energy conditions are violated in the presence
of this type of source. Furthermore, we calculate thermodynamic quantities and find that
there are two phases, with one of them being thermodynamically stable. Finally, we derive
the geodesics for massive and massless particles in this spacetime. For the massive case, we
observe that there are no bound orbits.
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1 Introduction

With recent measurements of gravitational waves and images of black holes , these astro-
physical objects are gaining relevance [1, 2]. Black holes arise as predictions of general
relativity through Einstein equations [3] and they stand out due to their causal structure [4].
The boundary around a black hole from which nothing can escape is called the event hori-
zon. The mass of an astrophysical black hole can vary from a few solar masses to over a
billion solar masses [1, 2]. The black hole mass influences the size of its event horizon; the
more massive the black hole, the larger the event horizon . The gravitational field of these
objects makes them ideal for testing the nonlinearities of gravitational theory and exploring
alternative theories of gravity [6].

An alternative to classical black holes is known as regular black holes [7]. Unlike typ-
ical black holes, regular black holes lack a singularity at their core [8], which is the point
where geodesics are interrupted [9]. Instead, regular black holes possess a finite curvature of
spacetime within their cores, avoiding divergences [10].
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Regular black holes offer a potential solution to some of the problems associated with
classical black holes, such as the information paradox. The first regular black hole metric was
proposed by Bardeen in 1968 [11]. This metric can be interpreted as a solution to Einstein
equations when gravity theory is coupled with nonlinear electrodynamics. The source of this
electrodynamics can be either an electric or a magnetic charge [12, 13]. Bardeen’s solution
initiated the study of regular solutions, which has expanded over time, encompassing several
static solutions [14–20], rotating solutions [21–28], and solutions in alternative theories of
gravity [29–34]. Additionally, researchers have explored several properties of these black
holes [35–42]. While most regular solutions involve an electric or magnetic charge as the
source, there are also nonsingular solutions that rely on a scalar field [43, 44], or a combination
of these sources [45–50]. In the context of modified theories of gravity, in some cases it
becomes complicated to obtain the proper sources, and thus it becomes simpler to consider
an anisotropic fluid as the source [51–53].

In addition to generating regular solutions in the context of black holes, nonlinear electro-
dynamics brings changes in the study of the properties of these solutions. An example of this
is in the study of the thermodynamics of black holes [54–60]. To maintain entropy’s relation
to the black hole area, nonlinear electrodynamics alters the first law of thermodynamics. It is
possible to use nonlinear electrodynamics to create solutions with several horizons [61, 62].
In the context of nonlinear electromagnetic theory, photons deviate from geodesic paths [8,
63], modifying the black holes shadows [64–66]. Although regular spacetimes are the main
focus of the application of nonlinear electrodynamics in the context of black holes, not all
spacetimes that arise from nonlinear electrodynamics will be regular [61, 67, 68].

The origin of nonlinear electrodynamics is linked to phenomena of quantum electrody-
namics, such as photon-photon scattering [69, 70]. One of themost famousmodels of this type
of theory is the Euler-Heisenberg electrodynamics [71]. Through the effective Lagrangian,
this electrodynamics treats the photon-photon scattering through the interaction with virtual
electron-positrons. Another model that predicts this interaction between photons is the Born-
Infield electrodynamics [72], which arises in a context of regularizing some divergences that
appear in Maxwell electromagnetism. The photon-photon scattering has been tested in high-
energy Pb-Pb collisions at the Large Hadron Collider (LHC) [73]. In a Pb-Pb collision, the
lead ions are highly charged and produce a strong electromagnetic field, which can generate
virtual photons. When two virtual photons collide, they can create a real photon, which can
be detected by the detectors at the LHC.

