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Abstract
In this article, with an overview to the dynamics of the homogeneous and isotropic cosmology
for the usual and phantom scalar fields, we investigate the model of exponentially damping
fields. We obtain the extract solutions for the potential function, the scale factor of the model
and the dynamics of the parameter of the equation of state. We present two proposals for the
scalar field to achieve the exponential potential function in terms of time and extract Hubble’s
cosmological parameters, scale factor and equation of state parameter for each model. At
the end of the work, we turn our attention to the quantum cosmology of the model with
time-damped exponential potential and form the Wheeler-Dewitt equation with some new
variables. TheWheeler-DeWitt wave packets with the Gaussian weight function are obtained
for the scalar fields in different cases and draw the probability function of each one.

Keywords Scalar field cosmology · Quintessence field · Phantom field ·
Quantum cosmology

1 Introduction

In recent years, cosmological observations of supernovas and the distribution of galaxies in
the universe, as well as detailed maps of the cosmic microwave background, have provided
significant data that allow us to follow the evolution of the universe over the past 13.8
billion years and let’s go back to the beginnings of the universe [1–3]. A detailed analysis
of cosmological observations [4–15], supports the idea that the universe has undergone two
stages of accelerated expansion during its evolution. The rapid expansion phase in the early
period of evolution, known as inflation [16–18],which occurred before the dominant radiation
period, and the current acceleration phase, known as the late cosmic acceleration [18–21].
From the perspective of general relativity, the cosmic acceleration occurs when the cosmic
fluid is dominated by an unknown source called dark energy, which has a negative value of
the equation of state (EoS) parameter [22] and [23].
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In the framework of general relativity, scalar fields play an important role in gravitational
physics, as they provide theoretical mechanisms to explain observations. Since inflation,
which is responsible for the early acceleration phase of the universe, is characterized by a
scalar field, the same model can provide dynamical terms in the gravitational field equations
with anti-gravitational behavior and can also be used as amodel to describe the acceleration of
the late universe. The most well-known scalar field model that has been studied in literatures
is the quintessence model [24–27]. Other scalar field models presented in the articles are:
phantom fields [28–30], quintom models [31–33], Chiral models [34–36], k-essence scalar
fields [37] and [38], and some less and more famous ones [39–45].

In the quintessence scalar field cosmology [46], the EoS parameter of the scalar field
extends to

∣
∣ωφ

∣
∣ ≤ 1, where ωφ = 1, corresponds to a stiff fluid in which only the kinetic part

of the scalar field dominates, in while the limit ωφ = −1, corresponds to the case where only
the potential of the scalar field dominates, leading to � cosmology. Note that acceleration
occurs when −1 ≤ ω < − 1

3 . In phantom scalar fields, ωφ can cross the limit −1 and take
smaller values, for example, when the kinetic energy is negative [46–50]. Phantom models
accept a new type of singularity called Big-Rip singularity [51–56], in which when the scale
factor a(t), goes to infinity in finite time, the energy density and pressure diverge. This differs
from usual singularities in general relativity such as Big-Bang, where the energy density and
pressure increase infinitely as the scale factor approaches zero. In general, scalar field models
require the choice of a potential V (φ) for the scalar field φ . The consideration of a specific
potential is usually done by a suitable proposal (ansatz).

In the early stages of the universe, quantum effects play an important role in the evolution
of the universe. It is believed that the problem of the singularity of the early universe and
other types of singularities in general relativity such as black holes should be finally removed
by a quantum theory of general relativity. However, in the absence of a full theory of quantum
gravity, it would be useful to describe the quantum state of the universe within the context
of canonical quantum cosmology based on the Wheeler-Dewitt (WDW) equation. For this
reason, quantization of models of scalar fields in cosmology are also of special importance,
see [57–60].

