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Abstract
This article explores the dynamics of an optomechanical system consisting of a single
movable mirror and a two-level atom in the strong coupling limit, initially considering a
vacuum mechanical mode. The impact of varying cavity-mirror and atom-photon couplings
is analyzed across different limits. Coherent states and Fock states for the cavity mode
are investigated, revealing that the mirror’s position and atomic inversion patterns are pre-
dominantly influenced by the initial cavity state. The study includes an investigation of the
linear entropy between the atom and the subsystem. Notably, the system exhibits strong non-
classical behavior that is absent when the atom is not present. Specifically, the mechanical
mode displays sub-Poissonian statistics when interacting with a vacuum cavity mode and
exhibits mechanical squeezing when initialized with a two-photon state. A search technique
is developed to uncover additionalmechanical nonclassical features by adjusting the coupling
parameters and adapting the input Fock state accordingly.

Keywords Optomechanical system · Strong coupling limit · Nonclassical mechanical
mode · Squeezed movable mirror

1 Introduction

A practical strategy for establishing a connection between mechanical phonons and electro-
magnetic photons involves utilizing cavity optomechanical systems. One effective method
to create such a system is by constructing a Fabry-Perot cavity, where one of the mirrors is
movable [1–3]. The mobility of this mirror leads to oscillations influenced by the radiation
pressure exerted by photons, which has been measured and confirmed phenomenon from
experiments long ago [4–6]. Substantial progress, encompassing both experimental and the-
oretical advancements, has been made to explore the diverse possibilities of these systems
[7–10]. This concept has been applied across a wide range of sizes and setups, including
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macroscopic mirrors [11], nano- and micro-mechanical cantilevers [12, 13], micro-toroids
[14], membranes [15]. Optomechanical systems have a wide range of applications, encom-
passing coherent optical wavelength conversion [16], the precise modulation of properties
like the speed and phase of the transmitted probe field [17, 18], and the generation andmanip-
ulation of mechanical Schrödinger cat states [19, 20]. Moreover, these systems play a crucial
role in cooling applications, facilitating the reduction of mechanical resonator temperatures
toward the quantum ground state [21, 22], as well as the cooling of floating nanoparticles
[23].

Numerous studies have delved into the examination of the interaction between the optome-
chanical cavity and atoms within it. Many articles adopt the weak limit, where both the
cavity-mirror coupling and atom-photon coupling are significantly weaker than the angular
frequency of the movable mirror. Within this limit, a coarse-grained method is often applied,
simplifying the problem to an effective Hamiltonian that allows for analytical solutions.
Research following this approach explores various aspects, such as investigating the tempo-
ral evolution of entanglement in a system featuring a two-level atom inside an optomechanical
cavity, leading to the generation of Greenberger-Horne-Zeilinger-like states [24] and other
effects [25–27]. Another exploration involves a three-level atom interacting with a two-mode
quantized field, analyzing multiple observables [28]. The negativity of a two-level trapped
ion is also scrutinized for different subsystems under varying parameters [29]. Additionally,
the dynamical evolution of several nonclassical effects is investigated, with the cavity initially
prepared in the optical coherent state [30]. Recent studies, addressing various effects, can be
found in [31–33]. Conversely, stronger limits are typically explored through methods such as
solving the Heisenberg-Langevin equations of motion and applying mathematical tools from
atomic physics. These investigations often concentrate on analyzing steady-state solutions
after incorporating multiple effects, as demonstrated by studies in [34–36].

In this article, our focus centers on investigating the hybrid optomechanical cavity system
with a two-level atom inside it, in the limit where both the cavity-mirror coupling and atom-
photon coupling are approximately equal to the angular frequency of the movable mirror
(strong coupling limit). Our interest lies in exploring the dynamics of various statistical and
nonclassical effects within this particular limit. This limit is considered to be richer compared
to the weak limit, as the impact of each constituent of the system becomes more pronounced,
as we will elucidate. Moreover, we introduce the influence of multi-photon processes for the
sake of generality. While numerous articles have explored this limit primarily in the context
of steady-state and equilibrium, our emphasis here is on studying the temporal evolution of
selectedmeasurements. Building upon previous analyses that concentrated on the weak limit,
as outlined in the preceding paragraph, our aspiration is to employ analogous analyses within
this stronger limit. Specifically, our attention is mostly directed towards the dynamics of the
movable mirror, initially considered to be in a vacuum at the beginning of the interaction.
Concurrently,we consider two cases for the cavitymode: a Fock state (FS) and a coherent state
(CS). Furthermore, this study aims to compare the obtained results with two sub-models: the
Cavity Optomechanical System (COS) and the Jaynes-CummingsModel (JCM), as explored
in related studies such as [37–40].