Nonlinear electrodynamics is associated with intriguing phenomena such as vacuum bire-
fringence [74, 75]. Birefringence refers to the phenomenon where a material has different
refractive indices for other polarization states of light [76]. In a vacuum where there are no
material properties to affect the propagation of light, there is no birefringence. However, in
the presence of a strong electromagnetic field, the vacuum itself can exhibit birefringence
due to quantum effects [74]. This phenomenon is known as vacuum birefringence or vacuum
polarization. The Euler-Heisenberg model presents birefringence in vacuum, while the Born-
Infield electrodynamics has no birefringence. There are several models of electrodynamics
that allow the existence of birefringence in vacuum. One of these models is the inverse elec-
trodynamics [77]. This model is attractive since the birefringence appears even though the
electromagnetic Lagrangian depends only on the electromagnetic scalar. Since this electro-
dynamics is already prominent in the context of electromagnetic theory, we want to explore
what contributions it might generate in the context of black holes.

The structure of this article is organized as follows: In Sec. 2, we use the suggested elec-
trodynamics model to check if it is possible to obtain black hole solutions with it. We also
analyze the regularity of these solutions and which energy conditions can be violated. In
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Sec. 3, we calculate some thermodynamic quantities, such as the temperature and the heat
capacity, to verify the thermodynamic stability of this solution. Section 4 is dedicated to
studying massive and massless geodesics in this spacetime. Section 5 presents our conclu-
sions and future perspectives. We adopt the metric signature (+,−,−,−). We shall work in
geometrodynamics units where G = � = c = 1.

2 Spacetime, Energy Conditions, and Curvature Singularities

Let’s consider the theory described by the action

S =
∫

d4x
√−g

[
R + 2κ2L(F)

]
, (1)

where κ = 8π , R is the curvature scalar, g is the determinant of the metric tensor, gμν , and
L(F) is a general function of the electromagnetic scalar F = FμνFμν/4, with Fμν being
the electromagnetic tensor.

The field equations are given by [4]

Rμν − 1

2
gμνR = κ2Tμν, (2)

where

Tμν = 1

4π

[
gμνL(F) − LF (F)Fμ

αFνα

]
, (3)

with LF = dL(F)/dL .
If we consider a spherically symmetric spacetime, describes by the line element

ds2 = f (r)dt2 − f −1(r)dr2 − r2
(
dθ2 + sin2 θdφ2) , (4)

and considering that the source is only magnetically charged, the only nonzero component
of the electromagnetic tensor is F23 = q sin θ .

The components of the field equations are

− r
(
f ′(r) + 2r L(F)

) + f (r) − 1

r2
= 0, (5)

− f ′(r)
r

− f ′′(r)
2

− 2L(F) + 2q2LF (r)

r4
= 0. (6)

Once you have the equations of motion, there are two possible paths; impose the metric and
obtain the matter content that generates it, or define the matter content and thus solve the
equations of motion to obtain the line element.

The Lagrangian that describes the inverse electrodynamics is given by [77]

L(F) = F

[
1 + λ

(
	4

2F

)2δ
]

. (7)

The Maxwell theory is recovered to λ = 0 or 	 = 0. The parameter λ is dimensionless, 	
has the unit of m−1/2, where m is the black hole mass, and δ is just a positive number. Using
(7), we find

LF (F) = 1 − 4−δ(2δ − 1)λ

(
	4

F

)2δ

. (8)
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Fig. 1 Behavior of the function f (r) with q = 0.4m. In (a) we fixed λ = 0.2, and m2	4 = 0.002. In (b) we
fixed δ = 1, and m2	4 = 0.002. In (c) we fixed δ = 1, and λ = 0.2

Once we have a magnetic source, the scalar F is given by

F(r) = q2

2r4
. (9)

Using (7), (8), and (9), we solve the field equation and we find

f (r) = 1 − 2m

r
+ q2

r2
+ λq2

(1 − 8δ)r2

(
	4r4

q2

)2δ

. (10)

This solution is not asymptotically flat to λ �= 0, 	 �= 0, and δ �= 0. If λ = 0 or 	 = 0, the
Reissner-Nordstrom solution is recover. In Fig. 1 we see how the function f (r) behaves in
terms of the radial coordinate. There are three horizons; a Cauchy horizon, an event horizon
and a type of cosmological horizon.

