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Abstract
A new wave of relativistic nature is derived from the classical Hamilton-Jacobi equation on a
curved space-time. The gravitational time dilation in the neighbourhood of an almost point-
like mass is responsible for its existence. In order to obtain such type of wave (interpretable
as a matter field), one has to resort to an old idea due to de Broglie according to which the
physical 3-dimensional space behaves as if it were covered with an infinity of clocks. The
resulting particle field, that propagates in the physical 3-dimensional space and is due to the
interaction with the (classic) gravitational field of the mass, is shown to be associated with
the usual scalar particle wave function of quantum mechanics. Therefore, the model here
described, by linking Einstein’s general relativity to the wave-like behaviour of particles via
the viewpoint of deBroglie’sDoubleSolutionTheory rather thanvia the standardmechanisms
of field quantisation, provides a new approach to quantum gravity. Finally, it is shown that
this model provides a new interpretation of the single-particle interference and explains non-
locality in terms of a novel quantum communication channel.

Keywords Quantum gravity Gravitational time dilation Hamilton-Jacobi equation on
curved space-time Matter waves de Broglie’s Double Solution Theory

1 Introduction

The seminal de Broglie idea of associating a relativistic point-like material particle with a
wave propagating in physical 3-dimensional space is based on regarding the particle as a
clock (see [1]), i.e., a purely time-dependent phenomenon t0 F clock

0 t0 relative
to the particle proper frame with F being a real-valued function periodic in its argument
and clock

0 t0 clock
0 t0 with clock

0 being the clock proper frequency. But, although the
clock sits in the particle, the motion of the latter discloses the possibility to imagine that the
whole space is covered with an infinity of synchronised clocks in the following way. If the
particle moves freely at speed along the x-axis relative to an observer, substituting t0
with Lorentz’ transformation yields

x t F
clock
0

1 c
2

t
c2

x (1)
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with c being the speed-of-light in the empty space, that is, a monochromatic plane wave of

frequency
clock
0

1 c
2
and phase velocity c2 or, equivalently, an infinite distribution

of synchronised clocks pointing, in general, to a different time that depends on the x coordinate
of the clock position. Thus, to an observer relative to which a relativistic point-like particle
equipped with its own clock moves freely the phase distribution of the infinite clocks appears
globally as the phase of a travelling plane monochromatic wave which, in turn, may be
interpreted as the phase of each clock of the infinite distribution relative to the observer
frame. In particular, the presence of a point-like particle can be associated with an infinity
of ideal clocks on the physical 3-dimensional space regardless of the point-like particle
dynamics. This latter aspect will be hereafter expressed via the so-called Principle of Clock
Distribution: the empty physical 3-dimensional space may be imagined as covered with
an infinity of point-like clocks, one for each point of space, all synchronised relative to a
relativistic point-like particle proper frame. If the clocks proper frequency is given in terms

of the particle proper mass m0 as clock
0

m0c2

h with h being the Planck constant, the plane
monochromatic wave (1) is called de Broglie’s phase-wave of the freely moving relativistic
point-like particle. It is easy to show that such a de Broglie phase-wave keeps in phase with
the particle internal clock (see [1, 2]) and, by the Principle of Clock Distribution, with each
of the clocks sitting throughout the space. Then, the law of this phase accordance for free
particle dynamics reads: for any inertial observer the phase of each ideal clock belonging
to the infinite distribution is equal at each instant to the phase of the particle’s de Broglie
wave calculated at the position of the considered clock. As the total mechanical energy of
the particle is

W
m0c2

1 c
2

h clock
0

1 c
2

h (2)

relative to the observer (i.e., the well-known Planck relation), the wavelength of its de Broglie
phase-wave, defined as V , is given by

c2 h

W

m0c2

1 c
2

1 c
2

m0

h

W

h

p
(3)

with p m0

1 c
2
being the kinetic 3-momentum of the particle relative to the observer.

Thus, imagining an infinite number of tiny clocks placed at every point of space and pertaining
to a massive point-like particle as established by the Principle of Clock Distribution leads
to the celebrated de Broglie relation (3) by deploying the classical notions of relativistic
mechanics as long as the particle moves freely. Substituting (1) with (2) and (3) the de Broglie
phase-wave of the freely moving relativistic point-like particle takes on the well-known form
in terms of particle 4-momentum usually referred to as the matter wave. However, as (3)
cannot be derived from the Lorentz transformation for a general particle dynamics, the de
Broglie relation is obtained in this case assuming that the phase velocity of the de Broglie
phase-wave is given by r t W r t

p r t with W and p denoting, respectively, the total
mechanical energy and the kinetic 3-momentum that the relativistic point-like particle would
have if it were placed at point r at time t (see [3]). For a particle’s de Broglie phase-wave
with phase such a form of turns out to coincide with the usual phase velocity definition

t provided that an appropriate relationship between and the Hamilton principal
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function S of Jacobi’s theory be established. Notice that the form of involving the particle
kinetic 4-momentum as required here in order to extend (3) to a particle having a general
dynamics deviates from the one given by de Broglie which was derived from the postulated
proportionality between the 4-wave vector of thematter wave and the canonical 4-momentum
of the particle (with proportionality constant h) and from which (3) was obtained in the
absence of the electromagnetic field (see [3]). Despite this difference, the approach followed
here permits to retrieve the matter wave postulated by de Broglie as a factorisation of the
aforementioned particle’s de Broglie phase-wave of relativistic nature and a phase factor
dependent on the 4-potential. For instance, if the relativistic point-like particle with electric
charge q moves in an electromagnetic field with 4-potential A0 A1 A2 A3 , the particle’s
de Broglie phase-wave with phase S

h
q
hc A dx (S, referred to as the Hamilton

principal function, is a complete integral of the system Hamilton-Jacobi equation whose
4-gradient gives the particle canonical 4-momentum) has certainly the frequency and the
wavelength given by, respectively, Planck’s relation and de Broglie’s relation for (2) and (3)
can ensue also from the usual general definition of phase velocity provided that the phase
have this form. In addition to this, also the law of phase accordance between the ideal clocks
of the infinite distribution and the particle’s de Broglie phase-wave can be assumed to hold
when the particle moves in a general field of force.1 Then, if in line with the case of free
particle dynamics also in this case is obtained from the system Hamilton principal function
such that both the Planck and the de Broglie relations keep holding good, the law of phase
accordance between the clocks of the infinite distribution and the de Broglie phase-wave
follows on. Since this amounts to saying that the point-like particle’s de Broglie phase-wave
at a given point has 4-wave vector proportional to the kinetic 4-momentum as if the particle
were placed at that point (see [3]), one could summarise the foregoing arguments in the
so-called Principle of Phase Harmony2: the ideal clock of the infinite distribution sitting
at point r and associated with a massive relativistic point-like particle keeps in phase with
the particle’s de Broglie phase-wave whose phase at point r and instant t is proportional
(with proportionality constant h) to the system Hamilton principal function plus a minimal
coupling term evaluated at r and t relative to the observer frame. For the sake of clarity, the
two terms forming the phase of the particle’s de Broglie phase-wave as stated in the Principle
of Phase Harmony must be interpreted as follows:

1. at any given time the term proportional to the system Hamilton principal function takes
on different values depending on the observation point of space and its 4-gradient at r
equals the canonical 4-momentum of the particle itself as if this at the instant considered
were placed at point r ;

2. the minimal coupling term is non-zero only if the particle is electrically charged and
moves in an electromagnetic field.

Against the backdrop of the foregoing arguments, the present work shows that it is possible
to link Einstein’s general relativity with de Broglie’s ideas concerning the wave-particle

1 For instance, this is possible if the proper phase of each ideal clock belonging to the infinite distribution
reads clock

0 t0 k0 (the proper frequency clock
0 and the initial proper phase k0 being the same for all

clocks) and, consequently, the phase of the clock at r relative to the observer frame is given by r t
clock
0 t0 r t k0

clock
0 t0 k0 where t0 denotes the clock proper time and t the time measured by it

