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Abstract
Generating the entanglement and controlling the non-classical properties are an important
topic in quantum optics. In this paper, we consider a system consisting of two-photon Jaynes-
Cummings model with an intensity dependent coupling and Kerr term in the presence of the
Stark shift and in dispersive approximation. It is assumed that the cavity field is initially pro-
vided in the coherent state and the atom is in the superposition state, |ψ〉a f = 1√

2
(|e〉 + |g〉).

We obtain the exact energy spectrum of the deformed model and examine the dependence of
Stark shifts, deformation parameter and atom- field coupling constant on the level crossing
phenomenon. Dissipation due to the coupling of the system with its surrounding medium is
an unavoidable phenomenon in quantum systems. Thus for deformed JCM under nonlinear
quantum dissipation, we solve the deformed Master equation in dispersive approximation.
The non-classical properties of the time-evolved atom-field states are exhibited through eval-
uating the linear entropy measure and Mandel parameter. We examine the significance of
damping and deformation parameters on the dynamical properties of atom-field system. It
will be shown that the cavity damping and deformation parameter control the non-classical
features of the field throughout the interaction time.

Keywords Dissipation · Entanglement · Linear entropy · Mandel parameter · Nonlinear
Jaynes-Cummings model · Stark shift

1 Introduction

In quantum optics, the Jaynes-Cummings model (JCM) is a candidate for the simplest and
most effective theoretical models which studies the interaction of a single mode quantized
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electromagnetic field with a two-level atom [1]. This model as an exactly solvable model
explains various interesting quantum effects such as Rabi oscillations [2–5], collapse and
revival of the atomic population inversion [6–9], sub-Poissonian statistics and squeezing of
the radiation field [8–12]. The significance of the JCM in quantum optics leads to the gen-
eralization of this model to the q-deformed [13–15], f-deformed [16] and parity λ-deformed
JCMs [17, 18].

An outstanding aspect of quantummechanics is the entanglementwhichwas introduced by
Einstein et al. [19]. Quantum entanglement plays an important role in quantum computation
[20] and quantum information processing [21]. Quantum entanglement is widely applied in
quantum cryptography [22] and teleportation [23, 24]. In order to prepare the entangled state,
many schemes are proposed such as the JCM[1].Many authors have studied the entanglement
in this model, such as Refs. [25–29]. In all of the papers, the influence of the environment has
been ignored. However due to the coupling of the system with its surrounding environment,
dissipation is an inevitable phenomenon.

The dissipative dynamics of the entanglement in the single and double JCMs in the dis-
persive approximation has been studied in Refs. [30, 31], respectively. Zhou et al studied
the dissipative dynamics of two-photon JCM with Stark shift [32] and the non-classical
properties of this model under Kerr like medium have been examined in Ref. [33]. The dis-
sipative characteristic of the system in the two-photon JCM with degenerate atomic levels
have been analyzed in Ref. [34]. Naderi et al. [35] studied the dynamics of the atom-field
system described by the f-deformed JCMwith nonlinear quantum dissipation and in the large
detuning approximation.

In what follows, we study the two-photon JCM in the appearance of the Stark shift and in
dispersive approximation. Assuming that at first, the field is prepared in the coherent state and
the atom is arranged in a superposition of its ground |g〉 and excited |e〉 states, we calculate the
deformed Master equation in dispersive approximation. The dynamics of the non-classical
features of atom-field states is evaluated by using the linear entropy measure and Mandel
parameter. We analyze the effect of the deformation parameter and cavity damping on the
non-classical features of the field during the interaction time.

The organization of this paper has the following steps: The nonlinear JCM in the appear-
ance of the Stark shift is reviewed in Section 2. In Section 3, we solve the deformed master
equation in the dispersive approximation, and obtain the matrix elements of the atom-field
density operator. The dynamics of the linear entropy and the Mandel parameter are studied
in Section 4. Finally, Section 5 involves the results.