2.1 Curvature Singularities

In order to verify the existence of curvature singularities, we need to analyze the curvature
invariants, that are given by

R = 2
(
2r f ′(r) + f (r) − 1

)
r2

+ f ′′(r), (11)

K = Rμναβ Rμναβ = 4
(
r2 f ′(r)2 + ( f (r) − 1)2

)
r4

+ f ′′(r)2, (12)
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where K is the Kretschmann scalar.
If we calculate the curvature scalar we get

R = −8δλ	4
(

	4r4

q2

)2δ−1

. (13)

If we choose δ = 1/2, the curvature scalar will be constant and we have a de Sitter type
spacetime. In this specific case, the inverse electrodynamics acts like a cosmological constant
that permeates the entire spacetime. To δ > 1/2, there is a curvature singularity at r →
∞. Although spatial infinity is singular, this point is located beyond the cosmological-type
horizon. From the curvature scalar we do not find singularities at r = 0. However, to verify
the existence of curvature singularities, theKretschmann scalar can providemore information
about the singularities than the curvature scalar [78]. In general, the Kretschmann scalar is
not so clear. So that, if we consider the simplest cases, we find

K = −272λ	8

7
+ 48m2

r6
− 96mq2

r7
+ 160λ	8mr

7q2
+ 1048λ2	16r8

49q4
+ 56q4

r8
, if δ = 1,

(14)

K = 48m2

r6
+ 416λ	16mr9

5q6
− 96mq2

r7
+ 3768λ2	32r24

25q12
− 656λ	16r8

5q4
+ 56q4

r8
, if δ = 2,

(15)

K = 48m2

r6
+ 3360λ	24mr17

23q10
− 96mq2

r7
+ 215384λ2	48r40

529q20
− 5200λ	24r16

23q8
+ 56q4

r8
, if δ=3,

(16)

K = 48m2

r6
+ 6496λ	32mr25

31q14
− 96mq2

r7
+ 760504λ2	64r56

961q28
− 9968λ	32r24

31q12
+ 56q4

r8
, if δ=4.

(17)

This result implies in a curvature singularity at r = 0. This means that nonlinear electro-
dynamics will not always generate a regular solution.

2.2 Energy Conditions

Black hole solutions involving nonlinear electrodynamics usually violate the energy condi-
tions associated with the stress-energy tensor. In order to analyze the energy conditions, we
consider the matter sector, which is electromagnetic, written as an anisotropic fluid

Tμ
ν = diag [ρ,−pr ,−pt ,−pt ] , (18)

where ρ, pr , and pt are the energy density, radial pressure, and tangential pressure, respec-
tively. The fluid quantities are given by

ρ = −r f ′ + f − 1

κ2r2
, pr = r f ′ + f − 1

κ2r2
, pt = r f ′′ + 2 f ′

2κ2r
. (19)

The classical energy conditions are the null (NEC), weak (WEC), dominant (DEC), and
strong (SEC) energy conditions, and are given by the inequalities [79]

NEC1,2 = WEC1,2 = SEC1,2 ⇐⇒ ρ + pr ,t ≥ 0, (20)

SEC3 ⇐⇒ ρ + pr + 2pt ≥ 0, (21)
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DEC1,2 ⇐⇒ ρ − |pr ,t | ≥ 0 ⇐⇒ (ρ + pr ,t ≥ 0) and (ρ − pr ,t ≥ 0), (22)

DEC3 = WEC3 ⇐⇒ ρ ≥ 0, (23)

As DEC1,2 ⇐⇒ ((NEC1,2) and (ρ − pr ,t ≥ 0)) we assume part of the DEC into the
NEC and simply replace DEC1,2 
⇒ ρ − pr ,t ≥ 0.

Using (19), we have

NEC1⇐⇒0, NEC2 ⇐⇒ r2 f ′′ − 2 f + 2

2κ2r2
≥0, SEC3⇐⇒ r f ′′ + 2 f ′

κ2r
≥0, (24)

DEC1
⇒ 2
(
1− f ′r− f

)
κ2r2

≥ 0, DEC2 
⇒− r2 f ′′+ r
(
4 f ′)+ 2 f − 2

2κ2r2
≥0, WEC3⇐⇒− r f ′+ f − 1

κ2r2
≥0.