relative to the observer frame. In order that this clock have a definite frequency (whence it represents a purely
periodic phenomenon typical of an actual clock) also relative to the observer frame, must be linear in t .
2 This principle is related to a so-called ‘phase harmony’ condition postulated by deBroglie, whence the choice
of its name. Lately, a specification of de Broglie’s original ‘phase harmony’ condition has been deployed to
lock a solitonic wave and a guiding field (see [4])
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dualismwhich, overall, have been collected in the so-calledDouble Solution program, hereon
referred to as de Broglie’s Double Solution Theory. The model presented in the following
represents an extension of this latter theory due to the introduction of gravity (from a classical
viewpoint) at the particle micro-scale. In particular, such original approach describes the
particle wave function by relating it to the temporal structure of space-time while in most
interpretations of quantummechanics the particle field is only a formal means for calculating
physically relevant quantities with no interest for its very origin. Thanks to the relationship
between thewave-like aspect of the particle and the clockdistribution themodel here proposed
reconciles a fundamental quantum feature with a relativistic one and might thus be relevant
to develop a theory of quantum gravity from a new perspective. In addition, it provides with a
new description of the single-particle interference and of non-locality. The paper is organised
as follows. In Section 2 the construction of the de Broglie phase-wave of the relativistic point-
like particle in a curved space-time with spherically symmetric metric tensor is approached
deploying the notion of gravitational time dilation inherited by Einstein’s general relativity.
In Section 3 the variational method for the dynamics of a relativistic point-like particle in a
curved space-time is recalled to establish the evolution equation for the particle de Broglie
phase-wave given at all times by the classical Hamilton-Jacobi equation on a curved space-
time (see [5]). In accord with Einstein’s field equations, any field present in the system
(included the ones associated with the potential measurement devices) contributes to the
space-time geometry at the particle position and on its vicinity that, in turn, affects the
Hamilton-Jacobi equation. In Section 4 the phase of the particle de Broglie phase-wave in a
curved space-time is expressed in terms of 4-momentum of the relativistic point-like particle
whereas in the following section it is shown that, under certain conditions, this phase becomes
complex-valued with non-zero imaginary part. At variance with the usual methods of field
quantisation (e.g., canonical quantisation, path integral quantisation, geometric quantisation),
the model here described deploys the point of view of de Broglie’s Double Solution Theory
sketched in Section 6.1 according to which the particle is regarded as a lump of energy (a so-
called soliton or, perhaps, a solitarywave) smoothly nestled in an extendedwave phenomenon
that guides the former along the propagation of the latter in the physical 3-dimensional space
(see [6]). Notice, for the sake of argument, that Bohmian Mechanics shares this guiding
feature with de Broglie’s Double Solution Theory albeit the well-known differences between
these two theories in the interpretation of the wave fields (see [7]). The formal scheme of the
model developed in Sections 3-5 for the point-like particle in a curved space-time is used in
Section 7 to construct the de Broglie phase-wave of the particle conceived as a tiny object,
though not strictly point-like. Moreover, an explicit form for the global wave is provided and
it is shown that the model is a possible realisation of de Broglie’s Double Solution Theory
(see [6]). Recently, a global wave representing the particle in this context has been shown to
exist in the form of a peaked soliton due to the self-focusing nature of self-gravitation under
the assumption that the evolutionary wave equation is the so-called Schrödinger-Newton
equation (see [8]) whose non-linear termmight be responsible for the wave function collapse
(see [9–11]). The relationship of proportionality, as postulated by de Broglie, between the
particle de Broglie phase-wave and the classical Klein-Gordon field is discussed in Section 8
and leads to justify in a natural way the Principle of Interference (also called Born’s rule):
‘the probability that an observation will permit the localisation of a particle is proportional
to the square of the particle wave function amplitude’ (see [6]). Within the framework of the
model here presented, the claimed proportionality between the two types of wave is explained
appealing to the notion of curved space-time in the neighbourhood of matter, so underscoring
howEinstein’s general relativity can bemade compatiblewith quantummechanics. Likewise,
one can carry over the connection between the particle statistics for the position observable
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and the u-wave to the case of a many-particle system, provided that the system u-wave
be constructed from the u-wave of each single particle in the system. As for the statistics
relative to any observable other than the position, this will result ultimately from measuring
the position (see [2]), in accord with the priority given in de Broglie’s theory of measurement
to the ‘Principle of Interference’ and the position in the physical 3-dimensional space over
the other observables. In Section 9 the single-particle interference and the possible existence
of a superluminal quantum communication channel are described in terms of the introduced
model. Like in the Bohmian approach, in these phenomena the measurement devices or
observers are considered to be part of the physical system that bring on no collapse of the
wave function, whence the interpretation here adopted turns out to be free from the so-called
problem of time arising in quantummechanics and present in all the quantum gravity theories
based on it (see [12]).

2 Clock Phase Distribution in a Curved Space-time

By Einstein’s general relativity, the pace of a clock is affected by the gravitational field due to
the presence of mass in its neighbourhood, no matter how small the mass. In particular, each
clock postulated by the Principle of Clock Distribution follows suit. Furthermore, if a point-
like particle has spherical symmetry (meaning that the space-time in the neighbourhood of the
particle is spherically symmetric), one can always assume that the components g01 g02 g03 of
the space-timemetric tensor g 0 1 2 3 be zero, whence the space-time interval between

the events xin ctin rin and x ct r xin dx with dx dx0 dx1 dx2 dx3

cdt dr can be cast in the form

ds2 g x dx dx g00 x dx0dx0
3

h k 1

ghk x dxhdxk (4)

(see [13]). On the other hand, since ds2 is a scalar, Einstein’s Equivalence Principle ensures
that (4) takes on the form

ds2 dx0 dx0 c2 dt0
2

3

h 1

dxh0
2

with 0 1 2 3 being the Minkowski metric tensor relative to a locally inertial frame
with respect to which the event x is denoted by x0. Hence,

dt0
dt

2 1

c2

3

h 1

dxh0
dt

2

g00 ct r 1
l r r t

ct r

2

(5)

with l r r t 3
h k 1 ghk ct r xh ct r xk ct r being the so-called curvilinear

3-speed of a clock at r with 3-velocity r x dx1
dt

dx2
dt

dx3
dt relative to the observer frame

and ct r c g00 ct r being the so-called curvilinear speed-of-light (see [3]). Then,

as
dxh0
dt

dxh0
dt0

dt0
dt for h 1 2 3 and the considered clock is at rest relative to its own locally
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inertial frame it turns out from (5) that

dt0 g00 ct r 1
l r r t

ct r

2

dt

whence, if any clock sitting in the vicinity of a material point-like particle associated with
a gravitational potential g 0 1 2 3 has proper frequency clock

0 , one can define the
quantity

clock ct r clock
0 g00 ct r 1

l r r t

ct r

2

(6)

at any event x ct r of the space-time relative to the observer frame. For, in general,
clock depends on t through themetric tensor and the clock 3-velocity, it cannot be interpreted

as a true frequency and it is thus called the pseudo-frequency of the clock at x relative to
the observer frame. However, if g 0 1 2 3 is such that the right-hand side of (6) is

explicitly independent of time, clock represents the true frequency of the clock at any point
of the physical 3-dimensional space relative to the observer frame. The existence of such
a space-time metric tensor is possible up to a suitable choice of a reference frame, at least
in a neighbourhood of the considered event (see [14]). In particular, in the present case the
four components of g 0 1 2 3, though constrained to satisfy the above condition for

the existence of a true clock frequency,3 can still be chosen arbitrarily. Then, it turns out
from (6) that the clock frequency clock

0 g00 relative to the point-like particle proper frame4

is the same for all the clocks in the flat portion of space-time whereas it differs smoothly
for the clocks sitting in the curved portion of the space-time. In other words, the infinity
of ideal clocks strewn in the physical 3-dimensional space according to the Principle of
Clock Distribution, in phase with one another if sitting far from the gravitational field, run
smoothly out of phase if lying in a region where a gravitational field is present. In particular,

if clock
0

m0c2

h , the frequency of the ideal clock at r relative to the observer frame reads

clock r
6 m g

0 ct r ct r
2

h
1

l r r t

ct r

2

(7)

with m g
0 ct r m0

g00 ct r
being the so-called curvilinear rest-mass of the point-like

particle relative to the observer frame (see [3]). Finally, by the Principle of Phase Harmony,
the particle de Broglie phase-wave in a generally curved space-time is obtained from the
phase distribution of the clocks hypothesised by the Principle of Clock Distribution whose
frequency is given by (7).

3 For instance, such condition is verified if both the space-time metric tensor and the 4-potential are static
because in this case it follows from the geodesic equations that the 4-velocity at the event ct r is explicitly
independent of time, whence the 3-velocity of the clock at point r is constant.
4 In order that clock

0 g00 be a true frequency the space-time metric tensor must be static relative to the
point-like proper frame.

123

204 Page 6 of 35 International Journal of Theoretical Physics (2024) 63:204



3 Relativistic Point-like Particle Dynamics in a Curved Space-time

Let consider the system made up of a relativistic point-like particle with proper mass m0 and
electric charge q moving in a curved space-time with metric tensor g 0 1 2 3 as in (4)

and acted upon by an electromagnetic field with 4-potential A0 A1 A2 A3 A .

Given the Lagrangian

L r t r t t m g
0 ct r t ct r t

2 1
l r t r t t

ct r t

2

(8)

qg00 ct r t ct r t

q

c

3

h k 1

ghk ct r t Ah ct r t xk t

for such a system, the conjugate momenta are

ph t
L

xh
r t r t

r r t

m g
0 ct r t 3

k 1 ghk ct r t xk t

1
l r t r t t

[ct r t ]

2

q

c

3

k 1

ghk ct r t Ak ct r t

for h 1 2 3 and the Hamiltonian of the system reads

H r t p1 t p2 t p3 t t qg00 ct r t ct r t ct r t

m0c 2
3

h k 1

ghk ct r t ph t
q

c
Ah ct r t pk t

q

c
Ak ct r t

with ph ghk pk and Ah ghk Ak for h 1 2 3. Then, applying Jacobi’s Theory and

writing the 4-gradient in tensor notation 0 1 2 3 x0 x1 x2 x3
one derives

the system Hamilton-Jacobi equation

g x x
q

c
A x x

q

c
A x m0c

2 (9)

which is manifestly form-invariant for change of reference frame. If S is a complete integral
of (9), the conjugate momenta of the system are, by Jacobi’s theory, the components of the
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canonical 3-momentum of the point-like particle given by

S

xh
r t ph t

m g
0 ct r 3

k 1 ghk ct r xk ct r

1
l r r t

ct r

2

q

c

3

k 1

ghk ct r Ak ct r (10)

for h 1 2 3. Then, substituting (10) for (9) yields

S

t
r t qg00 ct r ct r

m g
0 ct r ct r

2

1
l r r t

ct r

2
(11)

whose right-hand side is the so-called curvilinear total mechanical energy of the relativistic
point-like particle, i.e., the total mechanical energy5 of the relativistic point-like particle with
curvilinear rest-mass m g

0 moving with curvilinear 3-speed l in a curved space-time where
the light propagates at curvilinear speed relative to the observer frame (see [3]).