In this paper, using the general formof the action for the usual scalar field, say quintessence
and phantom fields, in Section 2, we form the Friedman and Klein-Gordon equations. Then,
by writing the Hubble parameter as a function of the scalar field, we establish the required
relations for the next sections. In Section 3, we consider the simple case of a exponentially
damping potential and some cosmological parameters such as theHubble parameter, the scale
factor, as well as the shape of the potential function and the dynamics of the EoS parameter
of the model as a function of the scalar field and time are obtained. In the fourth section, we
present two ansatz for the time dependence of the scalar field, which leads to the cosmology
of the exponential scalar potential. We extract the dynamics of the Hubble parameter, the
scale factor and the EoS parameter of the perfect fluid as functions of the scalar field and
time. In Section 5, we deal with the quantum cosmology of the damping exponential scalar
potential model extracted in the Section 4 and we form the corresponding WDW equation.
By defining some new variables, we rewrite the WDW equation in terms of them and obtain
its eigenfunctions using the method of separation of variables. At the end, we determine the
probability function with the use of the the wave packet constructed with the Gaussian weight
function. Finally, we summarized the main results of the paper in Section 6.
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2 Homogeneous and Isotropic Scalar Field Cosmology

The cosmological action of the homogeneous and isotropic scalar field may be written in the
form

S =
∫

dt N

(

−3
aȧ2

N 2

)

+ 1

2

∫

dt Na3
[

ε
φ̇2

N 2 − 2V (φ)

]

, (1)

where V (φ) is the potential and ε indicates the type of scalar field, so that ε = 1 indicates the
quintessence and ε = −1 corresponds to the phantom. Thus, the Lagrangian may be written
as

L(N , a, φ, ȧ, φ̇) = 1

N

(

−3aȧ2 + 1

2
a3εφ̇2

)

− a3NV (φ). (2)

The Euler-Lagrange equations with dynamical variables {N , a, φ} with N = 1 leads to the
equations

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−3aȧ2 + 1
2εa

3φ̇2 − a3V (φ) = 0,

−3ȧ2 − 6aä − 3
2εa

2φ̇2 + 3a2V (φ) = 0,

3εa2ȧφ̇ + εa3φ̈ + a3V ′(φ) = 0.

(3)

In terms of the Hubble parameter H = ȧ

a
, the above equations take the form

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3H2 = 1
2εφ̇

2 + V (φ),

2Ḣ + 3H2 = − 1
2εφ̇

2 + V (φ),

φ̈ + 3H φ̇ + εV ′(φ) = 0.

(4)

For the given Lagrangian function (2) the momentum conjugate to each variable can be

obtained by definition pi = ∂L
∂ q̇ i

where qi ∈ {a, φ} and pi ∈ {

pa, pφ

}

. The results are

pa = −6aȧ

N
, pφ = εa3φ̇

N
, (5)

by means of which we get the Hamiltonian of the model as

H = N

[

− p2a
12a

+ p2φ
2εa3

+ a3V (φ)

]

. (6)
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In the Hamiltonian formalism, the classical dynamics of each variable is determined by the
Hamilton equation q̇ = {q,H}, where {., .} is the Poisson bracket. So, we will have

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧ = − pa
6a

,

ṗa = − p2a
12a2

+ 3ε

2

p2φ
a4

− 3a2V (φ),

φ̇ = ε pφ

a3
,

ṗφ = −a3V ′(φ).

(7)

Now, with the use of the above set of equations and the Hamiltonian constraint

− p2a
12a

+ p2φ
2εa3

+ a3V (φ) = 0, (8)

we are led to the Friedmann and Klein-Gordon equations

H2 = 1

3

(
1

2
εφ̇2 + V (φ)

)

, φ̈ + 3H φ̇ + εV ′(φ) = 0. (9)

For time periods when the scalar field varies uniformly, for example during the period of
oscillation between two infinite values, the evolution of theHubble parameter can be related to
the scalar field as H(t) = H (φ(t)), [61] and [62]. In this case we will have Ḣ = H ′φ̇, where
the prime represents the derivative with respect to φ. Now, the derivation of the Friedmann
equation 2H Ḣ = 1

3 (εφ̇φ̈ + φ̇V ′(φ)), and with the help of Klein-Gordon equation we obtain

Ḣ = −1

2
εφ̇2 ⇒ H ′ = −1

2
εφ̇ (10)

Also, the derivative of (10): Ḧ = −εφ̇φ̈, and combination of (9) results the following set of
equations

3H2 + Ḣ = V (φ), (11)

Ḧ + 6H Ḣ = V̇ , (12)

3H2 − 2εH ′2 = V (φ). (13)

3 Exponentially Damping Scalar Field Model

In this section we consider a scalar field damping exponentially with time as [63]