The structure of this article unfolds as follows: In Section 2, we delve into the analysis of
the system, discuss the numerical solution, and explore the impact of various limits. Section 3
is dedicated to exploring statistical properties, specifically focusing on the position of the
movable mirror and the atomic inversion. In Section 4, we scrutinize nonclassical properties,
delving into the linear entropy, QMandel parameter, and squeezing of the mechanical mode.
Finally, Section 5 presents concluding remarks.
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Fig. 1 Schematic representation of the system, illustrating the fixed and movable mirrors along with the
enclosed atomwithin the cavity. The rightmirror, connected to a spring, ismovable and signifies themechanical
mode with angular frequency ωb . Simultaneously, the cavity mode, characterized by angular frequency ωa ,
interacts with the atom of the two-level states |e〉 and |g〉

2 The Physical System

The considered system involves an optomechanical cavity with a two-level atom, illustrated
in Fig. 1. The two-level atom interacts with a single-mode quantized light field, while one
of the mirrors is movable and quantized to a single phonon mode. The excited state of the
atom is denoted as |e〉, and its ground state is denoted as |g〉. The complete Hamiltonian of
the system can be expressed as [24, 26, 39]

Ĥ/�=ωaâ
†â+ωbb̂

†b̂+ωe|e〉〈e|+ωg|g〉〈g|−Gâ†â(b̂+b̂†)+�(âk |e〉〈g|+â†k |g〉〈e|). (1)

where ωa (ωb) is the angular frequency of the light (movable mirror) mode, G is the
cavity-mirror coupling coefficient, � is the atom-photon coupling strength, and â (b̂) is the
annihilation operator of the cavity (mechanical) mode. �ωe and �ωg denote the energies of
the excited and ground states, respectively. The parameter k corresponds to the multi-photon
processes.

We examine a high-finesse optical cavity system at near-zero temperature conditions.
Given these circumstances, it is reasonable to exclude various dissipationmechanisms. Incor-
porating dissipation processes would require working with the density matrix and solving
the Lindblad master equation, involving additional procedures. However, addressing these
kind of interactions is beyond the scope of the current study.

The Hamiltonian can be decomposed into two parts

Ĥ = Ĥ0 + ĤI , (2)

with

Ĥ0/� = ωaâ
†â+ωbb̂

†b̂+ωe|e〉〈e|+ωg |g〉〈g|, ĤI /� = −Gâ†â(b̂+b̂†)+�(âk |e〉〈g|+â†k |g〉〈e|). (3)

Calculating the interaction Hamiltonian yield

Ĥ/� = ei Ĥ0t/�
ĤI

�
e−i Ĥ0t/� = −Gâ†â(b̂e−iωbt + b̂†eiωbt ) + �(âkei�ct |e〉〈g| + â†ke−i�ct |g〉〈e|),

(4)
with�c = ωe−ωg−kωa . Now, we assume that the formula of the wave function is provided
as

|ψ(t)〉 =
∞∑

n=0

∞∑

m=0

[
An,m |n,m, g〉 + Bn,m |n,m, e〉

]
. (5)
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Here, An,m and Bn,m represent the amplitude probabilities of the ground and excited states,
respectively. Applying the Schrödinger equation

∂

∂t
|ψ(t)〉 = −i

Ĥ
�

|ψ(t)〉, (6)

yields the following two coupled differential equations

Ȧn,m =−i

[
−Ge−iωbt n

√
m+1An,m+1−Geiωbt n

√
mAn,m−1+�e−i�ct

√
n!

(n−k)! Bn−k,m

]
,

(7)
and

Ḃn,m =−i

[
−Ge−iωbt n

√
m+1Bn,m+1−Geiωbt n

√
mBn,m−1+�ei�ct

√
(n+k)!

n! An+k,m

]
.

(8)
These coupled differential equations, unfortunately, do not form a closed loop. Therefore, we
need to solve them simultaneously through numerical methods. For our numerical approach,
we utilize theWolframMathematica software, employing theNDSolve command to obtain
the results. In the simulation, the cutoff values for both n and m are chosen to be sufficiently
large, and their determination depends on the selected values.