4 The Point-like Particle de Broglie Phase-wave

By Einstein’s general relativity, any mass, no matter how small, causes the space-time to
curve around it. This might be interpreted saying that the mass experiences the space-time
curvature produced by its very presence. Consequently, the lagrangian of a systemmade up of
a relativistic point-like particle with spherical symmetry, proper massm0 and electric charge
q moving in an electromagnetic field with 4-potential A0 A1 A2 A3 will be given by
(8) with g 0 1 2 3 being the metric tensor associated with m0 (e.g., the Schwarzschild
metric). Then, if one succeeds in finding a complete integral of (9), the phase of the de Broglie
phase-wave, which, by the Principle of Phase Harmony, reads

r t
S r t

h

1

hc ctin rin ct r
q cg00 ct r ct r dt

3

h k 1

ghk ct r Ah ct r dx k (12)

with ctin rin ct r denoting a world-line between ctin rin and ct r , turns out to be
defined on the whole of the space-time because it can be written in terms of 4-gradient of S
with components given by (10) and (11), that is, the canonical 4-momentum of the relativistic
point-like particle all the way fromwhere the space-time is flat to the immediate proximity of
the point-like particle where it is curved6. Given such a complete integral, the phase variation

5 Up to the sign.
6 To be precise, (12) is defined throughout the space-time if the metric tensor has no singularities.

123

204 Page 8 of 35 International Journal of Theoretical Physics (2024) 63:204



of the point-like particle’s de Broglie phase-wave reads

d r t
12 dS r t

h

q

hc
A x dx (13)

10 11 m g
0 ct r ct r

2

h
1

l r r t

ct r

2

dt

that is, the phase variation of the ideal clock from the infinite distribution sitting at r with
frequency (7) relative to the observer frame7. Thus, the complete integral of (9) satisfying
(10) and (11) generalises to the general dynamics of the particle the proof of phase agreement
between the phase-wave associated with a point-like particle and the internal clock of the
particle obtained by de Broglie for the freely moving particle, so justifying the Principle of
Phase Harmony.

5 Explicit Form of the Point-like Particle de Broglie Phase-wave

The de Broglie phase-wave of the point-like particle has been dealt with so far only for formal
purposes to help represent the physical particle, which instead will be conceived as an entity
extended over space (see Section 7.1). In particular, in order to describe the internal structure
of the particle, let express a complete integral of (9) in a more explicit form. To this scope,
one starts out re-writing the space-time interval (4) in the form

ds2 ct r dt2 l r r t
2
dt2

ct r
2 1

l r r t

ct r

2

dt2 (14)

where the inverse square root of the quantity within curly brackets generalises to a curved
space-time the notion of Lorentz contraction factor usually defined on a flat space-time and
is thus called curvilinear Lorentz contraction factor. This factor can be re-written as

1
l r r t

ct r

2
1
2

ct r dt

ds2
ct r dt

sgn ds2 d 2
(15)

with being, by definition, the real arc-length parameter of ctin rin ct r such that
ds2 sgn ds2 d 2. Let at first consider just the portion of the spherically symmetric curved
space-time

int x ds2 g x dx dx 0

7 At any point of space r which is kept fixed one has dr 0, whence d clock r clock r dr 0.
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with the metric tensor as in (4). Since d 2 0, a complete integral of (9) takes on the form

S r t

S rin tin c
in
m0d ic m0d

1
c xin x qg x A x dx x int

S rin tin c
in
m0d

1
c xin x qg x A x dx x int

(16)

where xin x in is supposed to be in int , x x is the point where xin x
intersects int , x x 8 and S rin tin is real-valued.9 In other words, the gravitational
field is responsible for S having a non-zero imaginary part on int whereas S is purely
real-valued only on int .

6 Main Features of de Broglie’s Double Solution Theory

Before applying the foregoing result concerning a complete integral of (9) to a particle’s
de Broglie phase-wave, it is worthwhile to recall some fundamental aspects of de Broglie’s
Double Solution Theory, an unfinished wave-monistic program aimed at clarifying the wave-
particle dualism that, conceived to extend the usual quantummechanics, must agree with this
latter theory predictions within a certain domain of application.

6.1 Single Particle Case

In accordance with de Broglie’s Double Solution Theory, for any given particle there exist
two different waves:

1. the usual complex-valued particle wave functionwhose squared amplitude at x represents
the probability that the point-like particle be found at r at time t and which has only a
subjective character;10

2. the complex-valued so-called ‘u-wave’ (denoted with u) of objective character, some-
times also referred to as matter wave, which, unlike the wave function, depends only on
the intrinsic features of the particle and propagates in the physical 3-dimensional space.

While the first wave evolves according to a suitable linear wave equation (e.g., the linear
Schrödinger equation for a non-relativistic particle, the linear Klein-Gordon equation for a
relativistic zero-spin particle, the linear Dirac equation for a relativistic half-spin particle,
etc.), the second one is supposed to obey this same equation with, in addition, a non-linear
term whose contribution is paramount within the so-called ‘singular region’ where the wave
amplitude is very large as well as at the edges of the wave front. As the ‘singular region’

8 By inverting x x , it turns out that x and x x as x depends on x through
xin x .

9 In accordance with the Principle of Phase Harmony, the dependence of S on r and t has the following
interpretation: at any given time t the ideal clock of the infinite distribution at point r keeps in phase with
the de Broglie phase-wave of a (potentially electrically charged) point-like particle of proper mass m0 that
follows the world-line ctin rin ct r for which ctin rin ct r m0ds is stationary.
10 Within the framework of the Double Solution Theory the range of possible values rather than a single
value associated with a measurement is ascribed to the random perturbation of the system occurring when
the measurement is performed and represents only the incapability of the experimenter to reveal prior the
measurement a feature that remains, after all, immanent in the particle.
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is tiny, the particle can be considered point-like as far as its dynamics is concerned, this
latter being a feature that represents only an approximation in the Double Solution Theory
(the so-called Pilot-Wave Theory) whereas it holds with exactness in the usual quantum
mechanics theory. Beside the ‘singular region’ the Double Solution Theory postulates the
existence of a so-called ‘intermediate region’ (see [6]), where the amplitude of the u-wave
begins to change very rapidly over space and time and the wave equation for the u-wave is
only approximately equal to the linear one commonly considered in the standard theory,11

and, finally, the existence of a so-called ‘external region’ (see [6]), where the u-wave is
proportional to the particle wave function to a good approximation and the wave equation
for the u-wave is the same as the usual linear one. If denotes the point-like particle wave
function referring to the particle localisation probability after actual detection, the de Broglie
Double Solution Theory maintains that the particle u-wave can be decomposed as follows:

1. u u0 with u0 , whence u u0, on the ‘singular region’;
2. u u0 with K by reason of the already rapid increase ofu0 on the ‘intermediate

region’;
3. u u0 0 and K , whence u K , with K being a complex constant dependent

on the particle on the ‘external region’.

Notice that in more recent approaches to the Double Solution Theory the original decom-
position of the u-wave as superposition of u0 and has been replaced by a ‘factorisation
ansatz’ involving two waves of different nature (see [15, 16]). As for the proportionality
between and on the ‘external region’ mentioned before, arguments in favour of this
hypothesis based upon the notion of ergodicity date back to de Broglie (see [6, 17]) whereas
a more detailed analysis about the attendant origin of Born’s rule was carried out by Bohm
and collaborators via the introduction of a so-called ‘sub-quantum medium’ responsible for
randomly forcing the system to reach an equilibrium state (see [7, 18, 19]). Finally, in recent
times several other researchers have faced up to the emergence of Born’s rule deploying dif-
ferent strategies, especially within the framework of Bohmian Mechanics, (see [20]) either
with no appeal to statistical arguments (see [21]) or, to the contrary, calling for statistical
assumptions based on the notion of equivariance (see [22–25]), calling on Gleason’s theorem
(see [26]) or using the H-theoremwithout the postulate of sub-quantum fluctuations (see [26,
27]). To conclude this brisk account of the de Broglie Double Solution Theory, one should
pay heed to how the proportionality between and contributes to eliminate the follow-
ing paradox that was underscored by Pauli to dismiss the Pilot-Wave Theory: the particle
guidance formula, obtained from the continuity equation which is derived, in turn, from the
linear wave equation for the mere particle wave function without introducing the u-wave,
shows that the dynamics of a physical entity such as the particle is determined by the phase
which, in turn, depends on the amplitude of the fictitious probability wave. However, Pauli’s
objection is removed, if there exists a u-wave supposed to solve, to a good approximation,
the linear wave equation on a closed 3-surface surrounding the ‘singular region’. In order to
guide the particle along its motion, the particle u-wave must be a solution of the linear wave
equation, to a good approximation, on such a 3-surface which must then lie in the ‘inter-
mediate region’.12 The quasi-proportionality between the u-wave and the wave function on
the ‘intermediate region’ is a sufficient condition to ensure these features and, consequently,
that the particle velocity depend ultimately on the phase and the amplitude of the physical
u-wave (see [6]). Once again, it is worth stressing that de Broglie’s Double Solution Theory

11 Though, still slightly non-linear.
12 In addition, the size of the ‘singular region’ is very small compared to the local wavelength.
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is expected to provide the same results as the standard quantum theory as far as the ‘external
region’ of the particle is concerned but that, on the contrary, differences between the two
theories appear at the level of the region occupied by the particle which, being regarded as
strictly point-like, is beside the mark for the latter theory whereas, being supposed to occupy
a tiny, though spatially extended, portion of the physical 3-dimensional space, represents a
major aspect of investigation for the former theory.