2 Model Description

JCM studies the interaction between a single two-level atomwith ground state |g〉 and excited
state |e〉 coupled to a single-mode quantized electromagnetic field [1]. In the rotating wave
and dipole approximations, the JCM Hamiltonian is

Ĥ = �ωâ†â + �ω0

2
σ̂z + �g(âσ̂+ + â†σ̂−), (1)

where ω and ω0 are the field and atomic transition frequencies, respectively and â(â†) is the
annihilation (creation) operators for the field quanta. The operators σ̂± and σ̂z are atomic
operators for the two-level atom which satisfy the commutation relations [σ̂z, σ̂±] = ±2σ̂±
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and [σ̂+, σ̂−] = σ̂z . Also, g is the atom-field coupling constant. Let us introduce the operators
[36, 37]

K̂+ := â†
√
1 + χ â†â, K̂− :=

√
1 + χ â†â â, (2)

where the operators K̂+ and K̂− form a closed algebra [K̂−, K̂+] = 2K̂0 and [K̂0, K̂±] =
±χ K̂± with K̂0 = χ â†â + 1

2 . The number operator is defined as n̂ = â†â, which satisfies
the following commutation relations

[n̂, K̂+] = K̂+, [n̂, K̂−] = −K̂−. (3)

Clearly for χ = 0, the commutation relations form the Heisenberg-Weyl algebra for â and
â†. Thus, a more general Hamiltonian consisting of the nonlinear JCM in terms of operators
K̂± is obtained as follows:

Ĥ = �ωK̂+ K̂− + �ω0

2
σ̂z + �g(K̂+σ̂_ + K̂−σ̂+). (4)

In this work, we consider theHamiltonian of the nonlinear two-photon JCM in the appearance
of the Stark shift under the rotating-wave and dipole approximations which is defined as
(� = 1)

Ĥ = ωK̂+ K̂− + ω0
2 σ̂z + g(K̂ 2+σ̂− + K̂ 2−σ̂+) + K̂+ K̂−(β1 |g〉 〈g| + β2 |e〉 〈e|), (5)

where βi = gi 2

δ
(i = 1, 2) are the Stark shift parameters which are connected to the virtual

transition to the intermediate level, andmayoccur for two-photon transition [38, 39]. δ = ω0−
2ω is the detuning parameter. g1 and g2 illustrate the coupling strengths of the intermediate
state to the states |e〉 and |g〉, respectively. In fact, we want to examine the dynamics of a
two-level atom interacting with the field in a dissipative cavity as well as in the appearance of
Stark shift. Besides, we analyze the effect of the dissipation on the entanglement dynamics
and Mandel parameter. The matrix form of the Hamiltonian in (5) with respect to the bases
|e, n〉 and |g, n + 2〉 takes the following form

H =
(
h11 h12
h21 h22

)
, (6)

where

h11 = ω0
2 + (ω + β2)(n + χn(n − 1)),

h12 = h21 = g
√

(n + 1)(n + 2)(1 + χn)(1 + χ(n + 1)),

h22 = ω0
2 − δ + ω(n + χ(n + 1)(n + 2)) + β1(n + 2 + χ(n + 1)(n + 2)).

(7)

The eigenvalues of this Hamiltonian are given by

E±
n = ωn + ω0

2 − δ
2 + β1(n+2)(1+χ(n+1))

2 + β2(n+1)(1+χn)
2 + ωχ(1 + n(n + 1))

−β2χn − β2
2 ± 1

2

{
4g2(n + 1)(n + 2)(1 + χn)(1 + χ(n + 1))

+[δ+β2(n+1)(1+χn)−β1(n+2)(1+χ(n+1))−2χ(β2n+ω(1+2n))−β2]2
} 1

2 .

(8)

The energy eigenvalues E±
n versus detuning parameter δ are plotted in Fig. 1, for n = 1,

ω = 1, χ = g = 0.5, and three different values of β1 and β2.
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Fig. 1 Energy eigenvalues E±
n versus detuning parameter δ for n = 1, ω = 1 and χ = g = 0.5, when

β1 = β2 = 0 (solid curve), β1 = 0.2, β2 = 0.4 (dashed curve), and β1 = 0.4, β2 = 0.8(dotdashed curve).
The lower portion of the figure is for E−

n and the upper portion is for E+
n

Figure 1 denotes that in the appearance of Stark shifts, the magnitude of the energies
increases, and the extremum of E±

n shifts to the positive detuning parameter δ > 0. On the
other hand, we plot the diagrams of the energy eigenvalues E±

n versus δ for β1 = 0.02,
β2 = 0.04, n = 1, and ω = 1 for given coupling constant g and deformation parameter χ .
Figure 2 indicates that when the coupling between the atom and the field becomes zero, i.e.
when g = 0, the energy eigenvalues will be degenerate for exact resonance, i.e. δ = 0. The
energy levels E+

n and E−
n are split for non-zero coupling between the atom and the field, that

is, the degeneracy is broken. Furthermore, the comparison of Fig. 2(a) and (b) indicates that
the energy eigenvalues move to the larger values as the deformation parameter χ becomes
larger. For nonlinear JCM (χ �= 0), the level crossing moves to positive detuning parameter.
Furthermore, the gap between the energies E+

n and E−
n increases when the deformation

parameter and coupling constant increase.
In the dispersive limits of a two-photon process, i.e.