In our investigation, we assume the mechanical mode to be initially in the vacuum state
throughout the study. The atom is initialized in a qubit state represented as

|ψ(0)〉atom = cos(θ)|g〉 + sin(θ)|e〉. (9)

Here, θ denotes a phase that determines the specific superposition. The exact value of θ will
be specified later in the study. As for the cavity mode, we explore two options: Fock states
(FS) |N 〉 and the coherent state (CS) |α〉. The value of N will be provided in the text, while
α is consistently set to

√
2, corresponding to an average of two photons. The detuning �c is

set to be zero. Therefore, the full initial state of the system is

|ψ(0)〉 =
∞∑

n=0

Cn

[
cos(θ)|g〉|0〉m |n〉c + sin(θ)|e〉|0〉m |n〉c

]
, (10)

where Cn represents the initial photonic amplitudes. Specifically, with CS, it is given by

Cn = e− 1
2 |α|2 αn

n! , and with FS, it is given as Cn = δn,N , where δ is the Kronecker delta. So
at t = 0 the initial condition of the amplitudes reads An,0(0) = Cn cos(θ), An,m �=0(0) = 0,
Bn,0(0) = Cn sin(θ) and Bn,m �=0(0) = 0.

Now, in the scenario where G = 0, the system transforms into the Jaynes-Cummings
Model (JCM), which is exactly solvable, and its general solution has been thoroughly dis-
cussed [37, 40]. Notably, the amplitudes exhibit oscillations with the Rabi angular frequency,
represented by

Vn = �

√

4(1 + n) +
(

�

�

)2

, (11)

where � here is atom-field detuning. On the other hand, when � = 0, the system reduces
to the Cavity Optomechanical System (COS), also exactly solvable as outlined in [38, 39].
Notably, in this configuration, the systemdemonstrates oscillationswith an angular frequency
ofωb for nearly all observables. The exploration of these two subsystems promises to provide
valuable insights into our current problem.
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2.1 The Parameters

In this section, we delve into the influence of the cavity-mirror coupling (G) and the atom-
photon coupling (�). We maintain the assumption that both parameters are equal, � = G
throughout the study, a commonly employed practice [25, 26, 28, 30]. To assess the impact
of these parameters, we set k = 1, θ = π/2. Additionally, we consider the cavity to be
initially in a vacuum state, N = 0, and the Hilbert space spans (250, 1) for the mechanical
and cavity modes, respectively. It is essential to note that the Hilbert space for the cavity is
restricted to |0〉 and |1〉 since, in this case, the atom can only produce one photon. In Fig. 2,
we present plots illustrating the average number of photons and phonons for three distinct
values of G = �, namely G/ωb = (4, 0.4, 0.04).

In the absence of an atom (COSmodel), the average number of photons remains constant,
and the average number of phonons oscillates between vacuum and a maximum value, with
an angular frequency of ωb detailed in [38]. When an atom is introduced, it alters the average
number of photons in the optomechanical cavity, consequently influencing the behavior of
the movable mirror. In the weak limit, � = G � ωb, as our value G/ωb = 0.04, the growth

Fig. 2 The average number of photons is indicated on the right (orange), and the average number of phonons
is represented on the left (red). The cavity mode is set to FS with N = 0, θ = π/2, and k = 1. Subfigures
(a) and (b) correspond to the weak limit with � = G = 0.04ωb . Subfigures (c) and (d) depict the strong
coupling limit with � = G = 0.4ωb . Lastly, subfigures (e) and (f) are within the very strong regime with
� = G = 4ωb
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of 〈n̂〉 is gradual compared to ωb since V0 from (11) is 0.08ωb in this case. As a result, in
this scenario, 〈m̂〉 closely follows the behavior of the mean number of photons. However,
it contributes a minimal number of phonons, as evident in Fig. 2 (a and b). Moreover, the
photonic average is nearly identical to the prediction by JCM.