6.2 Many-particle Case

In the case of a many-particle system, de Broglie’s Double Solution Theory establishes a
relationship between the wave function of each single particle in the system associated with
the particle u-wave defined on the physical 3-dimensional space and the systemwave function

defined on the configuration space usually considered in the standard quantum theory (see
[6, 28–31]). For the sake of simplicity, let consider the case of a two-particle system, the step
from the two-particle case to that of N particles with N 2 not entailing any difficulty of
principle. Furthermore, let assume that the particles move at non-relativistic speed relative to
an observer, whence their wave functions 1 and 2 associated with the two single particle
u-waves obey the linear Schrödinger equation, as far as each particle’s ’external region’ is
concerned. If every point in the physical 3-dimensional space is determined by the radius
3-vector r from the origin to the given point, R h denotes the position 3-vector of particle
h, mh is the mass of particle h (for h 1 2) and the single particle wave functions have the
form

1 r R 2 t a1 r R 2 t e
i S1 r R 2 t

2 r R 1 t a2 r R 1 t e
i S2 r R 1 t

the equations constraining the motion of the particles are the Hamilton-Jacobi equations
obtained as the real part of the linear Schrödinger equation for the corresponding particle
after substituting it with h for h 1 2, i.e.,

S1
t

R 1 R 1 R 2 t
1

2m1
S1 R 1 R 1 R 2 t

2
F1 R 1 t

F12 R 1 R 2
2

2m1

a1 R 1 R 1 R 2 t

a1 R 1 R 1 R 2 t

at the particle 1 position R 1 and

S2
t

R 2 R 1 R 2 t
1

2m2
S2 R 2 R 1 R 2 t

2
F2 R 2 t

F21 R 1 R 2
2

2m2

a2 R 2 R 1 R 2 t

a2 R 2 R 1 R 2 t

at the particle 2 position R 2 , where Fh represents an external potential that may possibly
act upon particle h (for h 1 2) and F12 (resp., F21) represents the action of particle 2
(resp., particle 1) on particle 1 (resp., particle 2). Moreover, if the system wave function has
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the form

R 1 R 2 t a R 1 R 2 t e
i S R 1 R 2 t

it can be shown that

S R 1 R 2 t S1 R 1 R 2 t S2 R 1 R 2 t S12 R 1 R 2 t

2

2
1
m1

1a R 1 R 2 t

a R 1 R 2 t

1
m2

2a R 1 R 2 t

a R 1 R 2 t

2

2m1

a1 R 1 R 2 t

a1 R 1 R 2 t

2

2m2

a2 R 2 R 1 t

a2 R 2 R 1 t
Q12 R 1 R 2 t

where h is the d’Alembertian relative to the particle h position coordinates.13 Here, the
particles are treated as point-like singularities and these relationships between the phases
and the amplitudes of the wave functions must hold at the points where the particles are
positioned, the underlying wave equation being the linear Schrödinger equation with an
interaction potential defined at every instant at every point of the physical 3-dimensional
space and dependent on the simultaneous position of both particles.

7 The “Extended Particle” Model

The notion of de Broglie’s phase-wave presented above can be deployed to specify the nature
of the particle u-wave postulated by de Broglie’s Double Solution Theory. But, to achieve this
goal, one must first stress the role played by the space-time geometry in the de Broglie phase-
wave and, in particular, rule out any potential singularity of the metric in order that the de
Broglie phase-wave be defined everywhere on . Since the Schwarzschild metric presents a
singularity at the point where the mass (supposed point-like) is sitting, one should not expect
such geometry to underlie the space-time structure.14 Conversely, the representation of such
a particle as a spherical mass distribution is free from this shortcoming because the metric
tensor associated with a ball has no singularities whatsoever (see [32]). Therefore, it seems
preferable to consider the particle as a massive extended object and refer to it as the “extended
particle”. However, since the metric tensor associated with a ball has the same form as the
Schwarzschild metric outside the surface of the ball (see [32]), the Schwarzschild geometry
may still be used as an approximation in the region surrounding the mass distribution.

7.1 The“Extended Particle” de Broglie Phase-wave

As mentioned in Section 5 the formal results concerning the relativistic point-like particle de
Broglie phase-wave can be applied to a mass distribution. To this scope, first of all let recall
from Section 1 that the ideal clock of the infinite distribution associated with a relativistic
point-like particle of proper mass m0 sitting at point r can be represented by the periodic
function C r ei2

clock r t where C r is a complex scalar and t and clock r denote,
respectively, the time measured by the clock and the clock frequency given by (7) relative

13 In the last system of equations it suffices that S12 and Q12 be functions of the R 1 R 2 components
rather than the 3-vector R 1 R 2 .
14 Even in the most simple scenario of a single spherically symmetric particle not interacting with any
electromagnetic field.
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to the observer frame. Then, if the point-like particle has electric charge q and moves in an
electromagnetic field with 4-potential A0 A1 A2 A3 , its de Broglie phase-wave reads, by
the Principle of Phase Harmony,

F r t C r ei2 r t (17)

with given by (12). Now, like for the case of free particle dynamics described in Section 1,
S in (12) must have a real part linear in the time variable and a constant imaginary part in
order that the de Broglie phase-wave at a given point of space keep in phase with the clock
at that point as required by the Principle of Phase Harmony, otherwise (17) would lose its
property of periodicity typical of a clock. Then, substituting (12) with (16) it follows from
(17) that, in general, the events of int cannot be associated with clocks and, consequently,
the Principle of Phase Harmony cannot apply to those events.15 Conversely, as is real-
valued on int , the Principle of Phase Harmony does apply to the events of this portion
of space-time, which appear as clocks of definite frequency also relative to the observer
frame if is linear in the time variable. Let then assume that the particle has a mass and an
electric charge distributed upon a tiny region V0 of the physical 3-dimensional space, whose
3-volume V0 dx10dx

2
0dx

3
0 is independent of time, with time-dependent and finite mass

density and electric charge density relative to the mass distribution centre-of-mass frame.16

By the 4-volume transformation formula from Einstein’s general relativity, that is,

det g x 0 1 2 3 dx0dx1dx2dx3

det g0 x0 0 1 2 3 dx00dx
1
0dx

2
0dx

3
0

and supposing that the time coordinate transforms from the observer frame to the mass
distribution centre-of-mass frame as

dt0
dt

det g0 x0 0 1 2 3

det g x 0 1 2 3

K

with K being a constant, the 3-volume of the mass distribution V dx1dx2dx3

relative to the observer frame is independent of the coordinates. Now, by (17), the de Broglie
phase-wave associated with the point-like mass at r0 belonging to the mass distribution
relative to the mass distribution centre-of-mass frame is given by

F0 r0 t0 r0 C r0 e
i2 0 r0 t0 r0

with C r0 being a scalar and 0 as in (12) where S0 has the form (16) but with the

role of the proper mass and the electric charge played, respectively, by the mass density and
the electric charge density relative to the mass distribution centre-of-mass frame. Thus, the
superposition of the de Broglie phase-waves associated with the point-like masses forming

15 Adapting the image given in footnote 9 to this case, S at a given event of int can be interpreted as the

Hamilton principal function of a (potentially electrically charged) point-like particle of proper mass m g
0 that

moves at speed l (in general, greater than the curvilinear speed-of-light but, however, smaller than c, whence
its total energy keeps real and finite) along the world-line ctin rin ct r for which ctin rin ct r m0ds
is stationary.
16 Hereon, the subscript 0 denotes the quantities relative to the mass distribution centre-of-mass frame.
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the entire mass distribution seems a natural choice for the so-called de Broglie phase-wave
of the “extended particle”, that is, by definition,

V0
F0 r0 t0 r0 d3r0

V0
C r0 e

i2 0 r0 t0 r0 d3r0

V0 C R0 e
i2 0 r0 t0 R0 (18)

relative to the mass distribution centre-of-mass frame with R0 being the 3-position of a
suitable point P of V0 at rest relative to the centre-of-mass frame whose existence is ensured
by the mean value theorem for integrals.17 Then, when transformed into the observer frame
(18) reads

V0 C R0 e
i2 0 r0 t0 R0 V C0e

i2 r t R t
(19)

where V is a real constant in virtue of the time-coordinate transformation between the

observer frame and the centre-of-mass frame, C0
C R0

K
is a scalar independent of the

coordinates and R t is the 3-position of P relative to the observer frame. The de Broglie
phase-wave of the “extended particle” given by (18) and (19) is then claimed to represent the
u-wave of de Broglie’s Double Solution Theory up to a complex exponential factor dependent
on the 4-potential and, consequently, will be hereon denoted by u . For later purposes, both
the ’singular region’ and the ’intermediate region’ postulated by deBroglie’s Double Solution
Theory will be here assumed to lie at time t within the region of the physical 3-dimensional
space corresponding to the hypersurface with fixed t of the curved portion of space-time
given by

3 Rcm t r 3
3

h k 1

ghk ct r Rcm t dx hdx k

g ct r Rcm t dx dx dx dx

3

h k 1

hkdx
hdx k

where Rcm t is the 3-position of themass distribution centre-of-mass relative to the observer
frame.18 In addition, if V0 contains at any time t tin the hypersurface

3 Rcm t r 3 Rcm t g ct r Rcm t dx dx

3

h k 1

ghk ct r Rcm t dx hdx k 0

17 If V0 is independent of time, R0 is certainly constant relative to the centre-of-mass frame. But V0 could
also vary over time if the mass were suitably distributed to have, for instance, centre-of-mass at R0, because
P is obviously at rest relative to itself.
18 In the definition of 3 Rcm t the space-time interval equals the space interval for a fixed t as dx 0

cdt 0 on the hypersurface where t t .
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such that int
t tin ct 3 Rcm t and if the ‘singular region’ and the

‘intermediate region’ form a partition of V t V0 3 Rcm t 3 Rcm t ,19

it follows from (16) that (19) is complex-valued with a space-time coordinate-dependent
modulus on the ‘singular region’ and on the ‘intermediate region’. Finally, the ‘external

region’ will be here assumed to lie at time t in 3 3 Rcm t . Now, by construction

of the de Broglie phase-wave for the “extended particle”, the phase of the u-wave given by
(19) depends on a complete integral of (9) as in (12) where the role of m0 and q is played,

respectively, by R t t and R t t . As the left-hand side of (9) is the contraction of

a 2-rank tensor with two 1-rank tensors, R t t must be invariant. But this is compatible

with the relativistic transformation of a mass density if there exists a frame relative to which
the point P is at rest.20 The mass must then be distributed on V0 so that this condition for
the mass density at P be satisfied at any time. The corresponding frame would represent the
rest-frame of the particle as if this were assumed to be point-like with rest-mass equal to

R t t and electric charge relative to the observer frame21 equal to R t t .