φ(t) = φ0e
−βt , (14)

which tends to zero as t → ∞. By putting in (10), after integration we get

H(φ) = h + 1

4
εβφ2, (15)

where h is an integration constant. The potential function can now be evaluated from (13) as

V (φ) = μ + m2

2
φ2 + λ

4
φ4, (16)
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Fig. 1 The Hubble parameter (left) and scalar potential (right) for the exponential damping scalar field model.
Red and blue curves show the quintessence and phantom scalar field respectively. The figures are plotted for
h = 2 and β = 10

in which

μ = 3h2, m2 = εβ(3h − β), λ = 3β2

4
. (17)

With the use of (14) and (15) the time evolution of the scale factor is obtained as follows

a(t) = a0e
ht+ ε

8 φ̇2(1−e−2βt ), (18)

where in terms of the scalar field takes the form

a(φ) = a0

(
φ

φ0

)− h
β

e
ε
8 (φ2

0−φ2). (19)

Now, using the perfect fluid equation of state, p = ωρ, we obtain the dynamics of the state
parameter ω(t):

ω(t) = p(t)

ρ(t)
=

1
2εφ̇

2 − V
1
2εφ̇

2 + V
, (20)

which upon substituting from the (10) and using (14)-(16) one has

ω(φ) = −μ + 1
2 (εβ

2 − m2)φ2 − λ
4φ4

μ + 1
2 (εβ

2 + m2)φ2 + λ
4φ4

, (21)

and

ω(t) = −μ + 1
2 (εβ

2 − m2)φ2
0e

−2βt − λ
4φ4

0e
−4βt

μ + 1
2 (εβ

2 + m2)φ2
0e

−2βt + λ
4φ4

0e
−4βt

. (22)

In Figs. 1, 2 and 3, we have shown the behavior of the above functions for for typical values of
the parameters. As the Fig. 2 shows the scale factors represent different types of singularities
in the cases where the scalar field is of the type of quintessence or phantom. Also, from the
Fig. 3, it is clear that the EoS parameter tends to −1 from the values greater (smaller) than
−1 when the scalar field is a quintessence (phantom) fluid.

4 Exponential Scalar Potentials

In this section, in order to achieve the exponential potential function, we present two models
for the scalar field as a function of time, and discuss the dynamics of the proposed models.
•The first ansatz:
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Fig. 2 Up: the scale factor in terms of time and down: the scale factor versus scalar field for the exponential
damping scalar fieldmodel. The red and blue curves represent the quintessence and phantomfields respectively.
The graphs on the left and right are drawn for h = 2 and h = −2. β = 5 is considered for all curves

We consider a scalar field of the form

φ(t) = A ln[B(t − t0) + C], (23)

where A, B and C are some non-zero constants. So, from (10) we have

Ḣ = − ε

2

A2B2

[B(t − t0) + C]2 , (24)

Fig. 3 EoS parameter of the quintessence (red curve) and phantom (blue curve) field versus time. The figures
are plotted for the numerical values β = 2 and h = 2
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Fig. 4 The red and blue curves show the behavior of the Hubble parameter in terms of the quintessence and
phantom scalar fields respectively

where upon integration results the Hubble parameter as

H(t) = ε

2

A2B

(t − t0) + C
. (25)

With the use of these relations in (11), we obtain an exponential potential function for the
scalar field

V (φ) = V0e
−λφ, (26)

in which V0 = 1
4 A

2B2(3A2−2ε) and λ = 2
A . If in (25) we set H(t0) = H0, then B

C = λ2

2ε H0.
In order to establish the limiting conditions of the quintessence andphantom,we setC = ε. By
determining the coefficients of B and C , the value of V0 takes the form V0 = H2

0 (3− 1
2ελ

2).
Now, our ansatz for the scalar field in (23) can be read as

φ(t) = 2

λ
ln

[
1

2
λ2H0(t − t0) + ε

]

, (27)

with the Hubble parameter

H(t) = εH0

λ2H0
2 (t − t0) + ε

,⇒ H(φ) = εH0e
− λ

2 φ, (28)

where is plotted in Fig. 4.

