
International Journal of Theoretical Physics (2024) 63:55 
https://doi.org/10.1007/s10773-024-05566-2

RESEARCH

A Quantum-inspired Approach to Pattern Recognition
andMachine Learning. Part I

Maria Luisa Dalla Chiara1 · Roberto Giuntini2,3 · Giuseppe Sergioli3

Received: 22 March 2023 / Accepted: 25 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
How are abstract concepts formed and recognized on the basis of a previous experience?
It is interesting to compare the behavior of human minds and of artificial intelligences with
respect to this problem. Generally, a human mind that abstracts a concept (say, table), from
a given set of known examples creates a table-Gestalt: a kind of vague and out of focus
image that does not fully correspond to a particular table with well determined features.
Can the construction of a gestaltic pattern (that is so natural for human minds) be taught
to an intelligent machine? This problem can be successfully discussed in the framework
of a quantum-inspired approach to pattern recognition and to machine learning. The basic
idea is replacing classical datasets with quantum datasets where objects are described by
special quantum states, involving the characteristic uncertainty and ambiguity of the quantum
theoretic formalism. In this framework, the intuitive concept of Gestalt can be simulated by
the mathematical concept of positive centroid of a given quantum dataset. Accordingly, the
crucial problem “how canwe classify a new object on the basis of a previous experience?” can
be dealt with in terms of some special quantum similarity-relations that may hold between the
new object’s state and the positive centroid of the quantum dataset under consideration. This
allows us to define a particular quantum classifier, called fidelity-classifier, that admits the
possibility of uncertain answers. Although recognition procedures are different for human
and for artificial intelligences, there is a commonmethod of “facing the problems” that seems
to work in both cases.
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1 Concept-recognitions for Human and for Artificial Intelligences

How are abstract concepts formed and recognized on the basis of some previous experience?
This difficult question has been investigated with different methods by psychologists, neu-
roscientists, artificial intelligence researchers, logicians, philosophers. Interestingly enoug,
neuroscientific researches have recently interacted with an important approach to psychol-
ogy: theGestalt theory, that had been proposed byWertheimer, Kofka and Köhler in the early
20th century.1 The basic idea of this theory can be sketched as follows: human perception
and knowledge of objects is essentially based on our capacity of realizing a Gestalt (a form)
of the objects in question: a holistic image that cannot be identified with the set of its com-
ponent elements. A human mind that abstracts the concept table from a given set of concrete
examples, generally creates a table-Gestalt, a kind of vague and out of focus image that does
not fully correspond to a particular table with well determined features. When we recognize
as a table a new object we have met in our environment, we generally make a comparison
between

• the main features of the new object;
• the table-Gestalt that we had constructed in our mind.

Can such recognition-processes that are so natural for human minds be “taught” to an
intelligent machine? Is it possible to simulate the intuitive notion ofGestalt by some adequate
mathematical concepts? This question can be successfully investigated in the framework
of a quantum-inspired approach to pattern recognition and to machine learning. Unlike
some standard quantum approaches whose aim is designing quantum circuits to implement
machine-learning processes by means of quantum computers, quantum-inspired approches
to pattern recognition and to machine learning are theoretic studies that apply quantum-
information concepts in order to investigate recognition and classification-questions arising
in different fields of knowledge.2

Consider an agent (let us call her Alice) who is interested in a given concept C that may
refer either to concrete or to abstract objects (say table, triangle, beautiful). The name Alice
may denote either a human or an artificial intelligence. We will use AliceH for a Human
Mind and AliceM for an Intelligent Machine. Alice will then correspond either to AliceH
or to AliceM . We suppose that Alice (on the basis of her previous experience) has already
recognized and classified a given set of objects for which the question “does the object under
consideration verify the concept C?” can be reasonably asked. We assume that the possible
answers to this question are:

• YES!
• NO!
• PERHAPS!

As an example, Alice might be a child who has already recognized (in the environment
where she is living) the objects that are tables and the objects that are not tables. At the same
time, she might have been doubtful about the right classification of some particular objects.
For instance, she might have answered “PERHAPS!” to the question “is this food trolley a
table?”.

While AliceH may have seen the objects under consideration, seeing is of course more
problematic for AliceM . Thus, generally, one shall make recourse to some theoretic represen-
tations that faithfully describe the objects in question. As happens in physics, such theoretic

1 See, for instance, [2].
2 See [6].
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representations can be identified with convenient mathematical objects that represent object-
states.

