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Abstract
We explore the relationship between Kochen-Specker quantum contextuality and Bell-
nonclassicality for ensembles of two-qubit pure states. We present a comparative analysis
showing that the violation of a noncontextuality inequality on a given quantum state rever-
berates on the Bell-nonclassicality of the considered state. In particular, we use suitable
inequalities that are experimentally testable to detect quantum contextuality and nonlocality
for systems in a Hilbert space of dimension d = 4. While contextuality can be assessed
on different degrees of freedom of the same particle, the violation of local realism requires
parties spatially separated.

Keywords Contextuality · Bell nonclassicality

1 Introduction

The possibility of explaining the results obtained in quantum mechanics within a theory
admitting hidden variables has been excluded via two theorems. The Bell-Kochen-Specker
theorem [1, 2], which is the most general, and the theorem of John Bell [3]. The first one
discards all the noncontextual hidden variable (NCHV) theories, namely all those in which
physical quantities have a predefined outcome value, no matter the experimental context. A
context is defined by the other comeasurable observables that are measured simultaneously
with a given one. The formalism of quantummechanics imposes that two observables, A and
B, are comeasurable if their associated operators commute, i.e. [A, B] := AB−BA = 0. The
second theorem rules out local hidden variable (LHV) theories. Originally, Bell employed a
locality argument in formulating his theorem. He postulated that if two systems lie outside
each other’s light cones, anymeasurement conducted on one systemwill not impact the other.
This locality assumption is a fundamental constraint for these theories. Consequently, the
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outcomes of measurements on spatially separated systems remain unaffected by the specific
selection of measurement settings in a different, spacelike-separated region of space-time.

The conflict between the assumptions of quantum mechanics and the concept of locality
can be demonstrated in two distinct ways. One way is through the violation of an inequality
that local hidden variable (LHV)modelswould normally satisfy. The otherway is by revealing
a logical contradiction between the predictions of quantum mechanics and those of LHV
models.

Specifically, the first approach, based on inequality violation, provides remarkable and
empirically testable cases. For instance, the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [4] is defined in terms of two-point correlation functions. On the other hand, the more
comprehensive Clauser-Horne (CH) inequality [5] is expressed in terms of joint probabilities.
For scenarios involving more than two parties, other examples of inequalities can be found
in [6–8].

The main difference between the Bell-Kochen-Specker theorem and the Bell’s one is the
number of systems they involve. In fact, the proof of the former refers to a single individual
system but requires carrying out measurements of non-compatible observables that cannot be
simultaneously measured on an individual system. Whereas the proof of the Bell theorem, in
the form of inequality, involves the outcome statistics of measurement performed on different
separated subsystems. Moreover, Bell inequalities are satisfied by any LHV theory and they
are independent of the assumptions needed in quantum mechanics [9].

In contrast, the original proofs of the Bell-Kochen-Specker theorem refer to NCHV the-
ories that share some properties with the formulation of quantum theory. Consequently,
this enables two distinctive tests of the contextual nature of quantum mechanics, generally
referred to as state-independent, as in the argument of Peres-Mermin square, and state-
dependent contextuality. The primary distinction between these tests lies in their sensitivity
to state preparation and the considered measurement scenario. The state-independent test
reveals a contradiction between noncontextual hidden variable (NCHV) theories and quan-
tum mechanics, regardless of the state’s preparation. In contrast, the state-dependent test
is scenario-sensitive. The most well-known of these tests include the KCBS inequality for
qutrits [10] and the CHSH [4], both of which form part of a broader range of inequalities
associated with compatibility structures.

The aim of this paper is to link tests of quantum contextuality to the deeper explored field
of Bell-nonclassicality. The latter has been proven that constitutes the essential resource for
applications such as device-independent protocols [11], and while understanding the rele-
vance of the former to quantum computation and information processing is still in its infancy,
see [12] for a thorough discussion. In fact, possible new forms of quantum information tech-
nologies involving the least number of physical systems, such as cryptographic protocols [13,
14] and sensing [15], require a deeper understanding of the quantum resources fueling their
advantage over classical approaches [16, 17]. This research aiming at characterizing robust
and trustful certification of quantumness with a single particle is an active field of research
[18–21].