7.2 Application of the“Extended Particle” Model to de Broglie’s Double Solution
Theory

Deploying (12) and (16) in the de Broglie phase-wave of the “extended particle” at time t
and supposing henceforth that the gauge has been fixed according to the Fock-Schwinger
condition (i.e., A dx 0) it turns out from (19) that

u r t V C0e
c ct r

ct r
R t t d

e
i S rin tin R tin c ct r

ctin rin
R t t d

V C0e
G1 r t

e
i S rin tin R tin G2 r t

(20)

on 3 Rcm t because the phase of the de Broglie phase-wave is complex-valued on that

portion of physical 3-dimensional space with

G1 r t c
ct r

ct r
R t t d

G2 r t c
ct r

ctin rin
R t t d

being strictly positive as ct r ct r and ct r ctin rin . If the mass
density takes on large value around R t at any time t , (20) shows that u has a space-time

coordinate-dependent amplitude that can attain at any time t small values on 3 Rcm t .

19 Notice that V0 might also have at any time t a non-zero intersection with 3 Rcm t 3 Rcm t

3 3 Rcm t .

20 Such a frame is certainly given by the one co-moving with P and could coincide with the “extended
particle” centre-of-mass frame (see footnote 17).
21 In general, the rest-mass and the electric charge of the particle could be time-dependent.
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Therefore, in order that the u-wave amplitude reach at any time very large values on the
‘singular region’ in accordance with de Broglie’s Double Solution Theory, the ‘singular
region’ and the ‘intermediate region’22 can form a partition of V t only if one chooses u
as the “extended particle” u-wave (see Fig. 1). Finally, it turns out from (19) that the u-wave
at time t is given by

u r t V C0e
i S rin tin R tin G3 r t

(21)

with

G3 r t c
ct r

ctin rin
R t t d

on 3 3 Rcm t because the phase of the de Broglie phase-wave is real-valued on that

portion of physical 3-dimensional space. Thus, (21) has a constant and uniform amplitude
which, being V with V small,23 can be considered zero, to a good approximation,
in accordance with the requirement of de Broglie’s Double Solution Theory for the u-wave
on the ‘external region’. As a result of the foregoing construction, the u-wave becomes a
highly peaked soliton for a suitable choice of the gravitational potentials in line with the
spirit of de Broglie’s Double Solution Theory and, as previously mentioned, with the quest
of meaningful solutions to the Schrödinger-Newton equation (see [8]). Notice that, although
the Double Solution Theory is not a collapse-theory, from the point of view of this latter kind
of theory the wave just constructed should be considered as representing an already collapsed
particle (see, e.g., [9, 10, 33, 34]). In order that this model of the “extended particle” be valid
whenever the particle, considered as a stable entity, is not absorbed nor emitted by an atom,
there must exist24 a conserved quantity associated with the u-wave on V t that can be
interpreted as a sort of particle “internal energy” with density dependent on u . But, since
G1 is determined by the values taken on by the mass density at the point P during the time

interval t t , a state of constant “internal energy” represents a constraint for the

internal dynamics of the “extended particle” which, compatibly with the lack of a relativistic
notion of rigidity, does not necessarily have to undergo an undeformability condition as
required in previous approaches (see [4, 35]). However, which type of internal dynamics

would provide with a u-wave having, in general, the form (20) on 3 Rcm t but with a

constant “internal energy” as long as the regime corresponding to a particle stationary state
is maintained? As a possible example, one might devise the following mechanism. If the
system evolves unperturbed over a large enough time interval until reaching a stationary
state (e.g., when no absorption nor emission from an atom take place), the mass distribution
at P evolves so that

lim
t

G1 r t G r (22)

22 By ‘intermediate region’ it is here meant the portion of ‘intermediate region’ lying at any time t in
3 Rcm t . In addition to this, the ‘intermediate region’ might include also a portion lying at any time t ,

e.g., in 3 Rcm t 3 Rcm t .

23 By the chosen relativistic transformation of 4-volume, V K V0 with V0 1.
24 At least under certain circumstances such as, e.g., when an electron is bound to an atom nucleus.
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Fig. 1 The three regions of de Broglie’s Double Solution Theory within the framework of the “extended
particle” model. The 3-surface enclosing the ‘singular region’ and lying in the ‘intermediate region’ is chosen
to coincide at any time t with the boundary of V t

on 3 Rcm t and at t tin

G2 r t S rin tin R tin
2

Wt
2

r (23)

on 3 Rcm t and

G3 r t S rin tin R tin
2

Wt
2

r (24)

on 3 3 Rcm t with W being a real constant and being a real function dependent

only on the space coordinates.25 Then, if tin refers to an instant after which the conditions
for a stationary state are fulfilled, it turns out that at t tin

u r t lim
t t

u r t (25)

20
lim
t t

V C0e
G1 r t

e
i S rin tin R tin G2 r t

V C0e
i S rin tin R tin

25 The behaviour of G1 G2 and G3 at each r depends, by definition, on the 4-velocity that the mass at P
should have to reach r at the considered time. In turn, this 4-velocity derives from a solution of the geodesic
equations on int for a suitable value of its initial 4-velocity (see also footnote 15).
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lim
t

e
G1 r t

e
i S rin tin R tin G2 r t

22 23
V C0e

G r
e

i
2 [Wt r ]

on 3 Rcm t to a good approximation, and

u r t
21

V C0e
i S rin tin R tin G3 r t

24
V C0e

i
2 [Wt r ] (26)

on 3 3 Rcm t . Thus, the u-wave given by (20) and (21)withG1 G2 andG3 satisfying,

respectively, (22), (23) and (24) becomes, to a good approximation, a stationary wave defined
on the whole of 3 with constant amplitude and with phase linear in the time variable during
the considered time interval, whence one obtains the stationary states of a particle (see next
section). Therefore, in principle, it seems possible to derive the particle stationary states from
the particle de Broglie phase-wave. Similarly to the interpretation of solitonic solutions for
the Schrödinger-Newton equation (see [33]), also the u-wave stationary state obtained in
this case might be viewed as originating from a previous general state through an excess
energy radiation process. Yet, the example just described to derive a stationary state seems
artificial as the asymptotic conditions (22), (23) and (24) were chosen ad hoc. Instead, in
order to organically explain the origin of the stationary states one should show, for instance,
that these asymptotic conditions can be ultimately obtained from the much sought-after non-
linear wave equation postulated by the de Broglie Double Solution Theory. However, bar
this latter limitation, it is worth stressing the following properties of the u-wave constructed
above:

1. it provides forthrightly the global u-wave postulated by de Broglie’s Double Solution
Theory resorting to the relativistic behaviour of clocks in a curved space-time and avoid-
ing any arbitrary choice of different decomposition types (see Section 6.1);

2. it entails the guidance relation at each point of the physical 3-dimensional space and,
in particular, on the closed 3-surface surrounding the ‘singular region’, a fundamental
feature of the Pilot-Wave Theory for particles that has been also extended to quantum
field theories (see [36]);

3. though from a distinct perspective, it shares with the approach in [15] the idea that
gravitation at small scale is responsible for the cohesion of electrically charged particles
in the form of a stable soliton which otherwise would disintegrate under the action of the
purely repulsive internal electromagnetic field;

4. it eschews to associate the particle u-wave with two waves of different nature as hypoth-
esized by the ‘factorisation ansatz’ of [15] and [16].

8 Relationship Between the “Extended Particle” de Broglie Phase-wave
and the Scalar Particle Wave Function

Let consider a single particle26 of rest-massm0, electric charge q0 and zero spin in interaction
with an electromagnetic field having 4-potential A0 A1 A2 A3 . Thewave function of such

26 The particle is here assumed point-like in accordance with the usual interpretation.
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a particle solves the Klein-Gordon equation

1
x

m0c
2

x (27)

q0
c

2

A x A x x i
2q0
c

A x x 0

where det 0 1 2 3 1. Substituting (27) with the wave function in the form

x x e
i S x , its real part reads

S x
q0
c
A x S x

q0
c
A x [M0 x c]2 (28)

where M0 x m2
0

2

c2
[ x ]
x is the so-called variable rest-mass of the particle.

Now, in accordance with de Broglie’s Double Solution Theory, although the particle wave
function has a subjective nature as far as its amplitude is concerned, its phase must bear at
any time t an element of objectivity inherited by the particle u-wave, at least on a 3-surface,

say, 3 Rcm t , that encloses the ‘singular region’ and lies in the ‘intermediate region’ (see

[6]). Now, within the framework of the “extended particle” model the phase of the particle u-

wave (19) is given by (12) where the role ofm0 and q is played, respectively, by R t t

and R t t and, by the discussion at the end of Section 7.1, with R t t m0.

However, although at variance with de Broglie’s Double Solution Theory,27 the phase of
carries an objective information concerning the particle dynamics if one supposes that

27 In de Broglie’s Double Solution Theory the phase of the wave function and the phase of the u-wave coincide
(at least) upon a 3-surface enclosing the particle ‘singular region’ and lying in the particle ‘intermediate region’.

On the other hand, in the “extended particle” model the phase coincidence at time t on 3 3 Rcm t

between the particle wave function and the particle u-wave given by (21) requires the gauge to be fixed
according to the Fock-Schwinger condition on that portion of the physical 3-dimensional space. But this latter
choice of gauge is at loggerheadswithLorenzgaugedeployedbydeBroglie to derive the guidance formula from
the linear Klein-Gordon equation on the particle ‘external region’. Yet, one could arrange as a workaround that

at any time t the particle ‘intermediate region’ has a portion lying, e.g., in 3 Rcm t 3 Rcm t where

3 Rcm t is placed. In this case, the Lorenz gauge condition might be imposed exactly on 3 Rcm t ,

whence the guidance formula would be retrieved, and smoothly changed into the Fock-Schwinger gauge
condition in order to make the phase of the wave function equal to the phase of the u-wave given by (21)

almost everywhere on 3 3 Rcm t . This would then consent to tightly seal the phase of the u-wave

given by the “extended particle” model with the phase of the wave function calculated with the usual method
of quantum mechanics. However, such a sleight of hand seems artificial and suggests to replace altogether the
Fock-Schwinger condition with the Lorenz gauge, whence the u-wave is the factorisation of a wave as in (21)
with a purely complex exponential term dependent on the 4-potential. Therefore, one concludes that, while the
particle’s de Broglie phase-wave still satisfies (13), the electromagnetic field is responsible, in general, for the

loss of phase harmony between the u-wave and the clocks from the infinite distribution on 3 3 Rcm t .