(25)

We see that NEC1 is identically satisfied and DEC1 = 2DEC3 = 2WEC3. It means
that we only need to analyze NEC2, SEC3, DEC2, and WEC3. Substituting (10) in the
energy conditions, we find

NEC2 ⇐⇒ − 2q2

κ2r4

(
(2δ − 1)λ

(
	4r4

q2

)2δ

− 1

)
≥ 0, (26)

SEC3 ⇐⇒ − 2q2

κ2r4

(
(4δ − 1)λ

(
	4r4

q2

)2δ

− 1

)
≥ 0, (27)

DEC2 
⇒ −4δλ	4

κ2

(
	4r4

q2

)2δ−1

≥ 0, (28)

WEC3 ⇐⇒ q2

κ2r4

(
λ

(
	4r4

q2

)2δ

+ 1

)
≥ 0. (29)

The only value δ at which all energy conditions will be satisfied is for δ = 0. The energy
density, ρ = WEC3, is always positive while the condition DEC2 is always violated. If

r >
√|q|

	((4δ−1)λ)
1
8δ
, the strong energy condition is violated. If r >

√|q|
	((2δ−1)λ)

1
8δ
, the null

energy condition is violated.

3 Thermodynamics

Studying the thermodynamics of a black hole, we can find information about its stability.
The first step in this process is to calculate the temperature of the black hole, which is given
by [80]

T = k

2π
= f ′(r)

4π

∣∣∣∣
r+

=
r2+ − q2

(
λ

(
	4r4+
q2

)2δ

+ 1

)

4πr3+
, (30)

where k is the surface gravity and r+ is the radius of the event horizon. For λ = 0, we recover
the temperature of the Reissner-Nordstrom case, and if q = 0, we recover the Schwarzschild
case. In Fig. 2, we analyze the behavior of the temperature as a function of the event horizon
radius. To ensure the temperature remains positive, there must be amaximum and aminimum
value for the event horizon radius. This type of behavior is already known from solutions
such as the Reissner-Nordstrom-de Sitter solution.
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Fig. 2 Behavior of the temperature with q = 0.4m. In (a) we fixed λ = 0.2 and m2	4 = 0.002. In (b) we
fixed δ = 1 and m2	4 = 0.002. In (c) we fixed δ = 1 and λ = 0.2

We can extract information about the thermodynamic instability of this solution through
the heat capacity, given by [57]

C = Tk
∂S

∂Tk
= −

2πr2+

(
r2+ − q2

(
λ

(
	4r4+
q2

)2δ

+ 1

))

q2

(
(8δ − 3)λ

(
	4r4+
q2

)2δ

− 3

)
+ r2+

, (31)

where S is the black hole entropy, that is given by the area law as [80]

S = A

4
= πr2+, (32)

with A being the black hole area. A thermodynamically stable solution is indicated byC > 0,
while C < 0 signifies instability [81]. In Fig. 3, a discontinuity in the heat capacity is
observed, signifying a phase transition. The black holes is unstable and will continue to
evaporate until they reach a stable phase. Although there some values of r+ in which black
holes can exhibit positive heat capacity, such configurations are deemed nonphysical due
to their association with negative temperatures. Similarly, some cases of black holes with
negative heat capacities; however, like their counterparts, the negative temperature renders
these situations nonphysical.Alterations to the solutionparameters donot significantly impact
the thermodynamic stability of the solution. This behavior, with only one phase transition, is
similar to what occurs with the Reissner-Nordstrom-de Sitter solution.
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Fig. 3 Behavior of the temperature with q = 0.4m. In (a) we fixed λ = 0.2 and m2	4 = 0.002. In (b) we
fixed δ = 1 and m2	4 = 0.002. In (c) we fixed δ = 1 and λ = 0.2

Usually, the first law of thermodynamics needs corrections in the mass term, internal
energy, for black holes involving nonlinear electrodynamics. This generally occurs because
the electromagnetic Lagrangian explicitly depends on the mass of the black hole. In the case
we are considering in this work, the Lagrangian does not explicitly depend on the mass, so
our temperature is the same if we consider the relation T = ∂m/∂S, but we can still examine
the Smarr formula, the first law of thermodynamics in integral form, for our case.

