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Abstract
Wepropose a deterministic bidirectional quantum controlled teleportation protocol via a non-
maximally entangled five-qubit channel state. We show that there exists a non-maximally
entangled five-qubit channel state and measurement bases combination that guarantees the
performance of the protocol. We highlighted that even though the protocol uses a non-
maximally entangled five-qubit state and does not use any additional transformation or
auxiliary qubits, the teleportation still can have perfect fidelity and probability, resulting in
deterministic teleportation. We also evaluate the protocol performance under phase-damping
noise and compare it with a well-known maximally entangled channel protocol. It is interest-
ing to note that the proposed protocolmay perform better under the noise than thewell-known
one.

Keywords Bidirectional Quantum controlled teleportation Non-maximally entangled
channel state Phase-damping noise

1 Introduction

Quantum teleportation is one of the essential parts of quantum information development.
By combining quantum and classical channels, quantum teleportation allows the faithful
transfer of an arbitrary quantum state from one party to another at a distance [1]. Later, many
variations were introduced as an extension of the protocol.

One of the variations is the bidirectional teleportation, in which the transmission occurs
from a sender to a receiver and vice versa. It was first proposed by Zha et al. [2], who used
a maximally entangled five-qubit channel, with one of the qubits belonging to a controller,
followed by Shukla et al. [3], who evaluated it in a more general view. Yang et al. [4] pro-
posed an asymmetric bidirectional protocol that simultaneously transmits one and two qubits
in two directions. Li et al. [5] propose a similar scheme that can transmit a two-qubit state in
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both directions; they used a maximally nine-qubit entangled state as the quantum channel.
Recently, Cao et al. [6] proposed a bidirectional quantum transmission with different levels
of control that can transmit two-qubit states with different levels of importance represented
by different numbers of controllers’ cooperation. Many different variations of the bidirec-
tional protocol were reported in [7–15]. For example, Ahmadkhaniha et al. [16] proposed
an alternative teleportation method, namely an enable-based bidirectional quantum telepor-
tation protocol that makes use of distributed quantum gates. They demonstrated that using
their proposed method, the entangled state required for the quantum channel can be reduced
to a more efficient number. Some studies also consider the effect of noises on the protocol’s
performance [17–23]. The use of a joint state as a quantum channel resource has similari-
ties to the quantum broadcast protocol. Mafi et al. [24] evaluated two controlled quantum
broadcast protocols, using 6-qubit and 6n-qubit (generalized scheme) cluster states as the
quantum channel. They demonstrated that arbitrary states can be communicated across a
quantum channel, and receivers can reconstruct the input information with the authorization
of the controller parties. The protocols may be useful in future communication applications.

All of the bidirectional studies mentioned use a maximally entangled state as the channel.
However, in a real situation, the channel used in the teleportation may not have maximal
entanglement due to some imperfection of the source [25–27]. Thework in [27–35] evaluated
teleportation protocols via a non-maximally entangled channel state. All the studies show
that the non-maximal entanglement leads to a probabilistic teleportation, i.e., it has unit
fidelity but less than one probability. Hence, it may lead to a conclusion that a non-maximally
entangled five-qubit channel state will always produce a probabilistic bidirectional controlled
teleportation.

In this work, we will show that there exists a particular non-maximally entangled five-
qubit channel state that can still produce a deterministic teleportation. That is, by making
the non-maximally entangled part only happen between the controller and other parties but
keeping the maximal entanglement between every sender-measurement parties pair. We will
show that by using the particular state and a measurement bases combination, the perfect
teleportation performance will always be achievable. Furthermore, we evaluate the proposed
protocol’s performance under phase-damping noise and compare it with a well-known max-
imally entangled channel protocol [3] and discuss the result.

The bidirectional studies via a non-maximally entangled channel were recently evalu-
ated by Jiang et al. [26]. They showed that the protocol could not reach a unit fidelity
value. To solve the problem, they performed an appropriate unitary transformation on the
non-maximally entangled state with the help of an auxiliary qubit, which could improve a
probabilistic teleportation to a deterministic teleportation. Our work is different. We do not
use any additional transformation or auxiliary qubit.We use the standard protocol procedures:
joint state measurements by the senders and a single qubit measurement by the controller.
We will show that the teleportation can still have perfect fidelity and probability even though
the channel is non-maximally entangled.

This article is composed of five sections. The first section discusses the introduction, fol-
lowed by the evaluation of the bidirectional quantum controlled teleportation via a particular
entangled five-qubit channel state, which became the basis of the proposed non-maximally
entangled protocol. The third section is the evaluation of the proposed bidirectional teleporta-
tion via a non-maximally entangled five-qubit channel state. The fourth section discusses the
effect of the phase-damping noise on the protocol’s fidelity value. We end with a comparison
with other similar studies and conclusion.
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2 Bidirectional Quantum Controlled Teleportation via a Particular
Entangled Five-Qubit Channel State

In this section, we evaluate a bidirectional quantum controller teleportation via a par-
ticular entangled five-qubit channel state, which will become the basis of the proposed
non-maximally protocol in the next section.We have evaluated a lot of bidirectional quantum
teleportation protocol and arrived at a unique channel state which can produce a deterministic
teleportation, i.e., has unit probability and fidelity, as described below.