In the classical approaches to pattern recognition and machine learning an object-state is
usually represented as a vector

−→x = (x1, . . . , xd),

that belongs to the real space R
d (where d ≥ 1). Every component xi of the vector −→x is

supposed to correspond to a possible value of an observable that is considered relevant for
recognizing the concept C. The number xi is called a feature of the object represented by the
vector −→x .

We will first discuss the problem “how is a concept C recognized on the basis of a previous
experience?” in a classical framework. Suppose that (at a given time t0) Alice is interested in
the concept C. Her previous experience concerning C can be described by the formal notion
of classical three-valued C-dataset.3

Definition 1.1 Classical three-valued C-dataset
A classical three-valued C-dataset (briefly, classical 3C-dataset) is a sequence

CCDS = (Rd , CSt, CSt+, CSt−, CSt? ),

where:

1. CSt is a finite set of object-states −→x in the space Rd , for which the question “does the
object described by −→x verify the concept C?” can be reasonably asked.

2. CSt+ is a subset of CSt, consisting of all states that have been positively classified with
respect to the concept C. The elements of this set are called the positive instances of the
concept C.

3. CSt− is a subset of CSt, consisting of all states that have been negatively classified with
respect to the concept C. The elements of this set are called the negative instances of the
concept C.

4. CSt? is a (possibly empty) subset of CSt, consisting of all states that have been considered
problematic with respect to C. The elements of this set are called the indeterminate
instances of the concept C.

5. The three sets CSt+, CSt−, CSt? are pairwise disjoint. Furthermore, CSt+ ∪ CSt− ∪
CSt? = CSt .

We indicate by n, n+, n−, n? the cardinal numbers of the sets CSt, CSt+, CSt−, CSt?,
respectively.

Particular examples of classical datasets are the binary classical datasets, where the set
CSt? of the indeterminate instances is empty. The elements of the set CSt+ ∪ CSt− will be
called the determinate instances of the dataset CCDS.

Suppose that at a later time (t1) Alice “meets” a new object described by the object-state−→y . She shall find a rule that allows her to answer the question “does −→y verify the concept
C?”. And this answer shall refer to her previous knowledge that is represented by the classical
3C-dataset

CCDS = (Rd , CSt, CSt+, CSt−, CSt? ).

3 Although in most classical approaches to machine learning information is supposed to be dichotomic (every
answer to a given question should be either “YES!” or “NO!”) in some cases considering situations where the
answer “PERHAPS!” is admitted may be more interesting and “realistic”.
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A winning strategy is based on the use of two special concepts: the (classical) positive
centroid and the (classical) negative centroid of a given classical 3C-dataset.

Definition 1.2 Classical centroids
Consider a classical 3C-dataset

CCDS = (Rd , CSt, CSt+, CSt−, CSt? ).

(1) The positive centroid of CCDS is the following vector of the space Rd :

−→x + =
∑

i

{
1

n+
−→xi : −→xi ∈ CSt+

}
.

(2) The negative centroid of CCDS is the following vector of the space Rd :

−→x − =
∑

i

{
1

n−
−→xi : −→xi ∈ CSt−

}
.

From an intuitive point of view the positive (negative) centroid of CCDS can be regarded
as the description of an imaginary object, whose state is determined by calculating the
average-value of each feature for all positive (negative) instances of CCDS.

In order to face the classification-problem we will now introduce a special class of
similarity-relations that allow us to compare any object-state living in the space R

d (of a
given dataset CCDS) with the positive and with the negative centroid of CCDS. These par-
ticular similarity-relations can be defined in terms of a function that will be called classical
fidelity.

Let us first recall the definition of Euclidean distance.

Definition 1.3 Euclidean distance
The Euclidean distance on a space Rd is the binary function that associates to any pair

of vectors −→x and −→y of the space the following real number:

d(
−→x ,

−→y ) = ‖−→x − −→y ‖
(where ‖−→x − −→y ‖ is the length of −→x − −→y ).

The Euclidean distance can be transformed, in a canonical way, into a new binary function,
whose values are real numbers in the interval [0, 1]. We will call this function the classical
fidelity.

Definition 1.4 Classical fidelity
The classical fidelity on a space Rd is the binary function that associates to any pair of

vectors −→x and −→y of the space the following real number:

CF(
−→x ,

−→y ) = 1

1 + d(
−→x ,

−→y )
.