To derive the Smarr formula for our problem, we will express the mass function in terms
of entropy and the parameters of our solution as follows:

m (S, q, λ,	, δ) =
√

π

(
(8δ−1)

(
πq2+S

)
π

− π−4δλq2
(

	4S2

q2

)2δ)

2(8δ − 1)
√
S

. (33)

If we consider that the function m (S, q, λ,	, δ) is a homogeneous function, we can deter-
mine the degree of homogeneity by rewriting the function as:

m
(
la S, lbq, lcλ, ld	, leδ

)
=

√
π

(
q2l2b

(
λlc

(−π−4δle
) (

	4S2l2(a−b+2d)

q2

)2δle + 8δle − 1

)
+ Sla (8δle−1)

π

)

2
√
Sla (8δle− 1)

.

(34)

123



International Journal of Theoretical Physics           (2024) 63:220 Page 9 of 18   220 

To isolate l, we choose the values; a = 1, b = 1/2, c = 0, d = −1/4, and e = 0, thus
obtaining:

m
(
l S, l1/2q, l0λ, l−1/4	, l0δ

) =
√

π
√
l

(
(8δ−1)

(
πq2+S

)
π

− π−4δλq2
(

	4S2

q2

)2δ)

2(8δ − 1)
√
S

. (35)

Thus, we have a degree of homogeneity n = 1/2. With this, we can use the properties of a
homogeneous function [82] and write the Smarr formula as:

1

2
m (S, q, λ,	, δ) = T S + 1

2
Aqq − 1

4
A		, (36)

where

Aq = ∂m

∂q
, and A	 = ∂m

∂	
. (37)

Once we have the Smarr formula, the first law is given by

dm = TdS + Aqdq + A	d	. (38)

It is interesting to note that, usually, when dealing with solutions involving nonlinear elec-
trodynamics, the first law of thermodynamics requires corrections to the mass term so that
the temperature obtained from the first law matches the temperature derived from the surface
gravity. However, our first law does not require this correction factor because both methods
yield the same expression for the temperature. This is because such corrections are neces-
sary when the electromagnetic Lagrangian, and consequently the energy-momentum tensor,
explicitly depend on the black hole’s mass [57], which is not the case in our problem.

4 Geodesics

In this section,wewill investigate themotionof particles in the previously obtained spacetime.
To do this, we will use the Lagrangian formalism to obtain the equations of motion that
describe the movement of particles in the spacetime in question.

Associated with the line element (4), we have the Lagrangian

2Lgeo = ṡ2 = gμν ẋ
μ ẋν = f ṫ2 − f −1ṙ2 − r2

(
θ̇2 + sin2 θφ̇2) . (39)

where the dot represents the derivative with respect to the affine parameter τ . Using the
Euler–Lagrange equations

d

dτ

(
∂Lgeo

∂ ẋμ

)
− ∂Lgeo

∂xμ
= 0, (40)

and considering that the particles are moving in the equatorial plane,1 θ = π/2, we find that
the equations of motion are

f ṫ = E, (41)

f ṫ2 − f −1ṙ2 − r2φ̇2 = ε, (42)

r2φ̇ = �, (43)

where E and � are the energy and the angular moment of the particle. For massive particles
we have ε = 1 and for massless particles we have ε = 0.

1 Since the spacetime is spherically symmetric, there is no loss of generality by restricting the motion to the
equatorial plane. This would not be the case for a rotating solution.
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4.1 Massless Particles

One thing we need to make clear is that photons, which are also massless particles, do not
follow null geodesics when we are dealing with nonlinear electrodynamics. Therefore, the
analysis we will conduct in this section does not encompass the trajectory of photons.

For massless particles we have

f ṫ2 − f −1ṙ2 − r2φ̇2 = 0. (44)

Using the equations (41) and (43), we find the conservation energy equation type

ṙ2 + �2

r2

(
1 − 2m

r
+ q2

r2
+ λq2

(1 − 8δ)2

(
	4r4

q2

)2δ
)

= E2. (45)

In the right side of the equation above we have the total energy and in the left side we have
the kinetic energy, and the effective potential, that is written as

Vef f (r) = �2

r2

(
1 − 2m

r
+ q2

r2
+ λq2

(1 − 8δ)2

(
	4r4

q2

)2δ
)