In the regimewhere� = G closely approachesωb/2 (as exemplified by our selected value
G/ωb = 0.4), the resulting Rabi angular frequency becomes comparable to ωb, specifically
yielding V0 = 0.8ωb for our value. At this limit, the COS and JCM subsystems exhibit
nearly the same frequency, leading to mutual influence and causing 〈m̂〉 to display chaotic
behavior with numerous rapid oscillations. The photonic oscillations undergo modification,
deviating from the predictions of JCM.Although the general structure of 〈n̂〉 nearlymaintains
its characteristic sinusoidal oscillations, it modifies the amplitude of the oscillations, ranging
from 0 to approximately 0.95, and it is aperiodic as can be seen in Fig. 2 (c and d).

In the very strong regime where � = G � ωb/2, exemplified by G/ωb = 4, the Rabi
angular frequency significantly surpasses ωb, reaching V0 = 8ωb in our case. In this setting,
the behavior of themovablemirror becomesmore regular than in the previous case. Due to the
fast changes in the average number of photons, the mirror ceases to discern small fluctuation
details and begins to perceive the time-averaged behavior. This results in less chaotic behavior
in the average number of phonons, characterized by fewer rapid oscillations. Notably, the
photonic average no longer tends to zero, and its width experiences a substantial contraction.
However, the introduced number of phonons is now enhanced as evident in Fig. 2 (e and f).

From this discussion, we observe that the general behavior of the system is primarily
determined by Vn and ωb when G = �. Therefore, we choose the intermediate limit where
the oscillations of the mechanical mode can exhibit more chaotic behavior. Specifically, we
set � = G = 0.5ωb, corresponding to V0 = ωb. Other values will be considered in the
nonclassical properties section. In the following, we will investigate six cases as outlined in
Table 1.

3 Statistical Properties

3.1 The Position of TheMovable Mirror

The dynamics of the position of the movable mirror can be determined by evaluating the
expectation value of the operator

X̂ = b̂ + b̂†

2
. (12)

Table 1 The table displays the cases that will be investigated in this study along with their corresponding
values

Abbreviation Cavity State k θ 〈n̂〉ini tial nmax mmax

a FS (N = 0) 1 π/2 0 1 150

b FS (N = 0) 2 π/2 0 2 150

c FS (N = 2) 1 π/2 2 3 80

d FS (N = 2) 1 π/4 2 3 80

e CS (α = √
2) 1 π/2 2 11 74

f CS (α = √
2) 1 π/4 2 11 74

nmax and mmax represent the Hilbert space spans considered for the cavity mode and mechanical mode,
respectively, in each case
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The average of the annihilation and creation operators of the mechanical mode, obtained
from (5), is given by

〈b̂〉 =
∞∑

n=0

∞∑

m=0

√
m + 1

[
A∗
n,m An,m+1 + B∗

n,mBn,m+1

]
, (13)

and 〈b̂†〉 = 〈b̂〉∗. The average value of X̂ , denoted as XM = 〈X̂〉, is then computed for the
six cases specified in Table 1 and illustrated in Fig. 3.

In the absence of the atom (COSmodel), the behavior of XM is sinusoidal with an angular
frequency of ωb, directly proportional to the average number of photons [38]. This charac-
teristic remains unchanged regardless of the input cavity state as long as 〈n̂〉 is held constant.
However, in our present study, where 〈n̂〉 is fixed at 2 for cases (c, d, e, and f), distinct patterns
emerge. Broadly, rapid oscillations in all cases are nearly equivalent to ωb, accompanied by
additional, slower oscillations evident in all cases. Interestingly, XM demonstrates a dis-
cernible signature for different input cavity states, even when some atomic parameters are
altered, as observed in cases (a and b), (c and d), and (e and f), where they share the same
input state but differ in values of k or θ . There is also evident sensitivity to these parameters
(θ and k), as seen in the same cases, resulting in varying amplitudes due to alterations in one
of these atomic parameters.

Fig. 3 The position of the movable mirror XM , plotted against ωbt for the six cases outlined in Table 1. The
abbreviation of each case is provided under its respective subfigure
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3.2 The Atomic Inversion

The population inversion of the atomic system, represented by the difference in population
between the excited and ground states, provides insights into the dynamic nature of the atom.
In our system, it can be calculated by

W =
∞∑

n=0

∞∑

m=0

[
|Bn,m |2 − |An,m |2

]
. (14)

In Fig. 4, we present the W for the six selected cases outlined in Table 1. In the JCM,
the CS interacting with a two-level atom typically exhibits a collapse and revival pattern
[37]. However, this distinctive behavior is not observed in our results, particularly in cases
(e) and (f), where W shows a more chaotic pattern. Conversely, when the system interacts
with a Fock state (FS), it generates larger amplitude oscillations. In the absence of a movable
mirror (JCM scenario), the interaction of the atomwith an FS results in sinusoidal vibrations.
However, in our case with a movable mirror, we observe that the atom also exhibits chaotic
behavior. The amplitude, overall, appears to be influencedmore by the initial state introduced
into the system than by other parameters.