We investigate a particular instance of the relationship between a noncontextuality inequal-
ity violation stemming from a two-qubit Peres Mermin square and the maximal violation of
the CHSH inequality. As pointed out in ref. [22], a still valuable avenue for future research is
to explore how contextuality can be converted into nonlocality. This is an old open problem in
quantum theory, whose investigation started in the 1970s and followed two lines of research:
the one culminated in the so-called free will theorem [23] and the other originating from the
Peres-Mermin proof of the Kochen-Specker theorem.
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2 Kochen-Specker–Like Noncontextuality Inequalities

In this section, we review the basic concept of quantum contextuality in the sense of Kochen-
Specker and Bell-nonclassicality, focusing our attention on tests involving systems belonging
to the Hilbert space C4 � C

2 ⊗ C
2.

2.1 Tests of Quantum Contextuality à la Cabello

The simplest argument that manifests Kochen-Specker contextuality has been introduced
by Peres and Mermin [24–27]. This approach is known as the Peres-Mermin (PM) square,
due to the fact that the nine considered measurements are arranged in a 3 × 3 square. All
measurements are dichotomic (i.e., they have only two possible results −1 or +1) and a
context is given by the product of three measurements in a row or in a column. The PM
square then reads:

PM =
⎡
⎣
O11 O12 O13

O21 O22 O23

O31 O32 O33

⎤
⎦ (1)

Any classical NCHV theory assigns a preexisting value to the outcomes independently of
the state preparation and context. Therefore we can introduce the first inequality based on
the PM square:

PM = 〈O11O12O13〉 + 〈O21O22O23〉 + 〈O31O32O33〉
+ 〈O11O21O31〉 + 〈O12O22O32〉 − 〈O13O23O33〉 ≤ 4, (2)

where
〈Oi j Okl Omn〉 ≡ Prob[Oi j Okl Omn = 1] − Prob[Oi j Okl Omn = −1]

is computed by preparing an ensemble of systems in the same state and measuring the three
quantities. It is easy to prove that in any classical theory, the bound 4 is never violated
[9]. Moving to the quantum domain, one can associate an observable to each measurement
Oi j , with the condition that if two observables share a subindex, then they are compatible.
Thence, introducing σα with α = {0, x, y, z} (σ0 denotes the identity operator) in the case
of a two-qubit system, one has:

PM =
⎡
⎣

σz ⊗ σ0 σ0 ⊗ σz σz ⊗ σz
σ0 ⊗ σx σx ⊗ σ0 σx ⊗ σx
σz ⊗ σx σx ⊗ σz σy ⊗ σy

⎤
⎦ (3)

and the expectation value on a state |ψ〉 is given by
〈Oi j Okl Omn〉 = 〈ψ |Oi j Okl Omn |ψ〉. (4)

The computation of the expectation value of the product of observable on either a row or a
column straightforwardly yields a result of 1, with the exception of the third column, which
provides a result of−1. Consequently, this leads to an expectation value of PM = 6 for each
quantum mechanical state under consideration. Notably, experimental findings consistently
align with the quantummechanics prescription [28, 29]. Additionally, this principle has been
recently expanded to encompass bosonic fields [30]. To summarize, the PM inequality in (2)
is derived under the assumption that the value of the outcomes of the nine observables are
independent of the context in which they are measured, hence its violation implies that an a
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priori value cannot be assigned, thereby underscoring the role of context in the measurement
process.

The inequality in (2) can bewritten in terms of a sumof probabilities once the orthogonality
graph associated with such a scenario is known [22]. This task has been carried out and tested
in several experimental setups, see e.g. [31, 31], and the corresponding test of contextuality
is then given by the following inequality:

9∑
k=0

P(�k = 1) ≤ 3, (5)

with the upper bound satisfied by any noncontextual hidden variable theory, while quantum
mechanics and generalized probabilistic theories achieve the value 7

2 . In this particular sce-
nario, the ten projectors,�k = |uk〉〈uk |, follow exclusivity relationships, and the unit vectors
defining them are the following

〈u0|≡ 1√
2
(0, 0, 1, 1),

〈u1|≡1

2
(1,−1, 1, −1),

〈u2|≡1

2
(1,−1,−1, 1),

〈u3|≡ 1√
2
(1, 0, 0,−1),

〈u4|≡1

2
(1, 1, 1, 1),

〈u5|≡ 1√
2
(0, 1, 0,−1),

〈u6|≡1

2
(−1, 1, 1, 1),

〈u7|≡ 1√
2
(1, 0, 0, 1),

〈u8|≡1

2
(1, 1, 1, −1),

〈u9|≡1

2
(1, 1, −1, 1).