Now, as the electromagnetic produced by the electrically charged mass distribution of the “extended particle”

is never exactly zero on 3 Rcm t , it could be argued that the notion of particle’s de Broglie phase-

wave is effectively useless. Nevertheless, such argument would be wrong because the electromagnetic field is
decomposable into a part due to the “extended particle” mass distribution and into another one due to external

sources. Then, if the latter were zero, far afield from themass distribution on 3 3 Rcm t the 4-potential

could be neglectable, whence the particle’s de Broglie phase-wave from the Principle of Phase-Harmony could
in principle exist along with the u-wave.
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S ct r is given by S r t R t at any time t on 3 3 Rcm t where S is real-

valued. Then, assuming R t t q0, at any time t on 3 3 Rcm t one obtains

R t t c
2 9

g ct r S r t R t
R t t

c
A ct r

S r t R t
R t t

c
A ct r

S r t R t
q0
c
A ct r S r t R t

q0
c
A ct r

g ct r S r t R t
q0
c
A ct r S r t R t

q0
c
A ct r

28
m0c

2 2 ct r

ct r

g ct r S r t R t
q0
c
A ct r S r t R t

q0
c
A ct r

10 11
m0c

2 2 ct r

ct r
00 g00 ct r

g ct r
2

ct r
4

1
l r r t

ct r

2

g ct r
2

1
l r r t

ct r

2

3

h k l m 1

hk ghk ct r ghl ct r xl ct r gkm ct r xm ct r

with g ct r
R t t

g00 ct r
, whence, substituting R t t with m0,

2 ct r R t t
2

m2
0 c2 ct r

00 g00 ct r
g ct r

2
ct r

4

1
l r r t

ct r

2

g ct r
2

1
l r r t

ct r

2

3

h k l m 1

hk ghk ct r ghl ct r xl ct r gkm ct r xm ct r ct r

g ct r
2

1
l r r t

ct r

2
00 g00 ct r ct r

4

3

l m 1

3

k 1

glk ct r gkm ct r glm ct r xl ct r xm ct r ct r (29)
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at any time t on 3 3 Rcm t and, in particular, on 3 Rcm t , if this 3-surface is

assumed to lie in 3 Rcm t 3 Rcm t . Thus, (29) shows that at any time t and

any point r 3 3 Rcm t depends, in general, on how much the space-time metric

tensor at the event ct r deviates from the Minkowski metric. But, since the metric tensor
of the space-time is obtained from Einstein’s field equations which, in general, contain an
energy-stress tensor term, the above relation between the phase of and the phase of the de

Broglie phase-wave at any time t and any point r 3 3 Rcm t makes depend on

the actual presence of some energy in the proximity of the event ct r . Thus, in agreement
with the Principle of Interference according to which 2 represents the particle localisation
probability density, one is naturally lead to consider the deviation from zero of , solution

of (29) at a point r 3 3 Rcm t , as an indication that some form of energy is present

in a neighbourhood of r . Furthermore, if one assumes that the particle wave function and

the particle u-wave at any time t are proportional on 3 3 Rcm t , with the “extended

particle” model it is possible to justify the interpretation of the wave function amplitude given

by the Principle of Interference at any time t not only on 3 Rcm t 3 3 Rcm t

but also on the rest of 3 3 Rcm t . In fact, by (21), the relation u K for a suitable

constant K K ei arg K yields V C0
K that, as V 0, is approximately

zero and can thus be interpreted, to a good approximation, as the absence of energy in the
form of material particle on the ‘external region’ in accordance with the meaning attributed
by the Principle of Interference to . On the other hand, within the framework of the
“extended particle” model the interpretation of according to the Principle of Interference
entails the quasi-proportionality between the particle wave function and the particle u-wave
on the ‘external region’ as claimed by de Broglie’s Double Solution Theory. In effect, if
a wave function of non-zero amplitude at any time t only on a limited region V t of the

physical 3-dimensional space contained in the hypersurface 3 Rcm t of the “extended

particle” model, the particle u-wave is given outside V t by (21) with constant and uniform
amplitude28 (see Fig. 2). Then, deploying the quasi-proportionality between the subjective
probability wave for the position observable and the objective u-wave one can determine,
in principle, the measurement probabilities for any other observable because, in general, the
measurement of a physical quantity is ultimately based upon the observation of position (see
[2]). To keep in line with the de Broglie’s Double Solution Theory requirements, let identify
3 Rcm t at any time t with the closest 3-surface to Rcm t on which the particle u-wave

and the particle wave function are exactly proportional.29 Now, as the u-wave and the wave

function are smooth functions, their exact proportionality at any time t on 3 3 Rcm t

can be extended to a quasi-proportionality, to a good approximation, at any time t on the

portion of 3 Rcm t close to its boundary with 3 3 Rcm t where 3 Rcm t

is supposed to lie. Then, substituting u K with (20) and separating the real part from

28 Hence, in the “extended particle”model there exists exact proportionality, rather than quasi-proportionality,
between the particle wave function and its u-wave on the ’external region’.
29 The values of the u-wave and the wave function at any time t on 3 Rcm t are given by, respectively,

(20) and a solution of the usual linear wave equation of quantum mechanics.
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Fig. 2 According to the “extended particle” model, at any time t the particle de Broglie phase-wave u , that
represents the u-wave of de Broglie’s Double Solution Theory, has amplitude (in blue) proportional to the

amplitude of the particle wave function (in green) on 3 3 Rcm t

the imaginary part, it turns out that

G1 r t ln r t ln K
V C0

G2 r t S rin tin R tin arg K S ct r
(30)

to a good approximation, at any time t on the portion of 3 Rcm t close to 3 Rcm t .

Then, given the features of 3 Rcm t required by both de Broglie’s Double Solution The-

ory30 and the “extended particle” model31, 3 Rcm t represents a good choice for

3 Rcm t , whence (30) holds exactly with G1 0 on 3 Rcm t 32. Since at any time

t the values of G1 and G2 at the point r depend, by definition, on a suitable world-line
ctin rin ct r described by the mass density at point P at all t [tin t] as if P were

a point-like mass that reached the point r at time t under the action of a gravitational field,
it follows from (30) that the localisation probability of the particle at each time depends,

30 In particular, the phase relationship between the u-wave and the wave particle which justifies the guidance
formula (see also Section 6.1).
31 In particular, the assumption that 3 Rcm t 3 3 Rcm t which justifies the Principle of

Interference in terms of the “extended particle” model.
32 In alternative, if the ‘intermediate region’ is extended at any time t up to 3 Rcm t 3 Rcm t ,

3 Rcm t can be placed within this portion of physical 3-dimensional space.
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to a good approximation, on the gravitational potential associated with the mass distribu-
tion and, correspondingly, with the mass distribution internal dynamics. But, in accordance
with Einstein’s general relativity, the evolution of the point-like mass belonging to the mass
distribution is obtained from

d2x0

d 2
0 dx

d
dx
d Q0

d2x1

d 2
1 dx

d
dx
d Q1

d2x2

d 2
2 dx

d
dx
d Q2

d2x3

d 2
3 dx

d
dx
d Q3

(31)

where is given by c2 d 2 ds2, is the affine connection of and Q0 Q1 Q2 Q3

is the 4-force dependent on x0 x1 x2 x3 as well as, in general, their deriva-
tives of suitably high order (see [37]). Thus, if one manages to know the energy-stress tensor
throughout the space-time, Einstein’s field equations permit, in principle, to work out the
space-time metric, to derive the geodesic equations (31) and, consequently, to obtain the
explicit form of G1 and G2. In particular, as long as G1 depends explicitly on time the form
of the particlewave function follows on from (30)with being explicitly time-dependent
(as, e.g., during the transitions between stationary states). In such a regime the particle de
Broglie phase-wave u and the particle wave function present the following features:

1. u is given by (20) and u u0 u0, to a good approximation, on the ‘singular

region’ (i.e., where u0 ) represented by the core of 3 Rcm t closer to the

mass distribution centre-of-mass;
2. u is given by (20) and u u0 K , to a good approximation, on the

‘intermediate region’ (i.e., where u0 due to the proximity to the ‘external

region’) represented by the part of 3 Rcm t closer to 3 Rcm t with K

being a suitable constant dependent on the particle33;
3. u is given by (21) and u u0 K , to a good approximation, on the

‘external region’ (i.e., where u0 ) represented by 3 3 Rcm t 34.

On the other hand, when the mass distribution reaches a dynamical regime in which the
asymptotic conditions (22), (23) and (24) are satisfied (as, e.g., in the stationary states), the
particle de Broglie phase-wave u and the particle wave function present the following
features:

1. u is given by (25), to a good approximation, on the ‘singular region’;
2. u is given by (25) and u K , to a good approximation, on the ‘intermediate

region’35;
3. u is given by (26) and u K , to a good approximation, on the ‘external region’.