2.1 Protocol Description

In the teleportation process, it is assume that there are three parties: Alice as the first sender
(second receiver), Bob as the first receiver (second sender), and Charlie as a controller. Before
the teleportation process, the parties pre-shared a particular entangled five-qubit channel state
as

A1B1B2A2C N a1 00 a2 01 a2 10 a1 11 A1B1

b1 00 b2 01 b2 10 b1 11 B2A2
0 C

n a2 00 a1 01 a1 10 a2 11 A1B1

b2 00 b1 01 b1 10 b2 11 A2B2
1 C (1)

with N 2 1 n 2 a1 2 a2 2 b1 2 b2 2
1
. Indexes A1 and A2 represent the

corresponding qubits belonging to Alice, B1 and B2 to Bob, andC to Charlie. The parameters
a1, a2, b1, b2, and n are complex numbers. If we choose the n such that satisfy 0 n ,
the state will be in a completely entangled state [27, 36], which is the requirement for the
bidirectional transmissionwith a controller [1, 2]. The channel state can be build by operations
as follows.

Channel Preparation

Firstly, five single qubit states are prepared. The states are

1 A1 2 B1 3 B2 4 A2 5 C 0 A1 ei a ra 0 1 r2a e
i a 1 B1

0 B2 ei b rb 0 1 r2b e
i b 1 A2

rn 0 1 r2n e
i n 1 C (2)

with ra , rb, rn are real parameters, a , b are global phases, and a , b, n are relative phases.
A Hadamard gate is applied to qubit A1 (as well as qubit B2), followed by applications of
a controlled global-phase-shift gate about 2 a ( 2 b) [37], controlled relative-phase-shift
gate about 2 a ( 2 b), controlled Pauli-Z gate, and controlled Pauli-X gate on qubit B1

(A2) with qubit A1 (B2) as the control qubit for all of the gates applied. The circuit diagram
is shown in Fig. 1. By rewritting the parameters as

raei a

2

a1
Na

1 r2a e
i a ei a

2

a2
Na
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rbei b

2

b1
Nb

1 r2b e
i b ei b

2

b2
Nb

(3)

rn
1

Nn
1 r2n e

i n
n

Nn

with Na a1 2 a2 2, Nb b1 2 b2 2, and Nn 1 n 2, the resulting five-
qubit state can be expressed as

12 A1B1 34 B2A2
5 C

1

a1 2 a2 2
a1 00 a2 01 a2 10 a1 11 A1B1

1

b1 2 b2 2
b1 00 b2 01 b2 10 b1 11 A2B2

1

1 n 2
0 n 1 C (4)

After that, two controlled Pauli-X gates are applied on qubit A2 and B2 (one gate for each
qubit) with qubit C as the control qubit, resulting the channel state in (1). We will discuss
the entanglement of the state after the step-by-step teleportation process description below.

Step 1: The Teleportation is Started by Charlie

In the teleportation process, Alice and Bob have an arbitrary initial state as

a x0 0 x1 1 (5)

b y0 0 y1 1 (6)

Fig. 1 The proposed teleportation circuit diagram described in Section 2. JSM, CBM, UA , UB , and CC,
refers to joint-state measurement, computational bases measurement, Alice’s unitary operation, Bob’s unitary
operation, and classical channel, respectively. The states 2 B1 , 4 A2 , and 5 C are described in (2).
The gates H , Ph 2 i , P 2 i , Z , and X , are Hadamard gate, controlled global-phase-shift gate about
2 i , controlled relative-phase-shift gate about 2 i , controlled Pauli-Z gate, and controlled Pauli-X gate,

respectively
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respectively,with xk and yl (for k l 0 1 ) are complex numbers satisfying normalization
conditions: 1

m 0 zm 2 1 for z x y . Alice wants to teleport her state to Bob, and
vice versa, with Charlie’s cooperation.

The teleportation is started by Charlie, by measuring qubit C on a computational basis.
Indeed, a controller measures first before the senders is not a common procedure [2–15,
25]. However, at the end of this section, we will show that the role of the controller, i.e., he
can decide wheter the teleportation will succeed or not, can still be done just as well as the
common one. We will also explain that the change becomes an advantage when considering
a noisy environment in Section 4. The teleportation circuit diagram is shown in Fig. 1.

After Charlie’s measurement, the channel state will collapse into two possible states. If
the measurement result is 0 , which happens with 1

1 n 2 probability, the remaining channel
qubit state can be expressed as

1 A1B1B2A2
N a1 00 a2 01 a2 10 a1 11

b1 00 b2 01 b2 10 b1 11 (7)

with N 2 a1 2 a2 2 b1 2 b2 2
1
. If the result is 1 , which happens with

n 2

1 n 2 probability, the remaining qubit state is

2 A1B1B2A2
N a2 00 a1 01 a1 10 a2 11

b2 00 b1 01 b1 10 b2 11 (8)

Equations (7) and (8) are orthogonal, whatever the choice of the coefficients is. Charlie does
not announce his measurement result but keeps it secret. Hence, Alice and Bob do not know
in which state the channel state collapses.