Fig. 5 The scale factor versus time. The figure on the left corresponds to the quintessence, ε = +1, the right
one corresponds to the phantom field, ε = −1. For both: λ = 10
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To obtain the scale factor of the model we may use the definition H = ȧ
a in (28) to get

a(t) = a0

[
1

2
λ2H0(t − t0) + ε

] 2ε
λ2

. (29)

In Fig. 5 we have plotted the time behavior of the scale factor. As the figures show the scale
factor represents different types of singularity for the quintessence and phantom fields.

Finally, from (9) we can evaluate the energy density ρ = 3H2 as

ρ(t) = ρ0

(
a(t)

a0

)−ελ2

, (30)

where ρ0 = 3H2
0 , and from which the EoS parameter will be a constant value as

ω = 1

3
ελ2 − 1. (31)

•The second ansatz:
Let us now consider the a scalar field of the form

φ(t) = A ln [tanh (B(t − t0))] , (32)

where A and B are non-zero constants. After inserting in (10) and integration we have

H(φ) = εA2B cosh

(
φ

A

)

+ h, (33)

where h is the integration constant. The potential function can be obtained from (13) as

V (φ) = A2B2
[

3A2 cosh2
(

φ

A

)

− 2ε sinh2
(

φ

A

)]

+ 3h

[

h + 2εA2B cosh

(
φ

A

)]

. (34)

Now, we examine two cases:

a)We set A = ±
√

2ε
3 and h = 0, for which we get a positive constant potential V =

3A4B2, where it can be used to describe models with V (φ) = � > 0. Therefore, we have

φ(t) = ±
√

2ε

3
ln

[

tanh

(
3

2
H0(t − t0)

)]

, (35)

in which we have taken B = 3
2H0. Also,

H(φ) = H0 cosh

(

±
√

3ε

2
φ

)

, V (φ) = 3H2
0 . (36)

TheEoS parameter in terms of the scalar field in thismodelmay be evaluated from (22) with result

ω(φ) = 2 tanh2
(√

3ε

2
φ

)

− 1. (37)

Finally, with the relation H = ȧ
a = a′

a φ̇, at hand the scale factor takes the form

a′

a
= ± 1√

6ε
coth

(√

3ε

2
φ

)

⇒ a(φ)

a0
=

[

sinh

(√

3ε

2
φ

)]± 1
3

. (38)

The results of this case are shown in Fig. 6.
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Fig. 6 The Hubble parameter and the EoS parameter are drawn as a function of the scalar field based on the
(36) and (37). The blue and red curves show the quintessence and the phantom fields respectively

b)Now, let us consider the situation in which A = ±
√

−2ε
3 and h = 0, for which we have

B = − 3
2H0, and the potential function for both phantom and quintessence is equal to

V (φ) = V0 cosh

(
2φ

A

)

⇒ V (φ) = V0 cosh
(

±√−6ε φ
)

, (39)

where V0 = 3H2
0 . Simple calculations based on the relations obtained previously result the

following expressions for the cosmological variables
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) = ±
√

−2ε
3 ln

[

tanh
(− 3

2H0(t − t0)
)]

,

H(φ) = H0 cosh

(

±
√

−3ε
2 φ

)

,

a(φ)
a0

=
[

sinh

(√

−3ε
2 φ

)]± 1
3

,

ω(φ) = 1

2 tanh2
(√

−3ε
2 φ

)

− 1
.

(40)

Figure 7 shows behavior of the scale factor in terms of the scalar field for ε = +1 and
ε = −1.

Note that the potential (39) may be written as V (φ) = V0
2

(

e
2φ
A + e− 2φ

A

)

. Since the classi-

cal singularities occur for large values of |φ|, in regimeswhen quantumgravity considerations
are important, the potential can be approximated as

V ≈ V0
2
e
2φ
A = V0

2
e±√−6ε φ. (41)

At this point it should be noted that finding exact solutions plays a vital role in cosmology.
Cosmological models with homogeneous and isotropic scalar field have been widely studied
in literature. For instance general solutions for two sets of exponential potentials in a scalar
field model for quintessence are discussed in [64], while the scalar field with exponential
potentials and transient acceleration is reviewed in [65]. For unified phantom cosmological

123

International Journal of Theoretical Physics (2024) 63:193 Page 9 of 19 193



Fig. 7 The scale factor versus the scalar field based on the relations (39) and (40) for ε = +1 (blue curve)
and ε = −1 (red curve)

models see [66] and exponential-like, cosh-like and sinh-like potentials have been studied in
[67]. In [68] and [69], the authors have used exact solutions in description of the inflationary,
darkmatter and dark energymodels and also have presented an analysis of an exactly solvable
model of an accelerator dominated expanding universe by dark energy in a phantom scalar
field model.