From an intuitive point if view, the number CF(
−→x ,

−→y ) can be interpreted as a measure
of the degree of closeness between the vectors −→x and −→y .

Apparently, the classical fidelity-values decrease with the increasing of the Euclidean
distance. Furthermore, for any vectors −→x and −→y we have:

• CF(
−→x ,

−→y ) = 1 iff −→x = −→y .
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• CF(
−→x ,

−→y ) �= 0.

By using the concept of classical fidelity we can now define in any space Rd the relation
of r-similarity (where r is any real number in the interval [0, 1]).

Definition 1.5 r-similarity
Let −→x and −→y be object-states of a space Rd and let r ∈ [0, 1].
The state −→x is called r-similar to the state −→y (briefly, −→x �⊥r

−→y ) iff r ≤ CF(
−→x ,

−→y ).

One can easily check that this relation is reflexive, symmetric and generally non-transitive.
Since CF(

−→x ,
−→y ) �= 0, there are infinitely many r such that −→x �⊥r

−→y . As we will see, this
fact does not represent a shortcoming for our aims.

Given a dataset CCDS, it is useful to refer to a threshold-value

r∗ ∈ (
1

2
, 1]

that is considered relevant for the dataset in question.
When −→x �⊥r∗ −→y , we have:

CF(
−→x ,

−→y ) ≥ r∗.

Thus, the degree of closeness between −→x and −→y can be considered “sufficiently high”. In
other words, −→x and −→y are “sufficiently similar”.

Now Alice has at her disposal the mathematical tools that allow her to face the classifica-
tion problem. Suppose that Alice’s information about a concept C is the classical 3C-dataset

CCDS = (Rd , CSt, CSt+, CSt−, CSt? ),

whose positive and negative centroids are the object-states −→x + and −→x −, respectively. Let
r∗ be a threshold-value (in the interval ( 12 , 1]), which is considered relevant for CCDS. The
main goal is defining a classifier function, that assigns to every state −→y (which describes an
object that Alice may meet) either the value + (corresponding to the answer “YES!”) or the
value − (corresponding to the answer “NO”!) or the value ? (corresponding to the answer
“PERHAPS!”).

Definition 1.6 The three-valued classical fidelity-classifier
The three-valued classical fidelity-classifier (briefly 3−CFC), determined by the classical

dataset CCDS and by the threshold-value r∗, is the function Cl[CCDS,r∗] that satisfies the
following condition for any object-state −→y of the space Rd :

Cl[CCDS,r∗](
−→y ) =

⎧
⎪⎨

⎪⎩

+, if −→y �⊥r∗ −→x + and not −→y �⊥r∗ −→x −;
−→y �⊥r∗ −→x − and not −→y �⊥r∗ −→y +;
?, otherwise.

In other words, an object-state −→y is classified

• as a positive instance, when it is “sufficiently similar” to the positive centroid and is not
“sufficiently similar” to the negative centroid;

• as a negative instance, when it is “sufficiently similar” to the negative centroid and is not
“sufficiently similar” to the positive centroid;

• as an indeterminate instance, otherwise.
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Let us now turn to a quantum-inspired approach to pattern recognition and machine learn-
ing, which is based on the following idea: replacing classical object-states with pieces of
quantum information (possible states of quantum systems that are storing the information in
question). In this way, our mathematical description of objects acquires the peculiar uncer-
tainty and ambiguity that characterize quantum states.4

In some situations it may be natural to start with a classical information represented by an
object-state −→x . Then, the transition to a quantum pure state |ψ〉 can be realized by adopting
an encoding procedure, that transforms our classical object-state into a quantum pure state:

−→x �→ |ψ〉−→x .

Two important examples of a “natural” quantum encoding are the amplitude encoding and
the stereographic encoding.

Definition 1.7 Amplitude encoding
Consider a classical object-state −→x = (x1, . . . , xd) ∈ R

d . The quantum-amplitude
encoding of −→x is the following unit vector that lives in the space R(d+1):

AmpEnc(−→x ) = (x1, . . . , xd , 1)

‖(x1, . . . , xd , 1)‖ .

Definition 1.8 Stereographic encoding
Consider a classical object-state −→x = (x1, . . . , xd) ∈ R

d . The quantum stereographic
encoding of −→x is the following unit vector that lives in the space R(d+1):

St Enc(−→x ) = 1
∑d

i=1(xi )
2 + 1

(
2x1, . . . , 2xd ,

d∑

i=1

(xi )
2 − 1

)
.