Fig. 4 The atomic population inversionW versus ωbt for the six cases described in Table 1. The abbreviation
of each case is provided under its respective subfigure
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4 Nonclassical Properties

4.1 Linear Entropy

Entanglement stands out as a crucial resource in quantum information and quantum compu-
tation [41]. The assessment of entanglement dynamics between the atom and the subsystem,
encompassing the cavity mode and the mechanical mode, can be quantified using linear
entropy. A higher (lower) entropy signifies a greater (smaller) degree of entanglement. This
quantity is formally defined as

SA = 1 − Trρ̂2
A, (15)

where ρ̂A is atomic reduced density matrix, and it can be obtained as

ρ̂A = TrField+Mirror ρ̂ =
(

ρgg ρge

ρeg ρee

)
, (16)

with

ρgg =
∞∑

n=0

∞∑

m=0

|An,m |2, ρee =
∞∑

n=0

∞∑

m=0

|Bn,m |2 (17)

ρge =
∞∑

n=0

∞∑

m=0

An,mB∗
n,m, ρeg =

∞∑

n=0

∞∑

m=0

A∗
n,mBn,m . (18)

And consequently the linear entropy becomes

SA = 1 − ρ2
gg − ρ2

ee − 2ρegρge. (19)

In Fig. 5, the linear entropy for the six previously mentioned cases is presented. Generally,
the system exhibits values ranging from 0 to 0.5 for all cases, characterized by numerous
fluctuations. All cases start from zero, and after a delay time, they attain their maximum
values. The delay time is much shorter with Fock states (FS) in cases (a, b, c, and d), on
the order of ωbt ≈ 1, while with CS of cases (e and f), it takes much longer, approximately
ωbt ≈ 5. This delay is possibly due to the fact that CS introduces multiple atomic frequencies
Vn , as described in (11).

Interestingly, starting from an atomic superposition state, as observed in cases (d and
f), provides entanglement within a narrower band compared to starting from the excited
state. For instance, in case (e), the width of the data after reaching its peak is approximately
0.15 − 0.2, whereas in the case of the superposition (f), it narrows down to 0.1 − 0.14. The
most frequent case to reach the highest values is case (c), involving FS with N = 2. This
frequent occurrence is suppressed when θ = π/4 in case (d). The effect of multi-photon
processing parameter k does not seem to inhibit this frequent occurrence of reaching the
highest peaks, as shown in cases (a and b).

4.2 QMandel Parameter

Determining whether the quantum distribution is Poissonian or sub(super)-Poissonian pro-
vides crucial insights into the nonclassicality status of the state under consideration. One of
the most effective measures for this task is the Q Mandel parameter, defined as [42].

QM = 〈m̂2〉 − 〈m̂〉2
〈m̂〉 − 1, (20)
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Fig. 5 The linear entropy SA versus ωbt for the six cases described in Table 1. The abbreviation of each case
is provided under its respective subfigure

where m̂ is the number operator of the mechanical mode, and the two averages are given as

〈m̂〉 =
∞∑

n=0

∞∑

m=0

m

[
|An,m |2 + |Bn,m |2

]
, (21)

and

〈m̂2〉 =
∞∑

n=0

∞∑

m=0

m2
[
|An,m |2 + |Bn,m |2

]
. (22)

If the parameter QM is greater (less) than zero, the state is super (sub)-Poissonian. A state is
considered nonclassical if it demonstrates QM < 0.