Step 2: Alice and Bob’s Measurements

Suppose we take the 0 Charlie’s measurement result case. Alice and Bob mix their ini-
tial states with the qubit state as mix abA1B1B2A2C a b 1 A1B1B2A2C

and

perform a joint-state measurement independently in 1 a1 a2 2 a1 a2 and

1 b1 b2 2 b1 b2 basis, respectively, with

1 k1 k2 2 k1
2 2 k2

2
1
2 k1 00 k2 01 k2 10 k1 11 (9)

2 k1 k2 2 k1
2 2 k2

2
1
2 k2 00 k1 01 k1 10 k2 11 (10)

k1 a1 and k2 a2 for Alice, and k1 b1 and k2 b2 for Bob. The (9) and (10) form
a complete orthogonal measurement basis set. The channel (1) form and the measurement
basis (9)-(10) correlation become the novelty of the this work’s protocol.

Step 3: Alice and Bob’s Unitary Operations

SupposeAlice andBob’smeasurement result are 1 a1 a2 and 1 b1 b2 , respectively,
the remaining qubits collapse to

B1A2
x0 0 x1 1 y0 0 y1 1 (11)
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Alice informs Bob about her measurement result and vice versa, followed by Charlie broad-
casting his result to them. Using the information received, in this case, both Alice and Bob
perform z operator on their qubits to reconstruct the corresponding initial states. The other
possible measurement result is shown in Table 1. The table shows that the receivers’ unitary
operators are correlated with the controllers’ measurement result. Hence, even though Char-
lie measures his qubit in the very beginning, the receivers can not rebuild their initial state

Table 1 List of Alice, Bob, and Charlie’s measurement results, Alice and Bob’s qubit state, and Alice and
Bob’s unitary operator for the proposed generalized protocol

MA MB MC B1A2
state UA UB

1 a1 a2 1 b1 b2 0 x0 0 x1 1 y0 0 y1 1 I I

1 a1 a2 1 b1 b2 1 x0 1 x1 0 y0 1 y1 0 x x

1 a1 a2 1 b1 b2 0 x0 0 x1 1 y0 0 y1 1 I z

1 a1 a2 1 b1 b2 1 x0 1 x1 0 y0 1 y1 0 x z x

1 a1 a2 2 b1 b2 0 x0 0 x1 1 y0 1 y1 0 I x

1 a1 a2 2 b1 b2 1 x0 1 x1 0 y0 0 y1 1 x I

1 a1 a2 2 b1 b2 0 x0 0 x1 1 y0 1 y1 0 I z x

1 a1 a2 2 b1 b2 1 x0 1 x1 0 y0 0 y1 1 x z

1 a1 a2 1 b1 b2 0 x0 0 x1 1 y0 0 y1 1 z I

1 a1 a2 1 b1 b2 1 x0 1 x1 0 y0 1 y1 0 z x x

1 a1 a2 1 b1 b2 0 x0 0 x1 1 y0 0 y1 1 z z

1 a1 a2 1 b1 b2 1 x0 1 x1 0 y0 1 y1 0 z x z x

1 a1 a2 2 b1 b2 0 x0 0 x1 1 y0 1 y1 0 z x

1 a1 a2 2 b1 b2 1 x0 1 x1 0 y0 0 y1 1 z x I

1 a1 a2 2 b1 b2 0 x0 0 x1 1 y0 1 y1 0 z z x

1 a1 a2 2 b1 b2 1 x0 1 x1 0 y0 0 y1 1 z x z

1 a1 a2 1 b1 b2 0 x0 1 x1 0 y0 0 y1 1 x I

2 a1 a2 1 b1 b2 1 x0 0 x1 1 y0 1 y1 0 I x

2 a1 a2 1 b1 b2 0 x0 1 x1 0 y0 0 y1 1 x z

2 a1 a2 1 b1 b2 1 x0 0 x1 1 y0 1 y1 0 I z x

2 a1 a2 2 b1 b2 0 x0 1 x1 0 y0 1 y1 0 x x

2 a1 a2 2 b1 b2 1 x0 0 x1 1 y0 0 y1 1 I I

2 a1 a2 2 b1 b2 0 x0 1 x1 0 y0 1 y1 0 x z x

2 a1 a2 2 b1 b2 1 x0 0 x1 1 y0 0 y1 1 I z

123

82 Page 6 of 20



International Journal of Theoretical Physics (2024) 63:82

Table 1 continued

MA MB MC B1A2
state UA UB

2 a1 a2 1 b1 b2 0 x0 1 x1 0 y0 0 y1 1 z x I

2 a1 a2 1 b1 b2 1 x0 0 x1 1 y0 1 y1 0 z x

2 a1 a2 1 b1 b2 0 x0 1 x1 0 y0 0 y1 1 z x z

2 a1 a2 1 b1 b2 1 x0 0 x1 1 y0 1 y1 0 z z x

2 a1 a2 2 b1 b2 0 x0 1 x1 0 y0 1 y1 0 z x x

2 a1 a2 2 b1 b2 1 x0 0 x1 1 y0 0 y1 1 z I

2 a1 a2 2 b1 b2 0 x0 1 x1 0 y0 1 y1 0 z x z x

2 a1 a2 2 b1 b2 1 x0 0 x1 1 y0 0 y1 1 z z

MA, MB, MC, UA , and UB are Alice’s result, Bob’s result, Charlie’s result, Alice’s unitary operator, and
Bob’s unitary operator, respectively