Notice that, in both cases, the quantum encoding of a classical object state−→x is a quantum
pure state that preserves all classical features described by −→x .

Of course, one could also directly “reason” in a quantum-theoretic framewok, avoiding
any reference to a (previously known) classical object-state −→x . In such a case, one can
assume, right from the outset, that an object-state is represented by a quantum pure state
|ψ〉 living in a given (finite-dimensional) Hilbert space H. Such a state can be regarded as a
probabilistic answer to a sequence of quantum questions:

(Q1, . . . , Qq),

mathematically represented as projection operators of the spaceH. The state |ψ〉 will assign
to each question Qi a probability-value according to the Born-rule:

Prob|ψ〉(Qi ) = tr(P|ψ〉Qi ) ∈ [0, 1]
(where tr is the trace functional and P|ψ〉 is the projection operator corresponding to the unit
vector |ψ〉).

Now, by recalling the concept of classical three-valued C-dataset, the concept of quantum
three-valued C-dataset can be defined in a natural way.

Definition 1.9 Quantum three-valued C-dataset
A quantum three-valued C-dataset (briefly, quantum 3C-dataset) is a sequence

CQDS = (CH, CStq , CSt+q , CSt−q , CSt?q ),

4 See, for instance, [3–5].
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where:

1. CH is a finite-dimensional Hilbert space associated to C.
2. CStq is a finite set of pure states |ψ〉 of CH for which the question “does the object

described by |ψ〉 verify the concept C?” can be reasonably asked.
3. CSt+q is a subset of CSt, consisting of all states that have been positively classified with

respect to the concept C. The elements of this set are called the positive instances of the
concept C.

4. CSt−q is a subset of CSt, consisting of the negative instances of the concept C.
5. CSt?q is a (possibly empty) subset of CSt, consisting of the indeterminate instances of the

concept C.
6. The three sets CSt+q , CSt−q , CSt?q are pairwise disjoint. Furthermore, CSt+q ∪ CSt−q ∪

CSt?q = CStq .

As we have done in the classical case, we indicate by n, n+, n−, n? the cardinal numbers
of the sets CStq , CSt+q , CSt−q , CSt?q , respectively.

The concepts of quantum positive and quantum negative centroid (of a given quantum
dataset) can be now defined mutatis mutandis with respect to the classical case.

Definition 1.10 Quantum centroids
Consider a quantum C-dataset

CQDS = (CH, CStq , CSt+q , CSt−q , CSt?q ).

(1) The quantum positive centroid of CQDS is the following density operator of the space
CH:

ρ+ =
∑

i

{
1

n+ P|ψi 〉 : |ψi 〉 ∈ CSt+
}

.

(2) The quantum negative centroid of CQDS is the following density operator of the space
CH:

ρ− =
∑

i

{
1

n− P|ψi 〉 : |ψi 〉 ∈ CSt−
}

.

Notice that quantum centroids are density operators that do not generally correspond to
pure states. Furthermore, a quantum centroid cannot be generally represented as the quantum
encoding of a corresponding classical centroid.

The concept of quantum positive centroid seems to represent a “good” mathematical
simulation for the intuitive idea of Gestalt. In fact, both the quantum positive centroid and
the intuitive idea of Gestalt describe an imaginary object, representing a vague, ambiguous
idea that Alice has obtained as an abstraction from the “real” examples she has met in
her previous experience. As happens in the case of the intuitive idea of Gestalt, a quantum
positive centroid, represented by the density operator ρ+ = ∑

i

{ 1
n+ P|ψi 〉 : |ψi 〉 ∈ CSt+

}

ambiguously alludes to the concrete positive instances that Alice had previously met.
We know that human recognitions and classifications are usually performed by means

of a quick and mostly unconscious comparison between the main features of some new
objects we have met and a gestaltic pattern that we had previously constructed in our mind.
And any comparison generally involves the use of some similarity-relations that are mostly
grasped in a vague and intuitive way by human intelligences. This typical human procedure
can be formally represented in the framework of our quantum-inspired approach to pattern
recognition.
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Aswe have done in the classical case, wewill first introduce a class of similarity-relations,
that can be defined in terms of a quantum concept of fidelity.