More recently, Cabello and coauthors in a series of papers [9, 32, 33] presented several
inequalities that are experimental-friendly and that can detect quantum noncontextuality
[34]. We revise here his reasoning briefly. Let us consider again dichotomic observables as in
the PM square case and with the same definition of compatibility based on a shared subindex.
Cabello proved that in any NCHV theory, the following inequality holds:

− 〈O12O16O17O18〉 − 〈O12O23O28O29〉 − 〈O23O34O37O39〉
− 〈O34O45O47O48〉 − 〈O45O56O58O59〉 − 〈O16O56O67O69〉
− 〈O17O37O47O67〉 − 〈O18O28O48O58〉 − 〈O29O39O59O69〉 ≤ 7. (6)

The maximal classical value is computed considering all the possible values of the product of
the 18 observables, and then if we can measure it on different systems, the average satisfies
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the bound in (6). It is worth underlining that the product cannot be measured on a single
system because it contains observables that are not compatible. Anyway, the fundamental
assumption is that the result of any of the observables Oi j is independent of the context in
which it is measured. So, one can measure during an experimental run a subset of compatible
observables on equally prepared states. In the case of a physical system of dimension d = 4,
the quantum mechanical prediction of the left side of (6) is 9, independently of the state, and
that is indisputably violating the value obtained within a noncontextual theory.

A recent work that appears to be at the moment the simplest approach to connect Kochen-
Specker and Bell’s theorems has been addressed in [22]. There, the method is to map
measurements acting on a single system, into bipartite measurements on a maximally entan-
gled state. Themain observation there is that the expectation values of bipartite operators on a
maximally entangled state are (almost) equal to the corresponding expectation value of their
products on the local marginal mixed states. Therefore, a mapping between a contextuality
scenario for a system of dimension d ≥ 3 can be mapped in a bipartite Bell scenario with two
subsystems of dimension d. However, it is known that the qutrits are the smallest quantum
systems for which one can show contextual behavior.

2.2 CHSH-Bell Inequality

A similar derivation of the inequality in (6), but assuming that the result of a measurement
of an observable Oi j does not dependent on spacelike separated measurements and not on
compatible measurements, leads to the well celebrated CHSH-Bell inequality [4, 35, 36]. In
this case, the measurements are also dichotomic, but one has to identify spatially separated
observers acting on a different subsystem. We denote the observables of the first part by Ai

and those of the second by Bi , and we can introduce the Bell–CHSH functional as:

B = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉. (7)

This expression constitutes a necessary and sufficient condition to establish if a state admits
a description in terms of a LHVmodel derived under the assumption of local realism. In fact,
all they are constrained by B ≤ 2.A similar bound can be derived also for all quantum states,
there are no quantum states that can have a value B ≥ 2

√
2, this value is often referred to as

Tsirelson bound [37].

3 Quantum Contextuality vs Bell-Nonclassicality

In this section, we compare the violations of two inequalities, having different aims. The first
one holds in any NCHV theory, and the second one in any LHV theory. The main difference
between them is that the first one is violated by any quantum state, while the second is
necessarily violated only by non-separable states.

In order to infer the nonlocal properties from the contextual one we need to identify two
appropriate inequalities. The author of [9] shows how a particular variation of the observables
considered by Peres and Mermin to prove the Bell-Kochen-Specker theorem can also serve
as a state-dependent test of Bell nonlocality for two-qubit systems. In particular, when the
term O33 is replaced with the four-dimensional identity operator the lhs of the inequality can
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be reformulated as:

C = 〈O11O12O13〉 + 〈O21O22O23〉 + 〈O31O32〉
+ 〈O11O21O31〉 + 〈O12O22O32〉 − 〈O13O23〉. (8)

If we generate all the 22
3
possible classical values of C, we obtain the bound satisfied in

a NCHV theory, namely C ≤ 4. To test quantum states, we use the observables as in (2).
This inequality is maximally violated by the product state |�〉|�〉, where σy |�〉 = +1|�〉,
for which it reaches the value C = 6. This is related to the fact that any quantum state
would violate the inequality in (2) and returns the same value for every quantum state due
to the set of measurements considered. In contrast, the noncontextual bound that follows
from the expression we have introduced in (8) allows us to perform a state-dependent test of
noncontextuality.

The second inequality has been already introduced in (7). In the case of two-qubit systems
one can introduce as dichotomic local observables the measurements along an arbitrary
direction in the Bloch sphere of one of the two observers. Therefore, the quantummechanical
observables are parametrized in the following way Wj = w j · σ , in which X = {A, B} and
j = {1, 2}, and explicitly we have:

ŵ j · σ =
(

cos θw j e−iφw j sin θw j

eiφw j sin θw j cos θw j

)
, (9)

where the angles θw j , φw j define the direction of the unit vector w j , namely w j =
(sin θw j cosφw j , sin θw j sin φw j , cos θw j ).