The Q Mandel parameter for the mechanical mode is illustrated for the six cases detailed
in Table 1. In the COS model, QM cannot be negative for any input photonic state within our
protocol when the mechanical mode is initially set in vacuum, as in our case [38]. However,
notably, in this model, it can exhibit negative values, as evident in cases (a, b, and c) of Fig. 6,
where QM dips below zero in various regions. Case (a), in particular, consistently displays
strong negative values, indicating the induction of nonclassicality by the atom in the system.
Conversely, when the inserted state is a coherent state (cases e and f), there is no evidence
of sub-Poissonian behavior; instead, it exhibits robust super-Poissonian characteristics with
relatively oscillatory behavior in a repetitive manner. In scenarios involving two photons
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Fig. 6 The Q Mandel parameter QM of the mechanical mode plotted against ωbt for the six cases outlined in
Table 1. The abbreviation of each case is provided under its respective subfigure

(cases c and d), the oscillations are more pronounced, less regular, and generally smaller in
magnitude compared to the coherent states. Notably, case (c) even demonstrates intervals
where the parameter becomes negative (Fig. 6).

Case (a) exhibits nonclassicality because, in this instance, Vn = ωb and � = G = 0.5,
resulting in strong interaction in this regime for both models. If we allow the value of � to
be changed while maintaining � = G and Vn = ωb, other states may exhibit sub-Poissonian
distribution. To explore this, we insert different Fock states, and from (11), we find

G = � = Vn
2
√
1 + n

= ωb

2
√
1 + n

. (23)

We now introduce four additional cases detailed in Table 2.
In Fig. 7, the cases outlined in Table 2 are presented, and it is evident that all cases induce

sub-Poissonian statistics with distinctive patterns and amplitudes. An interesting observation
is that as the number of photons increases, the number of negative regions and their duration
decrease. Additionally, the average of the data consistently deviates from zero, becoming
larger than zero, as the value of N for FS increases. The negativity of QM in these cases
emphasizes the effectiveness of the proposed method for detecting nonclassicality by exam-
ining the frequencies of the sub-models (COS model and JCM).
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Table 2 The table presents the cases to be investigated for the mechanical Q Mandel parameter, along with
their corresponding values

Abbreviation Cavity State k θ 〈n̂〉ini tial nmax mmax G/ωb = �/ωb

a FS (N = 1) 1 π/2 1 2 100 0.3535

b FS (N = 2) 1 π/2 2 3 100 0.2887

c FS (N = 3) 1 π/2 3 4 100 0.25

d FS (N = 4) 1 π/2 4 5 100 0.2236

nmax and mmax represent the Hilbert space spans considered for the cavity mode and mechanical mode,
respectively. The values of � are calculated using (23)

4.3 Squeezing

One crucial nonclassical characteristic is squeezing, where a state is said to be squeezedwhen
the fluctuations in one of its quadratures (either position or momentum) are smaller than the
minimum value prescribed by the uncertainty principle. A way to quantify this phenomenon
is through the linear squeezing parameter for the mechanical mode, which is defined as [43,
44]

SM = e−2iφ〈b̂2〉 + e2iφ〈b̂†2〉 + 2〈b̂†b̂〉 −
(
e−iφ〈b̂〉 + eiφ〈b̂†〉

)2
, (24)

where 〈b̂†b̂〉 is 〈m̂〉 and can be calculated from (21). The value of 〈b̂〉 can be determined from
(13), while 〈b̂2〉 is given by

〈b̂2〉 =
∞∑

n=0

∞∑

m=0

√
m + 2

√
m + 1

[
A∗
n,m An,m+2 + B∗

n,mBn,m+2

]
, (25)

with 〈b̂†2〉 = 〈b̂2〉. If SM is less than zero, it indicates that the state exhibits squeezing.

Fig. 7 The QMandel parameter QM for the mechanical mode is plotted againstωbt for the four cases outlined
in Table 2. The abbreviation of each case corresponds to the notation in Table 2
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Fig. 8 The linear squeeing parameter SM of the mechanical mode versus ωbt for the six cases outlined in
Table 1. The abbreviation of each case is provided under its respective subfigure

In Fig. 8, the linear squeezing parameter for the mechanical mode, SM , is plotted for the
six cases with φ = 0. In the absence of an atom (COS model), this particular protocol, as
discussed in [38], cannot induce mechanical squeezing. However, the presence of an atom in
this model does induce squeezing, as evident in the case of FS with two photons in subfigure
c, where a region between ωbt ≈ 40 − 60 becomes negative, indicating squeezing. On the
other hand, interactions with the vacuum or with CS do not seem to induce squeezing, as seen
in cases (a, b, e, and f). However, with CS, there is some evidence of the collapse and revival
phenomenon between the periods 50− 80 in both cases (e and f). Small negative values can
also be observed with the interaction with the vacuum, as in case (a).