without Charlie’s cooperation. The table also shows that whatever the measurement result is,
the receivers can always unitarily transform their state to the original state, which means the
teleportation has a unit probability and fidelity [38], resulting in deterministic teleportation.

2.2 Discussion

The channel state (1) form and measurement bases (9)-(10) correlation are already sufficient
to make the teleportation is faithful for any choise of the coefficients. Hence, the channel state
can be in an arbitrary entangled state, i.e., can be maximally or non-maximally entangled.
For the entanglement analysis, we can rewrite the channel state using (9) and (10) as

A1B1B2A2C
1

1 n 2 1 a1 a2 A1B1 1 b1 b2 A2B2
0 C

n 2 a1 a2 A1B1 2 b1 b2 A2B2
1 C (12)

The 1 a1 a2 , 1 b1 b2 , 2 a1 a2 , and 2 b1 b2 states can always be decom-
posed using Schmidt Decomposition. It can be shown that the states always have maximal
entanglement for any choise of the a1, a2, b1, and b2 coefficient [27]. The concurence and
entanglement entropy of the states also show that the state always has its maximum value
for any choice of a1, a2, b1, and b2 coefficients. Hence, the entanglement between Alice and
Bob’s qubits are always maximal.

But what about the entanglement of the whole five-qubit channel state? Considering that
for multipartite entanglement, it is generally very difficult to find an unambiguous definition
of entanglement measures, then, we approach it analogously as a bipartite state. That is, by
supposing qubit A1B1A2B2 as a unified single party. We can write the channel state as

1

1 n 2
unified1 0 C n unified2 1 C (13)
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with unified1 1 a1 a2 A1B1 1 b1 b2 A2B2
and unified2 2 a1 a2 A1B1

2 b1 b2 A2B2
. It is clear that unified1 and unified2 states are orthogonal. Hence, the

entanglement between the unified party and qubit C will depend on the coefficient n, i.e.,
it will has a maximal entanglement for n 1, separable for n 0 or n , and a
non-maximal entanglement for the other values.

Uniquely, the proposed protocol description (Section 2.1) show that the the n parameter
vanishes after the controller measures the channel state, see (7)-(8). Hence, the protocol will
always resulting a deterministic teleportation regardless of its entanglement, which becomes
the protocol’s advantage.

This work wants to highlight that a deterministic bidirectional quantum-controlled tele-
portation does not always require a maximally entangled five-qubit channel state. It has been
showed that there exists a particular non-maximally entangled state that still can be used to
do the job; that is, the particular state is distributed to each party such that the non-maximal
entanglement part happens between the controller and other parties only. Moreover, our
particular channel state can be usefull in optimizing teleportation performance under the
influence of noises that will be discussed in Section 4 later.

Suppose we choose a1 1, a2 0, b1 1, b2 0, and n 1, the channel will be in a
maximally entangled state:

1

2 A1B1 A2B2
0 C A1B1 A2B2

1 C (14)

with 1
2

00 11 and 1
2

01 10 are Bell states [1], which becomes
one of the well-known bidirectional channels described in [3]. However, we interested in the
non-maximally case, which will be evaluated in the next section.

3 Bidirectional Quantum Controlled Teleportation
via a Non-Maximally Entangled Five-Qubit Channel State

In this section, based on the result of the previous section, we propose a bidirectional quantum
controller teleportation via a non-maximally entangled five-qubit channel state. The protocol
details are still the same, except for the channel. We choose a1 1, a2 7, b1 1,
b2 0, and n 51 for this section protocol’s channel state, and the state can be expressed
as

A1B1B2A2C
1

40 2
7 00000 7 00110 7 7 01000 7 7 01110

7 7 10000 7 7 10110 7 11000 7 11110

51 01011 51 01101 357 00011 357 00101

357 11011 357 11101 51 10011 51 10101

(15)

which has a non-maximally entanglement, see Section 2.2. There is no specific reason for
our choice of these coefficients; we simply choose it. One can choose other coefficients and
will get a similar result due to the guarantee of the previous section evaluation.
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Step 1: Charlie’s Measurement

In the teleportation process, Charlie measures qubit C in computational basis. Suppose Char-
lie’s measurement result is 0 , which happens with 0.49 probability, the remaining channel
qubit state collapse to