What we have done so far in this article is to develop a general approach to the solution
of the Einstein-Klein-Gordon equations. Indeed, we investigated the dynamics of the homo-
geneous and isotropic scalar field cosmological model using potential inverse engineering.
In other words, we have shown how to find the scalar potentials that lead to a predetermined
scalar field behavior and the associated evolution of the scale factor and dynamics of the EoS
parameter. Therefore,in comparison with the other works, by proposing two scalar fields
in terms of time, both of which lead to the exponential potential function, we studied the
dynamics of the model and extracted cosmological parameters as functions of potential and
functions of time. We did this for usual and phantom scalar fields.

5 Quantum Cosmology of theModel

Quantization of the model described above begins with the WDW equation H
 = 0, where
H is the Hamiltonian quantum operator and 
 is the wave function of the universe. With the
Hamiltonian (6), canonical quantization rule pq → −i ∂

∂q and use of the Laplace-Beltrami
factor ordering, we arrive at

[
1

2
a

∂

∂a
a

∂

∂a
− 1

2
ε

∂2

∂φ2 + a6V (φ)

]


(a, φ) = 0. (42)

Applying the change of variable α = ln a, and with the potential function (26), the WDW
equation takes the form

[
1

2

∂2

∂α2 − 1

2
ε

∂2

∂φ2 + V0e
6α−λφ

]


(α, φ) = 0. (43)
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Now, let us introduce two new variables as [70]
⎧

⎪⎪⎨

⎪⎪⎩

u(α, φ) =
√

2V0
3 Y

[

cosh(X) + λ√
6ε

sinh(X)
]

,

v(α, φ) =
√

2V0
3 Y

[
1√
ε
sinh(X) + ελ√

6
cosh(X)

]

,

(44)

in which

X = √
ε

(

3φ − ε
λ
√
6

2
α

)

, Y = e3α− λ
√
6

2 φ

1 − ε( λ√
6
)2

. (45)

In terms of these new variables the WDW equation will become
(

∂2

∂u2
− ε

∂2

∂v2
+ 1

)


(u, v) = 0. (46)

The solutions of the above equation can be separated into the form 
(u, v) = U (u)V (v),
where U (u) and V (v) satisfy the following equations

⎧

⎪⎨

⎪⎩

d2U
du2

+ k2U = 0,

d2V
dv2

+ ε(k2 − 1)V = 0,

(47)

with solutions
⎧

⎪⎨

⎪⎩

U (u) = C1eiku + C2e−iku,

V (v) = C3ei
√

ε(k2−1)v + C4e−i
√

ε(k2−1)v,

(48)

where k is the separation constant andCi are integration constants. Therefore, the eigenfunc-
tions of the WDW equation may be written as


±
k (u, v) = D1e

i(ku±
√

ε(k2−1)v) + D2e
−i(ku±

√
ε(k2−1)v), (49)

where as before ε = ±1 stands for the quintessence or phantom fields. The general solutions
of the WDW equation should be constructed by a superposition of its eigenfunctions as


(u, v) =
∫

dkA(k)
k(u, v), (50)

where theweight function A(k)maybe chosen as aGaussian profile A(k) = 1

(
√

πσ)
1
2
e− (k−k̄)2

2σ2 ,

to achieve a suitable wave packet. Thus, we will have


±(u, v) = 1

(
√

πσ)
1
2

∫

dk e− (k−k̄)2

2σ2
[

D1e
i(ku±

√
ε(k2−1)v) + D2e

−i(ku±
√

ε(k2−1)v)
]

.