Our first aim is to study the typical behavior of the value of C defined in (8). For this
reason, we have generated a random ensemble of M = 106 pure two-qubit states [38]. They
are obtained by choosing the columns of a random unitary matrix generated according to the
Haar measure of SU (4) [39, 40].

In Fig. 1 we report the histogram for the probability distribution P(C) evaluated numeri-
cally using the ensemble of random states. It is evident from our empirical evidence that the

3 4 5 6 C

0.1

0.2

0.3

0.4

P(C)

Fig. 1 Theprobability distribution P(C)of the expression in (8) for an ensemble ofM = 106 two-qubit random
pure states. We give also the first four central moments of the distribution {3.998, 0.808, 0.00038, 2.132}. The
black dashed line corresponds to the value separating states admitting a NCHV model (C ≤ 4) and those
violating the contextuality inequality considered (C > 4). Considering we are dealing with a finite number of
states it is worth reporting also the median of the distribution, i.e. mP(C) = 4.007
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probability to have a two-qubit violating the value of 4, for which a NCHV description is
possible, is P(C ≥ 4) � 1/2.

Subsequently, we have selected a subensamble Mc of the original ensemble M , which is
composed of the states violating the noncontextual bound. We have computed the optimal
violation of the expression in (7). Namely, we have performed an optimization over the eight
angles that defines the four directions necessary to perform the Bell test, in the form of a
violation of the CHSH inequality, the optimization problem can be formulated as follow: and
computed the maximum value:

Bmax = max
θA1 ,φA1 ,θA2 ,φA2 ,θB1 ,φB1 ,θB2 ,φB2

|〈ψ |B|ψ〉|. (10)

For the optimization, we employed the RandomSearch algorithm present in the Wolfram
Mathematica software. The choice compared with the other optimization algorithms offered
by the same software provides the most reliable results, and in a shorter time, see also [41].
The results are shown in Fig. 2. The histogram shows that all the states that are quantum
contextual according to the definition given in (8) do not also admit a description in terms of
local realism. Moreover, considering that we have only considered pure states, the violation
of the CHSH is also a signature of the nonseparability of the states and therefore, that it is
entangled [42]. It is worth noting now that the contextuality test has been conducted with
measurements along fixed axes, and does not require any numerical optimization as in the
case of the CHSH test. Moreover, to assess the entanglement content of a state from the
experimental point of view (e.g. by performing any methods based on the singular value
decomposition), requires a full tomography of the state, that in the case of qubit requires a
quorum of observables higher [43] than those required to evaluate C .

One question remains to be answered. Is it possible to infer from the value of the functional
C how strongly a state violating the noncontextual classical will violate also the CHSH
inequality? In other words, we are asking if the magnitude of the violation of the classical
bound of C for a given state |ψ〉 can give any information on how much that same state
would violate the local realism. The answer emerging from our numerical analysis is negative

2.2 2.4 2.6 2.8 Bmax

0.5

1.0

1.5

P(Bmax)

Fig. 2 We report the histogramof the probability distribution P(Bmax) of the expression in (7) for the ensemble
of Mc = 50212 two-qubit random pure states satisfying the constraint on the contextual behavior C > 4. The
dashed black line on the left indicates the threshold value separating states admitting a local model (B ≤ 2)
and those violating local realism (B > 2), while the dashed black line on the right corresponds to the Tsirelson
bound (B = 2

√
2)
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and it is reported in Fig. 3. There, we have plotted the value of Bmax as a function of the
corresponding value of C for all the Mc states. This analysis confirms that contextuality and
Bell nonlocality are independent concepts unless further studies towards this direction would
unveil the existence of an underpinned mechanism that activates an emergent fundamental
connection between them. This goes into the direction pointed out in [44] that there is no
contextuality-nonlocality tradeoff, even if they consider a qutrit-qubit system.

4 Conclusions and Applications

The forthcoming success of quantum technologies like cryptography, computing, and sensing
is inextricably linked to advancements at the most fundamental level. Therefore expanding
the theoretical and foundational basis for the design of future quantum technologies is nowa-
days of paramount importance. In particular, we studied the relationship between quantum
contextuality and Bell-nonclassicality for an ensemble of two-qubit pure states. We focused
on pure states because, in the near future we expect to move from noisy quantum devices
to fault-tolerant ones. Therefore, the need to devise a test for evaluating effective quantum
resources is increasingly essential. Therefore, the need to devise a test for evaluating effec-
tive quantum resources and the connection among them [45] is essential. Drawing inspiration
from one of the most straightforward proofs of quantum contextuality - the Peres-Mermin
square - wemanaged to establish a link between a simple inequality targeted at demonstrating
quantum contextuality and the impossibility of depicting the state in a local realistic scenario.