. (46)

In the Fig. 4 we see that the effective potential for massless particles has a maximum value.
This maximum tells us that there is a value of energy such that the particles remain in an
unstable orbit. Particles with energy exceeding the effective potential’s maximum will be
absorbed by the black hole, and if it has an energy value less than the effective potential
maximum, the particles will be scattered. The position where the effective potential has its
maximum value is obtained by solving V ′

e f f (r0) = 0. In general, it is not possible to obtain
r0 analytically. If q = 0 and λ = 0, we find that r0 = 3m, that is the radius of the photon
orbit in the Schwarzschild case. If λ = 0, we find r0 = (3m + √

9m2 − 8q2)/2, that is
the radius of the photon orbit in the Reissner-Nordstrom case. If we compare the nonlinear
cases with Schwarzschild and Reissner-Nordstrom, we notice that for small values of the
radial coordinate, the nonlinear values tend to the Reissner-Nordstrom case, as both have the
same charge, and differ from the Schwarzschild case. For distant points, Schwarzschild and
Reissner-Nordstrom tend to the same value and differ significantly from the nonlinear cases.

From equation (45), we get

G(r) =
(
dr

dφ

)2

= r

(
r3

b2
+ 2m − r

)
+ q2

⎛
⎜⎝

λ
(

	4r4

q2

)2δ
8δ − 1

− 1

⎞
⎟⎠ . (47)

where b = �/E is the impact parameter. This is the differential equation that describes the
motion of massless particles in the spacetime (10). In ideal situations, we could numerically
integrate this equation and obtain the trajectories that massless particles follow in this space-
time. However, since the solution is neither asymptotically flat nor asymptotically de Sitter,
certain infinities arise that make numerical resolution difficult. Nevertheless, we can still
analyze the particle’s motion by examining the sign of the function G, since it is essentially
the square of the particle’s radial velocity and therefore should not exhibit negative values.

In Fig. 5, we analyze the function G in terms of the particle’s impact parameter. The
parameters related to the nonlinear electrodynamics have a greater influence at points far
from the black hole. Since the change in sign occurs near the black hole, the only parameter
that will significantly influence this behavior is the impact parameter, which is why we plot
the graph considering only the variation of b. For large values of the radial coordinate, G is
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positive regardless of the chosen value of b, meaning all particles should be able to come
from infinity. For small impact parameter values, the particles do not have a turning point
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Fig. 5 Behavior of the function G for massless particles in terms of the radial coordinate for different values
of the impact parameter
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(where G = 0) and are absorbed by the black hole. In cases where there are turning points,
the particles can return to infinity.

4.2 Massive Particles

To massive particles we have ε = 1. Using the equations (41) and (43), we find the conser-
vation energy equation type

ṙ2 +
(
1 + �2

r2

) (
1 − 2m

r
+ q2

r2
+ λq2

(1 − 8δ)2

(
	4r4

q2

)2δ
)

= E2. (48)

The effective potential is given by

Vef f =
(
1 + �2

r2

) (
1 − 2m

r
+ q2

r2
+ λq2

(1 − 8δ)2

(
	4r4

q2

)2δ
)

. (49)

InFig. 6,we analyze the effective potential for the case ofmassive particles.Aswith the case of
massless particles, we notice that for small values of the radial coordinate, the nonlinear cases
approach theReissner-Nordstromcase, once they have the same charge, and are different from
the Schwarzschild case. For large values of the radial coordinate, the nonlinear cases differ
significantly from Schwarzschild and Reissner-Nordstrom. It is important to note that in the
case of Reissner-Nordstrom and Schwarzschild, for certain values of the particles’ angular
momentum, it is possible to have minimum points in the effective potential, thus indicating
the presence of stable orbits. This is not true for nonlinear cases. Thus, nonlinearity eliminates
the possibility of stable orbits formassive particles. The pointwhere the potential ismaximum
is obtained by solving V ′

e f f (r0) = 0. Similar to the massless case, it is not possible to solve
this problem analytically.