33 Notice that, if the ‘intermediate region’ extends up to 3 Rcm t 3 Rcm t , u is also given by

(21) on this portion of physical 3-dimensional space.
34 Or, by an infinite portion of 3 3 Rcm t , if the ‘intermediate region’ extends up to 3 Rcm t

3 Rcm t .

35 Notice that, if the ‘intermediate region’ extends up to 3 Rcm t 3 Rcm t , u is also given by

(26) on this portion of physical 3-dimensional space.
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As a result of the quasi-proportionality between the particle u-wave and the particle wave
function on the ‘intermediate region’ and the ‘external region’, (30) with (22) and (23) and
(26) with (24) ensure that has a constant amplitude and, to a good approximation, a
phase which is linear in time everywhere in the physical 3-dimensional space except within
the ’singular region’. Thus, by deploying the proportionality relation between the particle
wave function and the particle u-wave, considered valid at least at the so-called quantum
equilibrium (see [7, 18, 22–24, 26, 27]), the distinctive feature of the probability wave as
a function that “weighs” the amount of matter present in a certain region of the physical
3-dimensional space is motivated by the “extended particle” model deploying the interaction
between the de Broglie field and the gravitational field, an aspect possible only because
both these fields exist in the physical 3-dimensional space. To the author knowledge, this
relationship between the de Broglie field and the gravitational field in finding the reasons for
the Born rule represents a novelty introduced via the “extended particle”model that have been
hitherto ignored by any other approach to quantummechanics aimed at this scope, inclusive of
the deterministic ones such as de Broglie’s Double Solution Theory and, a fortiori, Bohmian
Mechanics. Notice that the foregoing analysis carried out for the single particle de Broglie
phase-wave can be applied to the case of many-particle systems, essentially following the
original method developed within the framework of de Broglie’s Double Solution Theory for
particles that are represented as point-like singularities (see Section 6.2). However, it must
be recalled that in the “extended particle” model every particle occupies a spatially extended
region, i.e., the union of the particle ’singular region’ and ‘intermediate region’, and that the
wave equation is given by the linear one usually considered in standard quantum mechanics
only on the particle ‘external region’. Then, from the standpoint of the “extended particle”
model, the relationships between the phases and the amplitudes of thewave functions obtained
supposing the particles as point-like entities are to hold at the points of the ‘external region’
close to the ’intermediate region’ of each particle, that is, where the wave equation can still be
considered linear to a good approximation. But, since the construction of the u-wave provided
in Sec. 7.2 ensures that each particle ’singular region’ is locked to its ‘external region’ and
each particle wave function is related to the corresponding u-wave as in the single particle
case, the relationships between the phases and the amplitudes of the wave functions, given
by (17) for the two-particle system, keep establishing, in principle, the connection between
the system wave function defined in configuration space and the particle u-wave defined in
the physical 3-dimensional space.

9 Phenomenology Interpretation Via the “Extended Particle” Model

In a system made up of a single particle a point can be reached by the particle only if, in
accordance with the Principle of Phase Harmony, the clock at that point is in phase with
the particle’s de Broglie phase-wave evaluated at the clock 3-position. Then, thanks to the

guidance law and to the continuity of the particle’s de Broglie phase-wave on 3 Rcm t

at each time t , the particle itself will be driven by the external branch of the particle’s de
Broglie phase-wave given by (26) to the point where that clock sits maintaining the phase
agreement between the particle’s de Broglie phase-wave and the clocks disseminated in the
physical 3-dimensional space along the propagation path. Conversely, in a system made up
of two distinct particles a point may not be reached simultaneously by their respective de
Broglie phase-waves because, in general, de Broglie’s phase-waves of distinct particles have
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different phase36 and, consequently, a clock that is reached by the de Broglie phase-wave
of one particle (which is in phase with this particle’s de Broglie phase-wave evaluated at
the clock 3-position) cannot keep the phase agreement at the same time with the de Broglie
phase-wave of the other particle. Thus, if a particle moves in a system where several other
particles are simultaneously in a general motion, the external branch of its de Broglie phase-
wave vanishes and, consequently, the particle’s de Broglie phase-wave ends up having edges
rather than being extended throughout the physical 3-dimensional space like in a system
made up of a single particle. In other words, the de Broglie field of a particle is, in general,
short-ranged due to the effects upon the clocks disseminated on the ‘external region’ of that
particle produced by all the other particles in the system.

9.1 Two-slit Experiment

When a single particle is sent through a two-slit set-up and no disturbances take place at
either slit (e.g., no photons are emitted by a particle detector in the neighbourhood of either
slit), the phase agreement between the particle’s de Broglie phase-wave and the clocks strewn
throughout the physical 3-dimensional space is maintained all along the propagation. How-
ever, the presence of the obstacle (i.e., the walls beside the two slits) modifies the shape
of the particle’s de Broglie phase-wave in its proximity37, whence the two branches of the
particle’s de Broglie phase-wave coming off the slits of the interference set-up keep coherent
along some paths and go out of phase along other paths. Now, it is only along the paths of
phase coherence leading to a possible point of non-zero intensity on the particle detection
screen that the clocks postulated in the Principle of Clock Distribution are in phase with the
branches of the particle’s de Broglie phase-wave coming off both slits. Since these latter
waves, which extend on the particle ‘external region’, guide the ‘intermediate region’ and
the ‘singular region’ of the particle and their phase agreement with the clocks close to the
boundary of the mass distribution holds during the whole particle dynamics, the particle
must follow one of the paths of phase coherence. But, as there are more paths leading to
some points (i.e., the maxima of the interference pattern) than to other points on the screen,
there is higher probability that more particles follow the paths heading to the maxima than
anywhere else, whence it is more likely to actually encounter a particle at a maximum than
anywhere else. However, if some other particle enters the set-up (e.g., the photons emitted
by a detector), the phase agreement between the branches coming off the two slits breaks
down by the mechanism described above and, consequently, no interference pattern appears
(see [38]).

9.2 Non-local Quantum Channel Communication

Although, two distinct particles can interact, in general, through the electromagnetic field
and the gravitational field, but not via their de Broglie field due to the latter’s short-range,
under some appropriate conditions it is possible, in principle, to tune the phases of the two
single particle’s de Broglie phase-waves in such a way that they match smoothly on their

36 Unless both particles undergo a dynamics for which (13) takes on the same value at the observation point.
37 The phase of the particle’s de Broglie phase-wave varying according to (13) is modified by the gravitational
potential of the walls beside the two slits.
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‘external region’. Let then consider an isolated system made up of two far apart “extended
particles” having de Broglie’s phase-waves in phase with one another on their common
‘external region’. The de Broglie phase-wave associated with such a system, obtained from a
suitable preparation of the two particles, presents two bumps, each of which corresponding to
the ‘singular region’ of the particles, smoothly connected by a plane andmonochromaticwave
of such a low amplitude that it could hardly be detected. Such a system de Broglie’s phase-
wave defined on the physical 3-dimensional space would be associated with the system wave
function defined on the configuration space as sketched in Section 6.2 and could be viewed
as the formal means to represent a novel superluminal communication link between the two
particles. To see how this might work, let first point out that, according to the standpoint of
the “extended particle” model, if a local disturbance (i.e., the action of an external field, the
presence of an obstacle or the measurement of an observable) takes place in a limited region
of the physical 3-dimensional space somewhere between the two bumps, the clocks lying in
that region break off their phase agreement with the system de Broglie phase-wave because
the disturbance (i.e., either an electromagnetic wave or the de Broglie phase-wave of the
object representing the obstacle) interferes, in general, randomly with the de Broglie field.
Thus, the de Broglie phase-wave of the original system breaks into two separate de Broglie’s
phase-wave, one for each particle, made up of two bumps that are not any more connected
by the plane and monochromatic wave of low amplitude in the interloping ‘external region’.
In this case, one is confronted with a circumstance that, according to de Broglie’s theory of
measurement (for which any measurement operation, except the measurement of position,
may be viewed as a spectral analysis), is essential to establish a bijective correspondence
between the localisation of a corpuscule and the value of a physical quantity one wants to
measure, i.e., the co-existence of two separate solitons. This situation is what one strives to
reach in order to improve the separating power in optical or mass spectrography (see [17]).
But conversely, if a local disturbance occurs within the ‘singular region’ of one of the two
particles, say, particle 1, taking care not to break off its low-amplitude connection with the
‘singular region’ of particle 2, the energy-stress tensor is modified there and, consequently,
the solutions of Einstein’s field equations change alongside the solution of the geodesic
equations, whence the 4-velocity field as well as the mass distribution within the ‘singular
region’ of particle 1 differ from what they were before the disturbance. In order to build the
system’s de Broglie phase-wave that represents such a two-bump soliton-like state, one starts
out recalling that, by (19), the single particle’s de Broglie phase-wave for particle i (i 1 2)
at any time t has phase given by

2 i r t R i t
12 1

ctin rin ct r

S i

t
r t R i t dt

3

h 1

S i

x h
r t R i t dx h

1
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i R i t t cg00 ct r ct r dt
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where the electric charge density i R i t and the so-called curvilinear rest-mass density

g
i ct r R i

i R i t

g00 ct r
denote, respectively, the electric charge and the curvilinear

rest-mass of the point-like particle at the position 3-vector R i of the average point obtained
from the mean value theorem for integrals applied to the de Broglie phase-wave of the
“extended particle” i . Since the de Broglie phase-wave of the system is smooth throughout
the space-time,
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(33)

must be satisfied along a 3-curve t rs t at all times. Thus, the aforementioned
two-bump soliton-like state may be defined as the u-wave having the behaviour of the single
particle u-wave constructed in Section 7.2 close to the ‘singular region’ of either particle
and satisfying the boundary condition (33) somewhere in the common ‘external region’ of
the two particles. Since the variation of phase during the time-interval dt for the system’s de
Broglie phase-wave in the portion of the ‘external region’ close to the 3-surface delimiting
the ‘intermediate region’ and the ‘singular region’ of particle 1 reads, by (32),
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the phase of a perturbation of d 1 due to a variation of the 3-velocity field r within the
particle 1 mass distribution38 is given by
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whence the perturbation of the particle 1 de Broglie phase-wave has phase velocity

r t
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(34)

on the ‘external region’ of both particles corresponding to the flat portion of space-time. Then,
it can be shown that, given any finite value of a potentially estimated lower bound for the

superluminal speed , say, min c, there exists an internal dynamics of the particle 1 mass

distribution such that min on the ‘external region’ of both particles corresponding to
the flat portion of space-time. Notice that this dynamics is compatible with the construction of
the particle de Broglie phase-wave given in Section 7.2 (see, in particular, footnote 25) as well
as with the precepts of Einstein’s relativity applied to the external local perturbation occurring
on the portion of the particle 1 ‘external region’ close to the particle 1 ‘intermediate region’

38 As mentioned before, this 3-velocity field variation is brought on by a local disturbance taking place within
the ‘singular region’ of particle 1.