β1 (n + 2)(1 + χ(n + 1))

|δ − 2χ(β2n + ω(1 + 2n)) − β2| � 1, (9a)

β2 (n + 1)(1 + χn)

|δ − 2χ(β2n + ω(1 + 2n)) − β2| � 1. (9b)
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Fig. 2 Energy eigenvalues E±
n versus detuning parameter δ for β1 = 0.02, β2 = 0.04, n = 1, and ω = 1,

when g = 0 (full line), g = 0.5 (dashed curve) and g = 1(dotdashed curve): (a) χ = 0, and (b) χ = 0.5. The
lower portion of the figure is for E−

n and the upper portion is for E+
n
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the eigenvalues are rewritten as

E+
n = ω0

2 +ωn + β2n(1 + χ(n − 1))+ωχn(n − 1) + �(n + 1)(n + 2)(1 + χn)(1 + χ(n + 1)),

E−
n = −ω0

2 + ω(n + 2) + β1(n + 2)(1 + χ(n + 1)) − �(n + 1)(n + 2)(1 + χn)(1 + χ(n + 1))

+ωχ(n + 1)(n + 2),
(10)

in which � = β1β2|δ−2χ(β2n+ω(1+2n))−β2| . If the condition in (9) is fulfilled for all values of n,
the effective Hamiltonian is rewritten as

Ĥe f f = ω0
2 σ̂z + ωK̂+ K̂− + K̂+ K̂−(β1 |g〉 〈g| + β2 |e〉 〈e|)

+�[(â†â + 1)(â†â + 2)(1 + χ â†â)(1 + χ(â†â + 1)) |e〉 〈e|

−(â†â − 1)â†â
(
1 + χ(â†â − 2)

) (
1 + χ(â†â − 1)

) |g〉 〈g|].

(11)

3 Solution of DeformedMaster Equation for Density Matrix

We now study the nonlinear dissipative cavity interacting with a two-level atom along with
Stark shift and coupled to a zero temperature reservoir. In fact, Isar et al. [40] have obtained
a master equation for the deformed harmonic oscillator under a dissipative environment.
Regarding the damped deformed oscillator in the environment as a thermal bath at equilib-
rium temperature T , the master equation in the interaction picture under the Born-Markov
approximation is given by [41]

dρ̂D.O (t)

dt
= λ

2

([[
coth

�ω�(n̂)

2kBT
K̂−, ρ̂D.O (t)

]
, K̂+

]
−

[
K̂+, {K̂−, ρ̂D.O (t)}

]
+ H .C .

)
,

(12)
where, ρ̂D.O (t) is the reduced density operator for the deformed oscillator with frequency
ω, λ is the damping parameter, kB is the Boltzman constant and by definition

�(n̂) = 1

2
((n̂ + 2) f 2(n̂ + 1) − n̂ f 2(n̂ − 1)), (13)

in which f (n̂) = √
1 + χ n̂. Thus, the evolution of the total atom-field system in a dispersive

deformed JCM at zero temperature in the interaction picture becomes (� = 1) [35, 42]

dρ̂(t)

dt
= −i[Ĥe f f , ρ̂(t)] − L̂ρ̂(t), (14)

where ρ̂ is the atom-field density operator and L̂ is the nonlinear superoperator which can be
defined as follows

L̂· = λ(K̂+ K̂− · + · K̂+ K̂− − 2K̂− · K̂+). (15)

The Liouvillian superoperator L̂ is a linear combination of bosonic superoperators [43, 44]
which constitute a finite Lie algebra under the commutation relation. The application of
creation and annihilation operators of the harmonic oscillator, i.e. â and â† on an operator Ô
is represented by the bosonic superoperators:

(â·)Ô = â Ô, (·â)Ô = Ôâ,

(â†·)Ô = â† Ô, (·â†)Ô = Ôâ†.
(16)
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Considering the fundamental commutation relation [â, â†] = 1, the bosonic superoperators
satisfy the following commutation relations

[(â·), (â†·)] = 1, [(·â), (·â†)] = −1. (17)

These superoperators construct the following bilinear products

M = (â†â·) = (â†·)(â·),

P = (·â†a) = (·â†)(·â),

F = (â · â†) = (â·)(·â†) = (·â†)(â·).