1 A1B1B2A2

1

4
00 7 01 7 10 11

1

2
00 11 (16)

Step 2: Alice and Bob’s Measurements

Alice and Bob mix their initial states with the qubit state as mix abA1B1B2A2C a

b 1 A1B1B2A2C and perform a joint-state measurement. Using channel state (1) and
measurement bases (9)-(10) correlation, Alice measures qubit aA1 in a particular orthogonal
basis set as

1 1 1 7
1

4
00

7

4
01

7

4
10

1

4
11 (17)

2 2 1 7
7

4
00

1

4
01

1

4
10

7

4
11 (18)

while Bob measures qubit bB2 in Bell basis [1], i.e., 1 1 0 1
2

00 11

and 2 1 0 1
2

01 10 . Suppose Alice and Bob’s measurement results

are 1 and , respectively, the remaining qubit state collapses to

B1A2
x0 0 x1 1 y0 0 y1 1 (19)

Step 3: Alice and Bob’s Unitary Operations

Alice informs Bob about her measurement result and vice versa, followed by Charlie broad-
casting his result to them. Using the information received, in this case, Bob andAlice perform
z and I operators to rebuild their corresponding initial state, respectively. The other mea-

surement results can be evaluated similarly and is shown in Table 2. The table shows that
whatever the measurement result is, the receivers can always unitarily transform their state
to the original state, which means the teleportation has a unit probability and fidelity. The
main novelty of the proposed protocol is that even though the five-qubit channel (15) is
non-maximally entangled (see Section 2.2), the teleportation is successful with certainty.

4 Effect of the Phase-Damping Noise on the Teleportation’s Fidelity

Considering that noise is an unavoidable phenomenon, it is interesting to see how the the
proposed non-maximally protocol in Section 3 performs in the presence of the noise. Phase-
damping noise is one of the most common noises [39, 40]. We will use the noise for this
section’s evaluation, while the other noise types can be done similarly.

Phase-damping noise is a type of noise that loses the relative phase between the eigenstates
of a system. In other words, it decays the off-diagonal elements of the system’s density matrix
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Table 2 List of Alice, Bob, and Charlie’s measurement results, Alice and Bob’s qubit state, and Alice and
Bob’s unitary operator for the proposed non-maximally entangled channel protocol

MA MB MC B1A2
state UA UB

1 0 x0 0 x1 1 y0 0 y1 1 I I

1 1 x0 1 x1 0 y0 1 y1 0 x x

1 0 x0 0 x1 1 y0 0 y1 1 I z

1 1 x0 1 x1 0 y0 1 y1 0 x z x

1 0 x0 0 x1 1 y0 1 y1 0 I x

1 1 x0 1 x1 0 y0 0 y1 1 x I

1 0 x0 0 x1 1 y0 1 y1 0 I z x

1 1 x0 1 x1 0 y0 0 y1 1 x z

1 0 x0 0 x1 1 y0 0 y1 1 z I

1 1 x0 1 x1 0 y0 1 y1 0 z x x

1 0 x0 0 x1 1 y0 0 y1 1 z z

1 1 x0 1 x1 0 y0 1 y1 0 z x z x

1 0 x0 0 x1 1 y0 1 y1 0 z x

1 1 x0 1 x1 0 y0 0 y1 1 z x I

1 0 x0 0 x1 1 y0 1 y1 0 z z x

1 1 x0 1 x1 0 y0 0 y1 1 z x z

2 0 x0 1 x1 0 y0 0 y1 1 x I

2 1 x0 0 x1 1 y0 1 y1 0 I x

2 0 x0 1 x1 0 y0 0 y1 1 x z

2 1 x0 0 x1 1 y0 1 y1 0 I z x

2 0 x0 1 x1 0 y0 1 y1 0 x x

2 1 x0 0 x1 1 y0 0 y1 1 I I

2 0 x0 1 x1 0 y0 1 y1 0 x z x

2 1 x0 0 x1 1 y0 0 y1 1 I z

2 0 x0 1 x1 0 y0 0 y1 1 z x I

2 1 x0 0 x1 1 y0 1 y1 0 z x

2 0 x0 1 x1 0 y0 0 y1 1 z x z

2 1 x0 0 x1 1 y0 1 y1 0 z z x
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Table 2 continued

MA MB MC B1A2
state UA UB

2 0 x0 1 x1 0 y0 1 y1 0 z x x

2 1 x0 0 x1 1 y0 0 y1 1 z I

2 0 x0 1 x1 0 y0 1 y1 0 z x z x

2 1 x0 0 x1 1 y0 0 y1 1 z z

MA, MB, MC, UA , and UB are Alice’s result, Bob’s result, Charlie’s result, Alice’s unitary operator, and
Bob’s unitary operator, respectively

[40]. For a single qubit state, the noise can be represented by a Kraus Operator [19, 41] as

output input

2

i 0

Ei inputE
†
i (20)

with elements

E0 1 P I E1 P 0 0 E2 P 1 1 (21)

The P parameter is the decoherence rate parameter value, with 0 P 1, representing
the probability of the noise decaying the off-diagonal elements of the state’s density matrix.