(51)
Now, we consider the following cases

•D1 
= 0 and D2 = 0: In this case the wave packet takes the form


±(u, v)= −π
1
4
√

σ
√∓2 + 2σ 2

√
εv

exp

(
2i k̄u ∓ 2

√
εv ± k̄2

√
εv−σ 2u2 + 2σ 2εv2

2 ∓ 2σ 2
√

εv

)

E±(u, v),

(52)
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in which the error functions E±(u, v) are

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E+(u, v) = Erfi

[

2 + k̄ + iσ 2u − 2σ 2√εv

σ
√−2 + 2σ 2

√
εv

]

− Erfi

[

−2+k̄ +iσ 2u+2σ 2√εv

σ
√

−2+2σ 2√εv

]

,

E−(u, v) = Erf

[

−2 − k̄ − iσ 2u − 2σ 2√εv

σ
√

2 + 2σ 2
√

εv

]

− Erf

[

2−k̄−iσ 2u+2σ 2√εv

σ
√

2+2σ 2√εv

]

.

(53)

See the probability function of the wave packet
∣
∣
±

ε (u, v)
∣
∣2 in the Fig. 8.

•D1 = 0 and D2 
= 0: In this case the wave packet based on the (51) has again an
analytical form as


±
ε (u, v) = −π

1
4
√

σ
√±2 + 2σ 2

√
εv

exp

(

∓2i k̄u + 2
√

εv ± k̄2
√

εv − σ 2u2 ± 2σ 2εv2

±2 + 2σ 2
√

εv

)

E±(u, v),

(54)

Fig. 8 The figures show the probability function of the wave packet
∣
∣
±

ε (u, v)
∣
∣2 in the case D1 
= 0 and

D2 = 0 for the quintessence and phantom scalar fields
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with the error function

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E+(u, v) = Erf

[

−2 − k̄ + iσ 2u − 2σ 2√εv

σ
√

2 + 2σ 2
√

εv

]

− Erf

[

2−k̄ +iσ 2u+2σ 2√εv

σ
√

2+2σ 2√εv

]

,

E−(u, v) = Erfi

[

2 + k̄ − iσ 2u − 2σ 2√εv

σ
√−2 + 2σ 2

√
εv

]

− Erfi

[

−2+k̄−iσ 2u+2σ 2√εv

σ
√

−2+2σ 2√εv

]

.

(55)

The corresponding wave packets are plotted in Fig. 9. We have used the approximation
√

(1 − k2) ∼= 1 − 1
2k

2, to evaluate the integrals in the above cases.
•D1 = D2 
= 0 and D1 = −D2 
= 0: In these cases the wave function is of the form


±
ε (u, v) = 2

(
√

πσ)
1
2

∫

dk e− (k−k̄)2

2σ2
(

cos(ku ±
√

ε(k2 − 1)v)
)

, (56)

Fig. 9 The figures show the probability function of the wave packet
∣
∣
±

ε (u, v)
∣
∣2 in the case D1 = 0 and

D2 
= 0 for the quintessence and phantom scalar fields
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for D1 = D2, and


±
ε (u, v) = 2i

(
√

πσ)
1
2

∫

dk e− (k−k̄)2

2σ2
(

sin(ku ±
√

ε(k2 − 1)v)
)

, (57)

for D1 = −D2, where their approximate behavior for some typical values of the parameters
is shown in Fig. 10.

It should be noted that our attention here was focused on extracting the damped expo-
nential potential function and the results obtained in this section refer to the quantization of
this model. One may find a review of the classical solutions and the semi-classical WKB
approximation of the quantum regime for the barotropic FRWmodel in [71]. Also, the exact
solutions of the WDW equation for the exponential scalar potential have been discussed in
[72] and [73], and the shape of the wave function has been drawn in terms of the scalar field.
However, in the present work, extracting the exponential potential function, the probability
function of the wave packets in different states is what we have achieved. We did this for
both usual and phantom scalar field models and have made it possible to compare the results
by drawing related diagrams.

Fig. 10 approximate behavior of the wave packet for the cases D1 = D2 or D1 = −D2
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Another point that seems appropriate to mention here is the correlation between these
quantum patterns and the classical trajectories. A question in quantum cosmology is the
recovery of classical solutions from the corresponding quantum model or, in other words,
how the WDW wave packets can predict a classical universe. In quantum cosmology, the
coherent wave packets are usually constructed with suitable asymptotic behavior in the min-
isuperspace, peaking in the vicinity of the classical trajectory. As we have done here, this
task is usually done by choosing appropriate weight functions in the integrals that describe
the superposition of the eigenfunctions of the WDW equations, see [74–76] for more details.
In this sense, We expect that the square of the wave functions plotted in Figs. 8, 9, and 10,
have their dominant peaks in the vicinity of the classical trajectories obtained in the previous
section. However, comparing these, in the presented model may not be straightforward. This
is because that the classical solutions are expressed in terms of the variables a and φ, while
the quantum wave functions are finally expressed in terms of the variables u and v, after
some change of variables in (44) and (45). Therefore, here we only limited ourselves to a
qualitative analysis based on (44) and (45). For example, in the case where ε = −1, from
(44), we get u ∼ Y (cosh X − i sinh X) and v ∼ Y (−i sinh X − cosh X), which may results
u ∼ ±v. Now, a glance at the Figs. 8 and 9 shows that these may be interpreted as the locus
of peaks of |
−1|2, in u − v plane. Other cases can also be checked with a similar analysis,
which means that our quantum pattern is in a good agreement with its classical counterpart.