(18)

The density operator ρ̂(t) belongs to the Hilbert space Ha ⊗ H f of the atom and field.
Therefore, the reduced field operator is defined as

ρ̂ f (t) = Tra[ρ̂(t)] = ρ̂gg(t) + ρ̂ee(t), (19)

where ρ̂gg(t) = 〈g| ρ̂(t) |g〉 and ρ̂ee(t) = 〈e| ρ̂(t) |e〉.
By substituting (11) and (15) in the master equation (14), the Liouvillians associated with

the matrix elements ρ̂ee(t) and ρ̂gg(t) are given by

L̂ee = iβ2
[
(P2 − M2)χ + (M − P)χ + (P − M)

]

+i�[(P + 1)(P + 2)(1 + χP)(1 + χ(P + 1))

−(M + 1)(M + 2)(1 + χM)(1 + χ(M + 1))]

+λ(2F A(M,P) − M(1 + χ(M − 1)) − P(1 + χ(P − 1))),

(20)

and
L̂gg = iβ1

[
(P2 − M2)χ + (M − P)χ + (P − M)

]

−i�[P(P − 1)(1 + χ(P − 2)(1 + χ(P − 1))

−M(M − 1)(1 + χ(M − 2)(1 + χ(M − 1))]

+λ(2F A(M,P) − M(1 + χ(M − 1)) − P(1 + χ(P − 1))),

(21)

with A(M,P) = √
1 + χ(M − 1)

√
1 + χP .

By using the dynamical symmetry technique proposed in Ref. [45], one may solve the
Master equation as

ρ̂ee(t) = eL̂eet ρ̂ee(0)

= exp
[
iβ2t[(P2 − M2)χ + (M − P)χ + (P − M)]

+i�t[(P + 1)(P + 2)(1 + χP)(1 + χ(P + 1))

−(M + 1)(M + 2)(1 + χM)(1 + χ(M + 1))]

−λt[M(1 + χ(M − 1)) + P(1 + χ(P − 1))]] × exp[2λF A(M,P)t]ρ̂ee(0),

(22)
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and

ρ̂gg(t) = eL̂ggt ρ̂gg(0)

= exp
[
iβ1t[(P2 − M2)χ + (M − P)χ + (P − M)]

−i�t[P(P − 1)(1 + χ(P − 2)(1 + χ(P − 1))

−M(M − 1)(1 + χ(M − 2)(1 + χ(M − 1))]

−λt[M(1 + χ(M − 1)) + P(1 + χ(P − 1)))]] × exp[2λF A(M,P)t]ρ̂ee(0).

(23)

It is supposed that at first the atom is arranged in a superposition of the excited and ground
states, and the cavity field is in the coherent state:

∣∣ψa f (0)
〉 = 1√

2
(|e〉 + |g〉) ⊗ |α〉 , (24)

where |α〉 = exp[−|α|2
2 ]∑

m

αm√
m! |m〉, and for clarity, we will suppose that α is real parameter.

Therefore, when t = 0 then ρ̂ee(0) = ρ̂gg(0) = 1
2 |α〉 〈α|. Substituting (24) in (22) and (23)

and after some calculation, the following formulae for the atom-field density operator ρ̂ee(t)
and ρ̂gg(t) in the matrix representation will be obtained as

ρ̂ee(t) = 1
2 exp[−|α|2] ∑

n,m

αmα∗n√
m!n! × exp[�nm(t) + i
enm(t)] |m〉 〈n| , (25)

and
ρ̂gg(t) = 1

2 exp[−|α|2] ∑
n,m

αmα∗n√
m!n! × exp[�nm(t) + i
gnm(t)] |m〉 〈n| , (26)

in which

enm(t) = β2t[(n2 − m2)χ + (m − n)χ + (n − m)]

+�t[(n + 1)(n + 2)(1 + χn)(1 + χ(n + 1))

−(m + 1)(m + 2)(1 + χm)(1 + χ(m + 1))]