Our analysis based on typical pure quantum states seems to suggest that the violation of the
noncontextual bound of (8) is a sufficient condition for the subsequent violation of the CHSH
inequality. Anyway, we are aware that this cannot be true due to the fact that a separable state
maximally violates the aforementioned bound. In our opinion, a deeper analysis, outside the
scope of the present paper, is to investigate the relationship between the local polytope [35]
defined in the CHSH scenario and the noncontextual one. We acknowledge that experiments
testing Bell inequalities on different degrees of freedom of the same particle, have to be

Fig. 3 We show the numerical values obtained for the Mc used to plot the histogram in Fig. 2 and compare
for each of the quantum contextuality with the corresponding value of the maximal violation of the CHSH
inequality. The lower and upper horizontal black dashed lines refer to the classical and Tsirelson bound,
respectively. While the left and right vertical black dashed lines represent the minimum and maximal quantum
contextualize, that we were numerically able to achieve with the functional in (8)
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intended as a way to rule out NCHV theories and not the LHV models [46]. In contrast, our
aim is complementary to those already established and we numerically addressed how the
detection of the violation of a suitably chosen Bell-like inequality for contextuality would
give a hint on the amount of “truly” Bell-nonclassicality of the state. We conclude our paper
we a future outlook. In fact, we believe that akin to the analysis performed here one can
check how a contextuality scenario for a qudit with d ≥ 4, e.g. a single spin−3/2 particle
or two qubits. It is interesting to characterize in terms of contextual and local polytopes and
how one can be converted into a nonlocality [47] and performing a similar statistical analysis
performed here.
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30. Schlichtholz, K., Mandarino, A., Żukowski, M.: Bosonic fields in states with undefined particle numbers

possess detectable non-contextuality features, plus more. New J. Phys. 24(10), 103003 (2022). https://
doi.org/10.1088/1367-2630/ac0ffe

31. Nagali, E., D’Ambrosio, V., Sciarrino, F., Cabello, A.: Experimental observation of impossible-to-beat
quantum advantage on a hybrid photonic system. Phys. Rev. Lett. 108, 090501 (2012). https://doi.org/10.
1103/PhysRevLett.108.090501

32. Cabello, A., García-Alcaine, G.: Proposed experimental tests of the Bell-Kochen-Specker theorem. Phys.
Rev. Lett. 80, 1797–1799 (1998). https://doi.org/10.1103/PhysRevLett.80.1797

33. Cabello, A., Filipp, S., Rauch, H., Hasegawa, Y.: Proposed experiment for testing quantum contextuality
with neutrons. Phys. Rev. Lett. 100, 130404 (2008). https://doi.org/10.1103/PhysRevLett.100.130404

34. Bartosik, H., Klepp, J., Schmitzer, C., Sponar, S., Cabello, A., Rauch, H., Hasegawa, Y.: Experimental
test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 103, 040403 (2009). https://doi.
org/10.1103/PhysRevLett.103.040403

35. Gigena, N., Scala, G., Mandarino, A.: Revisited aspects of the local set in CHSH Bell scenario. Int. J.
Quantum Inf. 21, 2340005 (2023)

36. Mandarino, A., Scala, G.: On the fidelity robustness of CHSH-Bell inequality via filtered random states.
Entropy. 25(1), 94 (2023). https://doi.org/10.3390/e25010094

37. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980).
https://doi.org/10.1007/bf00417500

38. Radtke, T., Fritzsche, S.: Simulation of n-qubit quantum systems. iv. parametrizations of quantum states,
matrices and probability distributions. Comput. Phys. Commun. 179(9), 647–664 (2008)

39. Zyczkowski, K., Kus, M.: Random unitary matrices. J. Phys. A: Math. Gen. 27(12), 4235 (1994)
40. Cavalcanti, P.J., Scala, G., Mandarino, A., Lupo, C.: Information theoretical perspective on the method

of entanglement witnesses. (2023). arXiv:2308.07744
41. Das, T., Karczewski, M., Mandarino, A., Markiewicz, M., Żukowski, M.: Optimal interferometry for Bell
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