6 Final Remarks

In this article, we presented two proposals for the scalar field. The first one was

φ1(t) = 2

λ
ln

[
1

2
λ2H0(t − t0) + ε

]

,

which led to the damping exponential potential V (φ) ∼ e−λφ . Our second proposal for the
scalar field was

φ2(t) = ±
√

2ε

3
ln

[

tanh

(
3

2
H0(t − t0)

)]

,

φ2(t) = ±
√−2ε

3
ln

[

tanh

(

−3

2
H0(t − t0)

)]

,

Fig. 11 The time behavior of the scalar field considered in this paper
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Fig. 12 The behavior of the Hubble parameter in terms of φ, considered in this paper

which gave the potentials V (φ) = 3H2
0 and V (φ) ∼ e±√−6εφ , respectively. These functions

for the scalar fields are plotted in Fig. 11.
We also have found the Hubble functions of these models as

H1(φ) = H0e
− λ

2 φ,

for the first proposal and

H2(φ) = H0 cosh

(

±
√

3ε

2
φ

)

,

H2(φ) = H0 cosh

(

±
√−3ε

2
φ

)

,

for the second one which have shown in Fig. 12.
In order to see the application range of the two proposed models for the scalar field, we

consider the EoS parameter of these two models. We found that this parameter takes the form

ω1 = 1

3
ελ2 − 1,

Fig. 13 The EoS parameter for the models considered in this paper
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for our first proposal which holds for the quintessence and phantom fields for all values of
λ. For the second model, on the other hand, the EoS parameter is obtained as

ω2(φ) = 2 tanh2
(√

3ε

2
φ

)

− 1,

for the model a, and

ω2(φ) = 1

2 tanh2
(√

−3ε
2 φ

)

− 1
,

for the model b. According to which we have plotted in Fig. 13, one finds that the scalar
potential of the case (a) is useful for describing the quintessence field while (b) is suitable to
describe the phantom. Therefore, the cases (a) and (b) of the second proposal can be written
in the following form

φ2(t) = ±
√

2

3
ln

[

tanh

(
3ε

2
H0(t − t0)

)]

.

It should be noted that if the second proposal is examined in the general case h 
= 0, we will

have: H0 = εA2B + h, and thus in the case (a) for which A = ±
√

2ε
3 , the constant B will

be B = 3
2 (H0 − h), and the potential function takes the form

V (φ) = α1 + α2 cosh(
φ

A
),

where α1 = 3(H0 − h)2 + 3h2, α2 = 6h(H0 − h) and α1 + α2 = 3H2
0 = V0. We also

argued that for the purposes of quantum gravity the potential can be written in the following
approximate form

V (φ) = α1 + α2

2

(

e
φ
A + e− φ

A

)

≈ α1 + α2

2
e

φ
A ,

or

V (φ) ≈ α1 + α2

2
e±

√

3ε
2 φ

,

which shows that our second proposal in both cases (a) and (b) results a exponential potential
function.

The last part of the article is dedicated to the quantization of the presented model in the
framework of the WDW approach of quantum cosmology. We found the eigenfunctions and
with the use of them construct the closed form expressions for the wave functions of the
universe. The resulting quantum wave packets are then used to draw the probability function
of each model. Finally, we would like to emphasize that although some results have been
obtained in previous works, as some of them are mentioned, in this paper a comprehensive
and detailed study of classical and quantum solutions in a spatially flat FLRW geometry with
damped exponential potential function is performed.We extracted the potential function from
two proposals for the scalar fields in terms of time.
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