In this section, we assume that Charlie (the controller) prepares the channel state. The
protocols described in Sections 2 and 3 allow Charlie to measure his own qubit immediately
and then distribute the remaining qubits to the other parties. The arrangement makes the noise
only affect the senders’ (and receivers’) qubit and not the controller’s (because it does not
have a chance to travel in space and time), which is the advantage we mentioned in Section 2.
It also makes the evaluation simpler, i.e., we do not need to deal with a large number of qubits
because the teleportation from Alice to Bob and Bob to Alice can be treated independently.
We can write the channel’s density operator as a composition from A1 to B1 and B2 to A2

operator as A1B1B2A2 A1B1 B2A2 . It is also assumed that each qubit experience the
phase damping noise independently, but all of them experience the same decoherence rate
parameter value for simplicity. Hence, the channel density operator affected by the noise can
be expressed as A1B1B2A2 A1B1 B2A2 with

SR

2

mS 0

2

mR 0

EmS EmR SR E
†
mS

E†
mR

(22)

for S A1 B2 and R A2 B1 . The indexes mS and mR represent which qubit the
Kraus operator is acting at.

The noise evaluation will be evaluated for two cases: the proposed non-maximally entan-
gled five-qubit channel state case (from Section 3), followed by the well-known maximally
entangled five-qubit case (see (14) and [3]), and compared the result.

4.1 The Proposed Non-Maximally Entangled Case

We use the protocol described in Section 3 to represent the non-maximally entangled case.
Charlie, as a controller, prepares the channel state and measures his own qubit right after.
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Suppose we take the 0 Charlie’s measurement result case (that happens with probability
P 0 0 49) for the demonstration, while the 1 case can be done similarly. After some
calculations, the channel density operator can be written as

A1B1B2A2

1

16
1 P

2 00 7 01 7 10 11

00 7 01 7 10 11

P 1 P 0 0 7 1 0 0 7 1

P 1 P 1 7 0 1 1 7 0 1

P 1 P 0 7 1 0 0 7 1 0

P 1 P 7 0 1 1 7 0 1 1
2
P 00 00 7 2

P 01 01 7 2
P 10 10 2

P 11 11

1

2
1 P

2 00 11 00 11

P 2 P 00 00 11 11 (23)

It shows that the A1B1 density operator ( A1B1 ) affected by the noise is more complicated
than the B2A2 one ( B2A2 ). For simplicity, we do the evaluation separately.

In the A1 to B1 teleportation process, Alice mixes her initial state with the channel state.
The density operator of the system is aA1B1 a A1B1 with a a a from (5).
Alice performs a joint state projection measurement on qubit aA1 in (17)-(18) basis. Suppose
her measurement result is 1 , as described in Section 3, Bob performs a z operator on his
qubit. After tracing out qubit a and A1, the output density operator (qubit B1) is

B1 0 1
1 P

2 x0 0 x1 1 x0 0 x1 1

1

26
P 1 P x0 7x1

2 0 7 1 0 7 1

1

26
P 1 P 7x0 x1

2 7 0 1 7 0 1

1

22
P 1 P x0

2 0 0
1

22
P 1 P x1

2 1 1

1

26
2
P x0 x1 7 2 0 0

7

26
2
P 7x0 x1

2 0 0

7

26
2
P x0 x1 7 2 1 1

1

26
2
P 7x0 x1

2 1 1 (24)

This results happens with probability

P
1

1

22
1 P

1

25
P x0 7x1

2 1

25
P 7x0 x1

2 (25)

If we re-parameterize (5) to a exp i r 0 1 r2 exp i 1 , i.e, x0

r exp i and x1 1 r2 exp i , with r is a real number, and are global
and relative phase parameter, respectively, the P

1
value can be calculated easily and is

equal to 1
4 .
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The fidelity of the output density operator is F 0 1 B1 0 1

2, or can be
written as

F 0 1
1 P

2 1

26
P 1 P x0 7x1

4 7x0 x1
4

P 1 P x0
4 x1

4 1

26
2
P x0 7x1

2 x0
2 7 x1

2

1

26
2
P 7x0 x1

2 7 x0
2 x1

2 (26)

It is the fidelity formula if Charlie’s measurement result is 0 and Alice’s result is 1 ,
which happens with probability P 0 P

1
0 49 1

4 . It shows that the fidelity depends
on the decoherence rate parameter and the initial state’s coefficients. The other possible
measurement results can be evaluated similarly.