123

International Journal of Theoretical Physics (2024) 63:204 Page 29 of 35 204



(in particular, the validity of condition ds2 0 on the ’external region’). Nevertheless, the
introduced local perturbation induces a change in the mass dynamics within the boundary
of the particle 1 ‘singular region’ (where, by definition, ds2 0) for which the values
of the parameters x 1 1 x 1 2 and x 1 3 in (34) on the ‘external region’ of both particles

corresponding to the flat portion of space-time become such that 3
h 1 x 1 h 2

c2 at all
times. Summarising, if the phase agreement between the de Broglie phase-waves of particle
1 and particle 2 is ensured throughout the space during the motion of the particles and,
consequently, the system de Broglie phase-wave keeps being smooth during the time interval
while a perturbation propagates through the system, a variation of the 3-velocity field of the
mass distribution corresponding to particle 1 causes a perturbation of the system de Broglie
phase-wave throughout the ‘external region’ of particle 1 that, having phase velocity greater
than c, may affect39 the 3-velocity field of the mass distribution on the ‘singular region’
of particle 2. In other words, a local disturbance acting upon one particle40 determines a
non-local41 effect upon a second particle, no matter how far from the first, provided that the
weak interconnection between the two particles due to the system de Broglie phase-wave is
not broken. Though by a different procedure, this conclusion seems to agree, for example,
with the stochastic interpretation of quantummechanics according to which the transmission
of information is not restricted to the speed-of-light but undergoes a purely local theory that
leads to a non-local theory (see [19]). The possibility for non-locality to arise from a classical
context is already known by the physics community. For instance, a non-local behaviour has
been noticed for the so-called resonant states, i.e., solitary wave solutions to certain classical
non-linear wave equations (see [39–41]) and several experiments have shown that, for some
modifications of the Schrödinger equation involving a non-linear term induced by gravity,
communications between separate parts of the system cannot travel at finite speed during the
collapse process of the system wave function (see [42]). From a similar perspective, before
trying to experimentally test whether the “extended particle” model interpretation of non-
locality is actually plausible, one should perhaps know the precise form of the non-linear
term that must be added to the linear wave equation. For the time being, the question of
whether the description of non-locality provided by the “extended particle” model is correct
remains an open issue.

10 Discussion and Conclusion

Einstein’s general relativity and de Broglie’s guidance law exhibit the following remarkable
consonance: the dynamics of the particle is obtained, according to the former, via the geodesic
equations from the knowledge of the 4-force acting upon the particle and of the gravitational
field42 and, according to the latter, via the guidance formula from the phase of a wave with
objective character that propagates in the physical 3-dimensional space. Thus, combining
these two interpretations one expects that the gravitational field and the de Broglie field
interact with each other through the particle by determining its motion. To better understand

39 On the face of it, instantaneously but, in reality, at a finite superluminal speed.
40 For instance, a measurement of an observable associated with this particle.
41 ’Non-local’ here means that there exist interactions between events that are too far apart in the physical
3-dimensional space and too close together in time for the events to be connected even by signals moving at
the speed of light.
42 In turn, these are derivable, respectively, from the energy-stress tensor and from solving Einstein’s field
equations.
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the close relationship between these two fields one might appeal to a theory (or better said, a
theoretical program) from which the guidance law can be derived. To be in agreement with
quantummechanics this theoretical program, called the Double Solution Theory, must satisfy
some minimal requirements that have been thoroughly described by de Broglie, its inventor,
long time ago (see [6]). But, in its original unfinished version this program addresses only
partly its relationship with Einstein’s general relativity, leaving room to deploy this latter
theory in the attempt to disclose the very nature of the physical wave the existence of which
it postulates. And this is actually the goal the model here described aims at by resorting to
de Broglie’s very seminal idea of wave-particle duality, that is, the wave associated with a
point-like particle represents the distribution of phase of an infinity of clocks disseminated
throughout the physical 3-dimensional space. At variance with the usual description of an
elementary particle as a point-like entity, in this work the particle mass is assumed to be
distributed over a finite 3-volume in order to avoid singularities for the space-time metric
tensor and the evolution of any pair of points belonging to the mass distribution corresponds
to two events separated by a space-like interval. Although arising from an utterly different
viewpoint, this representation of the particle seems to agree with a result by Dirac:

it is possible for a signal to be transmitted faster than light through the interior of an
electron. The finite size of the electron now reappears in a new sense, the interior of the
electron being a region of failure ... of some of the elementary properties of space-time

(see [43]). The wave associated with the “extended particle” built here resembles the wave
of pure phase devised by de Broglie for a point-like particle (except for having an amplitude
dependent on the space-time coordinates over a small portion of space) that can be related to
the usual wave function of quantum mechanics as required by the Double Solution Theory.
The connection between these two waves of different nature is realised recurring to a specific
choice for the purely periodic phenomenon representing the clock that sits at each point of
space outside the 3-volume occupied by the mass distribution, i.e., the complex exponential
function considered by de Broglie (see, e.g., [6]). One might speculate as to why the rela-
tionship between the particle’s de Broglie phase-wave and the particle wave function should
depend on such a particular choice of periodic function among all those potentially valid to
represent a purely periodic phenomenon. In this respect, a lack of generality might just be a
limitation of the model presented in this work. Then, if the 3-volume occupied by the particle
mass is made up of the ’singular region’, the ’intermediate region’ and, possibly, part of the
’external region’ as conjectured by de Broglie’s Double Solution Theory, the values of the
amplitude and the phase of the particle wave function obtained following the usual methods
of quantum mechanics provide, to a good approximation, with constraints for the internal
dynamics of the mass distribution. In other words, the “extended particle” model arising in
this study suggests that the measured values of the probability amplitudes and the frequencies
associated with the transitions between energy stationary states are related deterministically
to the space-time metric tensor and to the 4-velocity field of the point-like masses forming
the “extended particle”. In accordance with the classical framework of Einstein’s general rel-
ativity, these two latter fields are obtained, respectively, from the Einstein field equations and
the geodesic equations. But, for this to happen, the mass distribution must not disintegrate
under the repulsion of the Coulomb field acting between the components of the “extended
particle”, whence one expects that there exists an attractive field at this scale such as, e.g., a
Poincaré-like particle internal field (see [35, 44])which contributes to the energy-stress tensor
appearing in the Einstein field equations. Perhaps, such a gluing effect might originate from
an appropriate non-linear term in the wave equation for the particle de Broglie phase-wave
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that, in accordance with the Double Solution Theory, should be sensibly non-zero only on
a limited portion of the physical 3-dimensional space. The common approach to establish
such a non-linear wave equation has so far rested upon guessing the non-linear term to be
added to the usual linear wave equation considered in standard quantummechanics and, even
in the framework of the approximated version of this theory represented by the Pilot-Wave
Theory, the existence of a possible solitonic solution to the wave equation has been shown
choosing a priori the wave functional that guides the soliton. Instead, the strategy followed
in the “extended particle” model is different from the common one to the extent that one
deploys de Broglie’s original idea (i.e., the existence of a periodic phenomenon associated
with the particle) as well as general relativity arguments (i.e., the clock phase shift due to
clock interaction with the gravitational field) to show that the particle wave function is asso-
ciated with a time-evolving soliton defined in the physical 3-dimensional space and from
this one can determine the exact form of the non-linear term in the complete wave equation
(for conciseness sake, further details on this latter aspect will be provided in a subsequent
work to be published). Notice that the importance of the non-linearity in the wave equa-
tions of quantum mechanics has been already highlighted in the past, especially in relation
to the appearance of the discrete spectra, the stationary states and their stability as well as
with the explanation of the quantum jumps, a feature that is strange to any genuinely linear
theory (see [45–48]). However, so far, the supplementary tailor-made non-linear terms have
been introduced to produce a desired effect (see [4, 49–57]). Also the non-linearity of the
Schrödinger-Newton equation belongs to the class of theories based upon an a priori guess
but it is of particular interest for comparison with the “extended particle” model due to its link
with the gravitational effect on the particle wave function. In addition, recent speculations
about the connection between the Schrödinger-Newton equation and de Broglie’s Double
Solution Theory ([15, 33, 58]) as well as a large literature on the existence, uniqueness and
stability of global solutions for this equation and on approximated and asymptotic behaviour
of its solutions (see [59–63]) might inspire further investigations on the “extended particle”
model.

As shown in the present work, the elementary particle behaves like a fluid extended
over the physical 3-dimensional space whose internal dynamics obeys the classical laws of
motion but with some constraints that allow to retrieve the findings of quantum mechanics
as if the particle were point-like. Although foreign to most approaches, this wave-monistic
description of the particle has the advantage of being far from violating the No Singularity
Principle (see [64]). Moreover, unlike the studies concerning the role of the non-linearity
cited previously, this model for the relativistic scalar particle might help not only derive the
non-linear wave equation envisaged by de Broglie’s Double Solution Theory but also propose
a suitable dynamical system for the internal structure of the “extended particle” where the
atoms discrete energy spectrum could emerge, for instance, as a consequence of a limit
cycle phenomenon (see [65] and references therein, [66]). Though, it would remain to check
whether the “extended particle”model can be extended to the case of spinor particles albeit, at
first sight, it seems that themain ideas behind it developed for the relativistic zero-spin particle
can be also carried over to the relativistic half-spin particle. Finally, thanks to thismodel based
on postulating that the physical 3-dimensional space is filledwith, so to speak, an aethermade
up of clocks it has been possible to provide, consistentlywith the notion of deBroglie’s phase-
wave, an intelligible description of the single particle interference phenomenology as well
as of non-locality in terms of a quantum channel, with its potentially novel application to
superluminal communications. Possibly, one may also use the “extended particle” model to
provide further insight into other quantum effects (e.g., the quantum tunneling).
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