Definition 1.11 The (quantum) fidelity for pure states.
The (quantum) fidelity on a Hilbert space H is defined as the function F that assigns to

any pair |ψ〉 and |ϕ〉 of pure states of H the real number

F(|ψ〉, |ϕ〉) = |〈ψ | ϕ〉|2
(where 〈ψ | ϕ〉 is the inner product of |ψ〉 and |ϕ〉).

The definition of fidelity can be generalized to the case of density operators, which may
represent either pure or mixed states.

Definition 1.12 Fidelity for density operators
Consider a Hilbert space H. The fidelity on H is the function F that assigns to any pair

ρ and σ of density operators of H the real number

F(ρ, σ ) := tr

(√√
ρ σ

√
ρ

)2

.

This definition represents a “good” generalization of the concept of fidelity for pure states.
For, one can show that:

F(P|ψ〉, P|ϕ〉) = |〈ψ | ϕ〉|2.
It is interesting to recall the main properties of the fidelity-function, which play an impor-

tant role in many applications:

1. F(ρ, σ ) ∈ [0, 1].
2. F(ρ, σ ) = F(σ, ρ).

3. F(ρ, σ ) = 0 iff ρσ is the null operator.
4. F(ρ, σ ) = 1 iff ρ = σ .5

From a physical point of view, the fidelity-function can be regarded as a form of symmetric
conditional probability: F(ρ, σ ) represents the probability that a quantum system in state ρ

can be transformed into a system in state σ , and vice versa.
As happens in the classical case, the quantum concept of fidelity allows us to define in

any Hilbert space H a class of similarity-relations, called r-similarities, where r is any real
number in the interval [0, 1].
Definition 1.13 Quantum r-similarity

Let ρ and σ be two density operators of a Hilbert space H and let r ∈ [0, 1].
The state ρ is called r -similar to the state σ (briefly, ρ �⊥r σ ) iff r ≤ F(ρ, σ ).

Now Alice has at her disposal the mathematical tools that allow her to face the classifi-
cation problem in the quantum case. Suppose that Alice’s information about a concept C is
the quantum C-dataset

CQDS = (CH, CStq , CSt+q , CSt−q , CSt?q ),

5 Notice that property 4 (F(ρ, σ ) = 1 iff ρ = σ ) holds for pure states when they are dealt with as special
cases of density operators (i.e. as projections over 1-dimensional closed subspaces). Pure states dealt with as
unit vectors only satisfy the weaker condition: |ψ〉 = |ϕ〉 �⇒ F(|ψ〉, |ϕ〉) = 1.

123

55 Page 8 of 15



International Journal of Theoretical Physics (2024) 63:55 

whose positive and negative centroids are the states ρ+ and ρ−, respectively. Let r∗ be a
threshold value in the interval ( 12 , 1], that is considered relevant for CQDS. Like in the
classical case, the main goal is defining a classifier function, that assigns to every state
σ (which describes an object that Alice may meet) either the value + (corresponding to
the answer “YES!”) or the value − (corresponding to the answer “NO”!) or the value ?
(corresponding to the answer “PERHAPS!”).

Definition 1.14 The three-valued quantum fidelity-classifier
The three-valued quantum fidelity-classifier (briefly, 3− QFC), determined by the quan-

tum dataset CQDS and by the threshold-value r∗, is the function Cl[CQDS,r∗] that satisfies
the following condition for any state σ of the space CH:

Cl[CQDS,r∗](σ ) =

⎧
⎪⎨

⎪⎩

+, if σ �⊥r∗ ρ+ and not σ �⊥r∗ ρ−;
−, if σ �⊥r∗ ρ− and not σ �⊥r∗ ρ+;
?, otherwise.

In other words, an object-state σ is classified

• as a positive instance, when it is “sufficiently similar” to the positive centroid and is not
“sufficiently similar” to the negative centroid;

• as a negative instance, when it is “sufficiently similar” to the negative centroid and is not
“sufficiently similar” to the positive centroid;

• as an indeterminate instance, otherwise.

Although recognition procedures are different for human and for artificial intelligences,
there is a common method of “facing the problems” that seems to work in both cases.
Using quantum-theoretic concepts represents a great advantage in order to investigate the
relationships between the behaviors of human and of artificial intelligences. The intuitive
concept ofGestalt can hardly been simulated in a classical framework; for, the characteristic
ambiguityof aquantumpositive centroid is not sharedby the correspondingnotionof classical
positive centroid. As we have seen, in the classical case a positive centroid represents an exact
object-state, that is obtained by calculating the average-values of the values that all positive
instances assign to the observables under consideration. Thus, unlike the quantum case, a
classical positive centroid describes an imaginary object that is characterized by precise
features.