We define the A1 to B1 average fidelity value as FA1 B1 m n Pm P n F m n , with
Pm (P n ) is Charlie’s (Alice’s) probability value to get a m ( n ) result, with m 0 1
and n 1 1 2 2 , which produces

FA1 B1 0 49
1

2
1 P

2 1

26
P 1 P x0 7x1

4 7x0 x1
4

P 1 P x0
4 x1

4 1

26
2
P x0 7x1

2 x0
2 7 x1

2

1

26
2
P 7x0 x1

2 7 x0
2 x1

2

1

2
1 P

2 1

26
P 1 P x0 7x1

2 x0 7x1
2

1

26
P 1 P 7x0 x1

2 7x0 x1
2

P 1 P x0
4 x1

4 1

26
2
P x0 7x1

2 x0
2 7 x1

2

1

26
2
P 7x0 x1

2 7 x0
2 x1

2

0 51
1

2
1 P

2 1

26
P 1 P 7x0 x1

4 x0 7x1
4

P 1 P x0
4 x1

4 1

26
2
P 7x0 x1

2 7 x0
2 x1

2

1

26
2
P x0 7x1

2 x0
2 7 x1

2

1

2
1 P

2 1

26
P 1 P 7x0 x1

2 7x0 x1
2

1

26
P 1 P x0 7x1

2 x0 7x1
2

P 1 P x0
4 x1

4 1

26
2
P 7x0 x1

2 7 x0
2 x1

2

1

26
2
P x0 7x1

2 x0
2 7 x1

2 (27)
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The B2 to A2 teleportation process can be evaluated similarly. SupposeBob’smeasurement
result is 1

2
00 11 , the output density operator is

A2 0 1 P
2 y0 0 y1 1 y0 0 y1 1

P 2 P y0
2 0 0 y1

2 1 1 (28)

It happens with probability P 1
4 . The B2 to A2 average fidelity value is FB2 A2

q r P q P r F q r , with q 0 1 and r . After some calcu-
lations, one can find that the B2 to A2 teleportation fidelity can be expressed as

FB2 A2 1 P
2

P 2 P y0
4 y1

4 (29)

It shows that the fidelity depends on the decoherence rate and the initial state’s amplitude
parameter.

The whole teleportation process average fidelity is

Ftot FA1 B1 FB2 A2 (30)

We illustrate the result by plotting it with respect to the decoherence rate parameter and
some initial states’ coefficients. We take the coefficients as real numbers for simplicity, while
the complex ones can be done similarly and will get a similar result. The resulting plot is
shown in Fig. 2 for x0 y0, while for x0 y1 also produces a similar graph. We use x20
and y20 as the x-axis to generate the symmetrical shape of the graphs. We also add contour
lines to represent the face of some fidelity values. The graph shows that the greater the
decoherence rate parameter, the lower the fidelity, which is a typical result. However, we find
an interesting result in its comparison with the well-known maximally entangled channel in
(14), as described below.
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1

Fig. 2 The proposed non-maximal channel protocol’s fidelity plot for various x0 and P value (30). We take
the coefficients of (5) and (6) as real numbers and x0 y0, while for x0 y1 also produces a similar graph.
The black curve indicates the contour line of some fidelity values
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4.2 TheWell-KnownMaximally Entangled Case

In the noiseless case, our proposed non-maximally entangled channel protocol (henceforthwe
refer to as proposed protocol) described in Section 3 performs just as well as the well-known
maximally entangled channel protocol [3], i.e., both of them can have a unit probability and
fidelity. However, we are also interested in the comparison under the presence of the noise as
follows. We simply change the channel state in our protocol into the well-known maximally
one as

A1B1B2A2C
1

2 A1B1 A2B2
0 C A1B1 A2B2

1 C (31)

which is one of the channel classes described in [3], see Section 2.2. The protocol steps are
similar to the previous section, as well as the noise evaluation. Alice and Bob use the Bell
States as their measurement basis. After some calculations, one can find that the average
fidelity under the phase-damping noise is

Ftot 1 P
2

P 2 P x0
4 x1

4

1 P
2

P 2 P y0
4 y1

4 (32)

The equation shows that the fidelity only depends on the decoherence rate and the initial
state’s amplitude parameter only.

We evaluate the fidelity by plotting it with respect to the decoherence rate parameter and
the initial states’s parameter, as shown in Fig. 3 for x0 y0 and x0 y1. We take the
coefficients of (5) and (6) as real numbers as previously. The plot shows that there exist
some particular states that make the fidelity always equal to one for any decoherence rate
parameter value, i.e., for x20 0 1 and y20 0 1 (which also can be seen in (32) directly),
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1

Fig. 3 The teleportation fidelity plot of the well-known maximal protocol (32) for various x0 and P value.
We take the coefficients of (5) and (6) as real numbers and y0 x0; while for y0 x1 also produces a similar
graph. The black curve indicates the contour line of some fidelity values
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Fig. 4 The fidelities difference, i.e., F Ftot Ftot , with Ftot from Fig. 2 and Ftot from Fig. 3. The black
contour indicates zero F values, i.e., both fidelities have the same value

indicating that the well-known one performs better under the noise than the proposed one for
the particular states.