+ λA(m,n)|α|2
λ2A2(m,n)+�2(m−n)2

(�( m − n) − e−2λA(m,n)t

×[�(m − n) cos 2�t(m − n) + λA(m, n) sin 2�t(m − n)]) ,

(27)

and

gnm(t) = β1t[(n2 − m2)χ + (m − n)χ + (n − m)]

−�t[n(n − 1)(1 + χ(n − 2))(1 + χ(n − 1))

−m(m − 1)(1 + χ(m − 2))(1 + χ(m − 1))]

+ λA(m,n)|α|2
λ2A2(m,n)+�2(m−n)2

(�( m − n) − e−2λA(m,n)t

×[�(m − n) cos 2�t(m − n) + λA(m, n) sin 2�t(m − n)]) ,

(28)
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and
�nm(t) = −λt(m(1 + χ(m − 1)) + n(1 + χ(n − 1)))

+ λA(m,n)|α|2
λ2A2(m,n)+�2(m−n)2

× (λA(m, n) − e−2λA(m,n)t

×[λA(m, n) cos 2�t(m − n) − �(m − n) sin 2�t(m − n )]) ,

(29)

clearly, the lack of cavity damping effect, i.e. λ = 0 leads to � = 0.

4 Dynamical Characteristics of theModel

Here, we investigate the effect of dissipation and nonlinear parameter on the time evolution
of linear entropy andMandel parameter of the atom-field systemwith Stark shift in dispersive
approximation.

4.1 Linear Entropy

The coherence features of the atom-field system are examined by means of the linear entropy
[46]. For the reduced field density matrix, the linear entropy is introduced as:

S f (t) = 1 − Tr [ρ̂2
f (t)], (30)

where Tr [ρ̂2
f (t)] measures the purity of the state and varies from 1 for a pure state to 1

N for
a completely mixed state with dimension N . The dynamics of the field linear entropy shows
the time evolution of the degree of entanglement. Substituting (25) and (26) in (19) and using
(30), the linear entropy will be obtained. We plotted the linear entropy S f (t) versus scaled
time �t for fixed values of β1 = 0.02�, β2 = 0.04�, α = 1, χ = 0.5 and different values
of damping parameter λ in Fig. 3.

From Fig. 3, we see that at time t = 0 the field linear entropy is zero , i.e S f = 0.
This confirms that at initial time, the field is in the pure coherent state and the atom-field
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Fig. 3 Linear entropy versus scaled time �t for β1 = 0.02�, β2 = 0.04�, α = 1, χ = 0.5 and different
values of dissipation parameter: λ = 10−5� (dotted curve), λ = 0.04� (gray curve) and λ = 0.1� (black
curve)
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0.5

Fig. 4 Linear entropy versus scaled time �t for β1 = 0.02�, β2 = 0.04�, α = 1, χ = 0 and different values
of dissipation parameter: λ = 10−5� (dotted curve), λ = 0.04� (gray curve) and λ = 0.1� (black curve)

system is separable. In the absence of dissipation, the linear entropy acts periodically between
a maximum value 0.5 and a minimum value 0, which corresponds to the entangled and
separable states, respectively. After adding decay terms, the field linear entropy has damped
oscillation. By increasing the dissipation parameter λ, the amplitude of the local maxima and
minima reduces with time and the linear entropy decreases quickly, i.e. the system reaches
quickly to a pure state.

In Fig. 4, the linear entropy is plotted for χ = 0, and the other parameters are the same
with Fig. 3. Figure 4 indicates that for small values of the Kerr-like parameter, the linear
entropy still illustrates local maximum and local minimum. A comparison of Figs. 3 and 4
shows that the nonlinear interaction of the Kerr medium with the field gives rise to growing
the maximum and minimum values of linear entropy.

Moreover, we plot the linear entropy for α = 1 and α = √
2. From Fig. 5, it is seen that as

the amplitude of coherent field increases then the amplitude of the local maxima and minima
decreases and the maximum value of the atom-field entanglement increases.