2 An Empirical Simulation

We will now illustrate a simple empirical simulation, based on the fidelity-classifier, both in
the classical and in the quantum case. We suppose that Alice is interested in a concept C that
describes a kind of flower (say, the rose). At the initial time (t0) she has a classical three-
valued information concerning a given set of instances of different flowers. Every flower
is supposed to be characterized by two features that concern the petal length and the petal
width, respectively. Thus, the classical object-state that describes a particular flower in the
set of instances under consideration will be a vector �x = (xi , x j ) of the real space R2.

We suppose that the numbers occurring in our empirical simulation are the following:
n+ (the number of the positive instances) = 352;
n− (the number of the negative instances) = 359;
n? (the number of the indeterminate instances) = 339.
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Hence, n = n+ + n− + n? = 1050.
Accordingly, Alice’ s classical information at the initial time is illustrated by Fig. 1, where

the red points correspond to the positive instances, while the blue points and the green points
correspond to the negative instances and to the indeterminate instances, respectively.

This information can be represented as a particular three-valued classical dataset, having
the following form:

CCDS = (R2, CSt, CSt+, CSt−, CSt? ).

An interesting parameter is represented by the indeterminacy rate of the dataset CCDS,
which is defined as follows:

I R(CCDS) := n?

n
.

Froman intuitive point of view, the number I R(CCDS)measures the degree of uncertainty
of Alice’s information. In the case of our example we have:

I R(CCDS) = 0.323.

An important question arises: can Alice control the reliabilty of her fidelity-classifier
Cl[CCDS,r∗], which is based on the dataset CCDS and on the choice of a threshold value r∗?

In order to answer this question Alice can apply the standard supervised procedure. First
of all she randomly splits the set CSt of all instances of her dataset CCDS into two proper
subsets:

• the training set CStTrain ;

Fig. 1 Alice’s classical information at the initial time
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• the test set CStT est .

We assume that the training set CStTrain represents the 80% of the original set CSt , while
the test set CStT est corresponds to the 20% . This gives rise to two new (“smaller”) datasets,
called the training dataset and the test dataset, that will be indicated as follows:

• CCDSTrain = (R2, CStTrain, CSt+Train, CSt−Train, CSt?Train ).

• CCDSTest = (R2, CStT est , CSt+T est , CSt−T est , CSt?T est ).

As expected, the training dataset CCSTrain will have its own positive and negative cen-
troids, called the training positive centroid (−→x +

Train) and the training negative centroid
(−→x −

Train), respectively. Of course, generally, the two training centroids will be different
from the centroids of the original dataset CCDS.

At a later time t1, Alice applies the fidelity-classifier Cl[CCDSTrain ,r∗] (based on the training
dataset and on the threshold value r∗) to all determinate elements of the test dataset (i.e. to all
instances that are either positive or negative). As a result, every input−→y ∈ CSt+T est∪ CSt−T est
will be classified either as a positive or as a negative or as an indeterminate instance.

By referring to this classification (performed by Cl[CCDSTrain ,r∗]), we introduce the fol-
lowing terminology. We say that that an instance −→y of the test dataset CCDSTest represents

• a true positive instance iff −→y is a positive instance in the test dataset and has been
classified as a positive instance (by the classifier Cl[CCDSTrain ,r∗]);

• a false positive instance iff −→y is a negative instance in the test dataset and has been
classified as a positive instance;

• a true negative instance iff −→y is a negative instance in the test dataset and has been
classified as a negative instance;

• a false negative instance iff −→y is a positive instance in the test dataset and has been
classified as a negative instance;

• a false indeterminate instance iff −→y is a determinate instance in the test dataset and has
been classified as an indeterminate instance.

Consider now the following five numbers (which can be easily calculated in the case of
our empirical simulation):

(1) the number T P of the true positive instances;
(2) the number T N of the true negative instances;
(3) the number FP of the false positive instances;
(4) the number FN of the false negative instances;
(5) the number F I of the false indeterminate instances.

On this basis, the accuracy of Alice’s classifier Cl[CCDS,r∗] can be defined as a function
of these numbers:

Acc(Cl[CCDS,r∗]) := T P + T N

T P + T N + FP + FN + F I
.