4.3 Discussion

The previous subsection’s result showed that the maximal protocol performs better under the
noise for for x20 0 1 and y20 0 1 rather than the proposed one. But, how are the other
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Fig. 5 The fidelities comparison for F1 Ftot of the proposed protocol from (30), and F2 Ftot of the
well-known protocol from (32) for a b
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Fig. 6 The fidelities comparison for F1 Ftot of the proposed protocol from (30), and F2 Ftot of the well-

known protocol from (32) for a b
1
2 0 3 1 ; while for a b

1
2 3 0 1

also produces a similar graph

states? We evaluate it by defining a fidelity difference, i.e., F Ftot Ftot , and plot it
in Fig. 4. We also add black contour lines to present zero F values, which divide the plot
into three zones. The centre zone (left and right zones) has (have) positive (negative) F
values, indicating that the proposed protocol performs better (worse) than the well-known
one. It is interesting to note that the center zone is much larger than the left and right zones,
which means the proposed protocol outperforms the well-known one for most of the initial
states’ parameter values. We also plot the fidelities comparison for some initial states in
Figs. 5 and 6, which further supports the statement.

Hence, we conclude that even the proposed and well-known protocol performs equally
well in the ideal case, i.e., both of themhave a unit probability andfidelity in the noiseless case,

Table 3 Comparison between the proposed bidirectional quantum teleportation protocol with other similar
studies

Protocol Initial state Quantum channel C-bit Efficiency Noise analysis

[2] 1-1 5 6 18.18% No

[4] 1-2 7 8 20% No

[5] 2-2 9 10 21.05% Yes

[6] 1-1 6 7 15.38% No

[17] 3-1 9 10 21.05% Yes

[18] 2-2 10 16 15.38% Yes

[19] 2-2 7 8 26.67% Yes

[21] 2-3 8 9 29.41% Yes

[23] 1-1 6 6 16.67% Yes

[26] 1-1 6 6 16.67% Yes

Our 1-1 5 6 18.18% Yes
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our choise on the channel coefficient in Section 3 outperforms the well-known maximally
entangled channel one under the presence of the phase-damping noise, which adds to the
proposed protocol’s advantages.

5 Comparison and Conclusion

In this section, we compare our proposed protocol’s efficiency to other similar studies. We
use an efficiency formula as [42]

qt
qc bc

(33)

with qt qc, and bc as the numbers of teleported qubits, numbers of channel qubits required,
and numbers of classical bits required, respectively. The protocols’ efficiency are presented
in Table 3, showing that our protocol efficiency is not among the highest. However, if we
only compare the symmetric 1-1 protocols [2, 6, 23, 26], our protocol’s efficiency is one of
the highest. We also highlight that the main novelty of the proposed one is that even if it
uses a non-maximally entangled five-qubit channel state, it can produce a unit probability
and fidelity teleportation, which widens the future bidirectional teleportation applicability,
i.e., it does not require a maximally entangled five-qubit channel state to make a perfect
teleportation anymore. The work in [26] produces a similar result. However, it needs addi-
tional transformation and an auxiliary qubit. Our proposed protocol does not; it only uses
the standard protocol procedures: joint state measurements by the senders and a single qubit
measurement by the controller, which has become its advantage.

We also compare the proposed protocol’s evaluation under the presence of phase-damping
noise with other similar studies [5, 17–19, 21]. We showed that our evaluation also produces
a similar result, i.e., the fidelity affected by the noise depends on the decoherence rate and
the initial states’ parameters only. However, our noise approach is different from the studies,
i.e., we run indexes of the Kraus Operators in (22) while the other studies do not. The trace
of the resulting output density operators of the previous studies may have a non-unit value,
which can be seen if we set the decoherence rate parameter to be equal to one. The non-unit
trace value causes density operator interpretation difficulties. In comparison, our approach
keeps (23)’s trace value always equal to one for any decoherence rate parameter, which does
not experience the difficulties.

The work in [43] evaluated one-way quantum teleportation in a noisy environment, show-
ing that a particular state performs better under a particular noise, leading a better teleportation
performance. Our results also show a similar behavior.We showed that under phase-damping
noise, the choice of the state in (15) as the proposed non-maximal protocol’s channel state
outperformed the well-known maximally entangled channel one in (31). We show it by cal-
culating its teleportation fidelity and comparing it with the well-known one. We highlighted
that its fidelity is higher for most of the initial state, indicating that our protocol performs
better under the noise rather than the well-known one.

In summary, we proposed a deterministic bidirectional quantum controlled teleportation
via a non-maximally entangled five-qubit channel state. We showed that there exists a partic-
ular non-maximally entangled five-qubit channel state and measurement bases combination
that canmake a faithful teleportation, i.e., has a unit fidelity and probability. Themain novelty
of the proposed protocol is that the channel and measurement bases combination guarantees
the performance of the protocol even if the five-qubit channel is non-maximally entangled,
i.e., the teleportation will always have a unit fidelity and probability. We also evaluated the
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proposed protocol in the presence of phase-damping noise and compared it with the well-
known maximally entangled channel protocol. We showed that the fidelity of the proposed
non-maximal protocol is higher than the well-knownmaximal one for most of the initial state
parameters, showing that the proposed protocol’s channel state that we choose outperforms
the well-known one, which adds to the proposed protocol’s advantages.
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