0 10 20 30 40 50 60 70
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0.4

0.6

0.8

Fig. 5 Linear entropy versus scaled time �t for β1 = 0.02�, β2 = 0.04�, χ = 0.5 and different values α:
α = 1 (dotted curve), and α = √

2 (black curve)
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4.2 Mandel Parameter

One way to examine the photons distribution in the light field is the deformed Mandel
parameter [47–49]. It is defined as

Q(t) =
〈
N̂ 2

〉
〈
N̂

〉 −
〈
N̂

〉
− 1, (31)

with N̂ = K̂+ K̂−. Q(t) > 0 confirms the super-Poissonian statistics and Q(t) = 0 corre-
sponds to the coherent states. Q(t) < 0 indicates the sub-Poissonian statistics, where the
sub-Poissonian photon statistics is one of the most significant non-classical characteristics
of a quantum system. Now, regarding the dynamics of the photon counting statistics, we
demonstrate the diagram of the deformed Mandel parameter Q(t) versus the scaled time �t
for β1 = 0.02�, β2 = 0.04�, α = 1, and for λ = 0.5�, and χ = 0.2 in Fig. 6(a) and (b),
respectively.

Figure 6(a) for usual (undeformed) dissipative JCM in dispersive approximation, i.e.
χ = 0 shows that at the initial time the Mandel parameter is zero (Q = 0) which cor-
responds to the Poissonian photon statistics. It is seen that the super-Poissonian property
of the cavity field increases with growing χ . As time goes on, the behavior of the field
approaches the sub-Poissonian statistics. Moreover, by increasing the deformation parame-
ter χ , the statistics more rapidly tends to the sub-Poissonian statistics which corresponds to
the non-classical state. Considering the cavity damping effect, it is seen fromFig. 6(b) that the
Mandel parameter decreases and tends to negative values. In other words, the field statistics
shifts from the super-Poissonian to sub-Poissonian photon distribution. The increasing of the
cavity damping accelerates the non-classicality of the field. Therefore, Fig. 6(a) and (b) show
that the deformation and damping parameters control the non-classical characteristic of the
field throughout the interaction time.

5 Conclusion

In this paper, we examined the two-photon JCM in the appearance of the Stark shift and under
dispersive approximation. Firstly, we obtained the energy eigenvalues of the Hamiltonian,
i.e. E±

n . We found that the magnitude of the energies increases in the presence of Stark shifts.
For usual (nondeformed) JCM, i.e. χ = 0, with no coupling between the atom and the field,

0
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t

Q t

Fig. 6 Deformed Mandel parameter Q(t) as a function of the scaled time �t for β1 = 0.02�, β2 = 0.04�,
α = 1: (a) λ = 0.5�, and (b) χ = 0.2

123

62 Page 10 of 13



International Journal of Theoretical Physics (2024) 63:62

the level crossing was observed in exact resonance (δ = 0). By growing the deformation
parameter from zero to χ > 0, the level crossing between the excited and ground states shifts
to positive detuning. The degeneracy between the energy levels E+

n and E−
n was disappeared

for non-zero coupling. The gap between the two energy levels increases by increasing the
deformation parameter and coupling constant. Then, we solved the master equation for the
deformed JCM in the appearance of damping effect under the dispersive approximation.
Assuming at first, the atom is provided in the superposition state, |ψ〉atom = 1√

2
(|e〉+|g〉) and

the cavity field is arranged in the coherent state, we obtained the matrix elements associated
with the atom-field density operator in dispersive approximation. Using the linear entropy, the
time evolution of the system entanglement has been explored. It has been shown that, when
λ = 0, the linear entropy treats periodically between a maximum value 0.5 and a minimum
value 0, which corresponds to the entangled and separable state, respectively. However when
λ �= 0, the linear entropy has damped oscillation. By increasing the dissipation parameter,
the domain of the entanglement reduces when the time goes on and the system reaches
rapidly to a pure state. Moreover, the effect of the Kerr medium interaction with the field
gives rise to growing the maximum and minimum values of the linear entropy. The plots
of the linear entropy versus scaled time �t for the distinct values of α indicate that if the
intensity of the coherent field becomes larger, the atom-field entanglement will be enhanced.
The influences of the deformation parameter χ and damping parameter on the field statistics
dynamics were examined by applying Mandel parameter. The Mandel parameter is applied
as a statistical measure of the non-classical features of the field. It is found that at initial time,
for usual dissipative JCM in dispersive approximation, i.e. χ = 0, the Mandel parameter is
zero which corresponds to the Poissonian photon statistics. As time evolves, by increasing
the deformation parameter, the statistics more rapidly tends to the sub-Poissonian statistics.
Furthermore under cavity damping effect, the field statistics shifts from the super-Poissonian
to sub-Poissonian photon distribution and the growing of the cavity damping accelerates
the non-classical features of the field. Hence, we found out that the cavity damping and
deformation parameter control the non-classical characteristics of the field throughout the
interaction time.
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