In some situations it may be interesting to distinguish the accuracy of a given classifier
from the balanced accuracy, that also depends on the cardinal number n+ of the set of the
positive instances and on the cardinal number n− of the set of the negative instances of the
dataset under consideration. The balanced accuracy of the classifier Cl[CCDS,r∗] is defined
as follows:

Bal Acc(Cl[CCDS,r∗]) := 1

2

(
T P

n+ + T N

n−

)
.
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Another significant parameter is the indeterminacy rate of the classifier Cl[CCDSTrain ,r∗]
that is defined in the following way:

I R(Cl[CCDSTrain ,r∗]) := F I

nTest
,

where nTest is the cardinality of the set of all instances of the test-dataset. In the case of our
example we obtain:

I R(Cl[CCDSTrain ,r∗]) = 0.502.

Notice that I R(Cl[CCDSTrain ,r∗]) is a parameter that regards the classification-process, while
I R(CCDS) represents an intrinsic property of the original dataset CCDS.

By definition, both the accuracy and the balanced accuracy of the classifier Cl[CCDS,r∗]
depend on the choice of the threshold-value r∗. Figure 2 shows how the accuracy-values
vary with the possible values of r∗. The accuracy reaches its maximum value (0.537) when
r∗ = 0.501. Also the maximum value of the balanced accuracy (0.554) is reached when
r∗ = 0.501.

After having acted as a classical epistemic agent, at time t2, Alice decides to transform
her initial classical information into a quantum C-data set (via a stereographic encoding). In
this way, every classical object-state

�x = (xi , x j ) ∈ R
2

is transformed into a pure state |ψ〉�x of the Hilbert space R
3. The result is a three-valued

quantum C-dataset
CQDS = (CH, CStq , CSt+q , CSt−q , CSt?q ),

where:

• CH is the Hilbert space R3;
• n+ = 352, n− = 359, n? = 339.

Alice’s quantum information (at time t2) is illustrated by Fig. 3, where only the positive
instances (represented by the red points) and the negative instances (represented by the blue
points) have been considered.

Fig. 2 How the accuracy-values vary with the threshold-values in the classical case
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Fig. 3 Alice’s quantum information at time t2

Our empirical simulation clearly shows why the concept of quantum positive centroid
represents a “good” simulation of the intuitive concept of Gestalt. Both AliceH and AliceM
have met n+(= 352) particular flowers that have been recognized as roses. On this basis,
AliceH has constructed in her mind a rose-Gestalt: a kind of out of focus image that pre-
serves an ambiguous memory of some general, vague features of the concrete flowers she
had previously seen. This characteristic human procedure can be emulated by AliceM , by
referring to the mathematical concept of quantum positive centroid (of the quantum C-dataset
CQDS), where the mixed state

ρ+ =
∑

i

{
1

352
P|ψi 〉 : |ψi 〉 ∈ CSt+

}

represents a vague information that ambiguously alludes to all instances that AliceM had
previously recognized as roses.

Alice can now proceed like in the classical case in order to control the reliabilty of her
quantum fidelity-classifier Cl[CQDS,r∗], based on the quantum dataset CQDS and on the
choice of a threshold value r∗. The quantum concepts of accuracy and of balanced accuracy
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Fig. 4 How the accuracy-values vary with the threshold-values in the quantum case

are defined in the expected way. Figure 4 shows how the accuracy-values vary with the
possible values of r∗ in the quantum case. Both accuracies reach their maximum value when
r∗ = 0.67. The accuracy’smaximumvalue is 0.798, while the balanced accuracy’smaximum
value is 0.803.

On this basis we can compare the accuracies of our quantum classifiers with the accuracies
of the corresponding classical classifiers. Figure 5 clearly shows the supremacy of quantum
classifiers.

As happens in the classical case, we can also define the indeterminacy rate of the quantum
classifier Cl[CQDSTrain ,r∗]. One can show that:

I R(Cl[CQDSTrain ,r∗]) = 0.138.

Thus, in the quantum case the degree of uncertainty of Alice’s classification has decreased
with respect to the classical case (where I R(Cl[CCDSTrain ,r∗]) = 0.502).

Fig. 5 The supremacy of quantum classifiers
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From a logical point of view, the main ideas of a quantum approach to pattern recognition
can be naturally reconstructed in the framework of a special version of first-order quantum
computational semantics.6 But this is a longer story that will be told in another paper.
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