From (48), we find

G(r) =
(
dr

dφ

)2

=
(
E2 − 1

)
r4

l2
+ 2mr3

l2
−q2r2

l2
−

λq2r2
(

	4r4

q2

)2δ
(1 − 8δ)l2

+2mr−
λq2

(
	4r4

q2

)2δ
1 − 8δ

−q2−r2.

(50)

This is the differential equation that describes the motion of massive particles in the
spacetime (10). As in the massless case, the equation of motion is problematic to solve, but
we can analyze the motion by examining the change in sign of the function G.

From Fig. 7, we can observe that low energy particles can approach the black hole but
encounter a returning point and are scattered, while high-energy particles can overcome the
scattering potential and do not encounter any turning point, thus being absorbed by the black
hole. In the case of angular momentum, the result is the opposite of that with total energy. The
greater the particle’s angular momentum, the higher the scattering potential, causing massive
particles to reach the turning point earlier. Particles with low angular momentum experience a
weaker scattering potential, so they do not have turning points and are consequently absorbed
by the black hole.
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Fig. 6 Behavior of the effective potential to massless particles. In (a) we fixed � = 6, λ = 0.2, q = 0.4m, and
m2	4 = 0.002. In (b) we fixed � = 6, δ = 1, q = 0.4m, and m2	4 = 0.002. In (c) we fixed � = 6, δ = 1,
q = 0.4m and λ = 0.2. In (d) we fixed � = 6, δ = 1, λ = 0.2, and m2	4 = 0.002. In (e) we fixed δ = 1,
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5 Conclusion

In this work, we obtain black hole solutions that arise when considering inverse electrody-
namics, which is a model of nonlinear electrodynamics coupled with general relativity. This
solution is magnetically charged and can fall into the Reissner-Nordstrom solution through
a given choice of parameters. Through the curvature invariants, we verify that the metric is
not asymptotically flat and has curvature singularities in the limits r → 0 and r → ∞. All
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energy conditions will be violated, however, the energy density of this solution is always
positive.

We analyze the thermodynamic properties of this type of black hole. Through the surface
gravity, we verify that, for specific values of the radius of the horizon of events, there are
negative temperature values. To avoid these negative temperature values, wemust have upper
and lower limits on the event horizon size. The thermodynamic stability of this solution is
verified through the heat capacity.We confirmed a phase transition between an unstable black
hole and a stable black hole. Not all stable and unstable cases are physically viable since some
have negative temperatures. These thermodynamic properties, such as limitations on the size
of the horizon radius or the fact that the heat capacity exhibits only one phase transition, are
also present in other charged solutions like Reissner-Nordstrom-de Sitter.

We study the behavior of massive and massless geodesics in this spacetime. We verified
that, in the massless case, the effective potential of the black hole increases significantly with
the charge value. At the same time, the other parameters do not change the maximum value
of the effective potential. Particles with energy less than the maximum effective potential are
scattered, and particles with higher energy are absorbed. As the potential has a maximum
value, unstable circular orbits exist for particles with energy equal to the maximum effective
potential. In this case, it is not possible to analytically obtain the value of the radius of the
unstable orbit. Through the orbit equation, we determine the types of possible orbits. Some
particles with a small impact parameter can come from infinity and be absorbed by the black
hole, while others, with larger impact parameter values, encounter a turning point before
reaching the black hole and are scattered back to infinity. For the massive case, similarly to
the massless case, the effective potential has only one maximum without minimums, which
is interesting since, in solutions such as Schwarzchild or Reissner-Nordstrom, a minimum is
expected, thus creating stable orbits for massive particles. Although the angular momentum,
l, changes the maximum value of the effective potential, the shape of the potential itself is
not changed. In this way, regardless of the value of angular momentum, we will always have
only one unstable orbit. When analyzing the orbit equation for massive particles, we see that
particles with small angular momentum have a low scattering potential and end up being
absorbed by the black hole, while those with large angular momentum encounter a turning
point before the black hole and return to infinity. The energy of the particles also plays an
important role: particles with sufficiently high energy can overcome the scattering potential
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and are absorbed by the black hole, while particles with low energy encounter the turning
point before the event horizon and are scattered back to infinity.

Several other properties of solutions can be analyzed in future work. Some cases are
quasinormal modes, tidal forces, black hole shadow, and matter accretion.
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