Aswe extended our search for nonclassicality with the QMandel parameter by varying the
value of G = �, we apply the same technique here. Case (c) exhibits strong squeezing, and
we wish to explore the possibility of obtaining additional cases by fixing the frequencies of
the two sub-models. The mechanical mode has a main frequency equal to ωb, while the main
frequency of the cavity mode for the two-photon case can be obtained from (11), yielding
V2 = 1.732ωb. Allowing G and� to vary while keeping them equal and the two frequencies
invariant yields

G = � = Vn
2
√
1 + n

= 1.732ωb

2
√
1 + n

. (26)
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Table 3 The table presents the cases to be investigated for the linear squeezing, along with their corresponding
values

Abbreviation Cavity State k θ 〈n̂〉ini tial nmax mmax G/ωb = �/ωb

a FS (N = 3) 1 π/2 3 4 100 0.433

b FS (N = 4) 1 π/2 4 5 100 0.3873

c FS (N = 5) 1 π/2 5 6 100 0.3535

d FS (N = 6) 1 π/2 6 7 100 0.3273

The values of � are calculated using (26)

This may lead us to discover other Fock states capable of producing squeezing. Four new
cases are detailed in Table 3.

In Fig. 9, the cases mentioned in Table 3 are plotted, and it is apparent that all cases induce
squeezing with similar behavior. The first squeezed region occurs between ωbt ≈ 5 and 20
and exhibits two dips. Subsequently, a second region occurs at different positions depending
on the value of N for FS. Generally, the starting point of the second squeezed period increases
with an increase in N , along with an extended duration of this squeezing. Additionally, we
observe a general similarity in all behaviors, as if there is an overarching mechanism driving
the system. The case with the deepest squeezing is (d) with N = 6, and the lowest point is
approximately at (123,−0.494). This illustrates the effectiveness of the searching method,
considering the frequencies of the two sub-models, in identifying squeezing.

5 Conclusion

In this study,we explored a regimewhere the coupling strengths between the cavity-mirror and
atom-photon interactions are approximately equal to the angular frequency of the mechanical

Fig. 9 The linear squeezing parameter SM versus ωbt for the four cases outlined in Table 3. The abbreviation
of each case corresponds to the notation in Table 3
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mode. Employing numerical solutions, we investigated the system dynamics with two dis-
tinct input photonic states: coherent state and Fock state. Our analysis incorporated the
multi-photon processes parameter and a generic two-level qubit atom. The examination of
themovablemirror’s position revealed a consistently similar behavior for the same input state,
evenwhen certain atomic parameterswere varied.We further delved into the atomic inversion,
discovering that the amplitudes were heavily dependent on the initial cavity state. A compre-
hensive analysis of the linear entropy highlighted the entanglement patterns within each state.
Additionally, we scrutinized the Q Mandel parameter, unveiling the largest sub-Poissonian
distributionwhen interactingwith a vacuumstate. The study of squeezing phenomena demon-
strated intriguing results, particularly with two photons leading to the identification of two
distinct squeezed periods in the system.

The proposed search method proved effective in identifying nonclassical features within
the system. The protocol of the method unfolds as follows: Initially, we scrutinize the two
sub-models (COS model and JCM) and compare their respective frequencies. Subsequently,
we focus on a specific nonclassical feature, such as squeezing, identifying a case where the
system exhibits this characteristic. Following this, we broaden our search for other nonclas-
sical possibilities by adjusting both G and � while preserving the exact values of the two
frequencies of the sub-models. This approach enhances the likelihood of discovering addi-
tional nonclassical features. The effectiveness of this method was demonstrated with the Q
Mandel parameter and squeezing, particularly when applied to Fock states. Consequently,
this approach holds potential for optimization and exploration studies aimed at uncovering
emergent behaviors or identifying various nonclassical phenomena.

Ultimately, this study opens avenues for further exploration in several directions. Future
extensions may involve incorporating the effects of decoherence and pumping mechanisms,
providing insights into the search method’s performance under such circumstances. Investi-
gating the impact of unbalanced couplings, namely � and G, and exploring their emergent
behavior presents another intriguing avenue. Examining the influence of alternative input
mechanical states beyond vacuum or cavity states could offer valuable insights. Addition-
ally, introducing post-measurements to the system may reveal potential shifts in behavior,
enhancing the comprehensiveness of the system.
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