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Abstract
The entanglement-assisted quantum error-correcting (EAQEC) codes have the potential to
greatly generalize and enhance the performance of existing quantum error-correcting codes.

In this paper, we investigate EAQEC codes of length q2−1
r , where r is a positive divisor of

q + 1. Most of these codes are new, and some of them have better performance than ones
obtained in the literature. The resulting EAQEC codes are maximum-distance-separable
(MDS) if the minimum distance d ≤ n+2

2 .

Keywords Entanglement-assisted quantum codes · Constacyclic codes · Defining sets

1 Introduction

Quantum codes are used in quantum computation and quantum communication to lessen
decoherence. It is well known that the standard quantum codes can be constructed from clas-
sical linear codes that must meet specific dual-containing condition [3]. The dual-containing
condition limits that many linear codes with good performance can not produce quantum
codes.

In 2002, Bowen [1] found that pre-shared entangle states between the sender and the
receiver can increase both quantum and classical capacity for communication. In 2006, Brun
et al. [2] showed that non-dual-containing quaternary linear codes can be applied to construct
entanglement-assisted quantum error-correcting (EAQEC) codes. Later, a general coding
scheme for creating binary EAQEC codes was developed, and many specific construction
methods were put forward [11, 12, 18, 35]. In [9], the authors generalized these methods to
an arbitrary finite field. Afterwards, many classes of non-binary EAQEC codes have been
derived from classical linear codes such as constacyclic codes, linear complementary dual
(LCD) codes, generalized Reed-Solomom (GRS) codes, extended GRS codes and Goppa
codes (see [6, 7, 13, 14, 22, 23, 28, 31, 33]).
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EA-quantum Singleton bound of EAQEC codes was proposed by Brun et al. in [2]. In
2016, Grassl [10] gave some examples of EAQEC codes and showed that the bound was not
incomplete. In fact, this bound holds if d ≤ n+2

2 [17]. Now, we present the bound as follows.

Theorem 1 [2, 10, 18] (EA-quantum Singleton bound) For any [[n, k, d; c]]q EAQEC code,
if d ≤ n+2

2 , then n + c − k ≥ 2(d − 1), where 0 ≤ c ≤ n − 1.

An EAQEC code with d ≤ n+2
2 achieves the EA-quantum Singleton bound, then it is

called an entanglement-assisted quantum maximum distance separable (EAQMDS) code.
Constacyclic codes including cyclic codes and negacyclic codes have been applied exten-

sively to construct EAQEC codes because they have good algebraic structure. In 2011, Li et
al. [20, 21] proposed the decomposition of defining sets of cyclic codes and they obtained
EAQMDS codes with large minimum distance. In [5, 24], the authors expanded the concept
to general constacyclic codes, and many families of EAQMDS codes of length n dividing
q2 + 1 or q2 − 1 were constructed. Lu et al. [27] constructed EAQMDS codes from consta-
cyclic codes with special lengths by consuming one or four entanglement bits. Liu et al. [24]
used constacyclic codes to get EAQMDS codes of length q+1

r (q − 1), where 3 ≤ r ≤ 7.
In 2019, Qian et al. [29] derived a family of EAQEC codes with flexible parameters from

cyclic codes. In the same year, Sari et al. [30] applied constacyclic codes of length q2−1
4 to

construct EAQMDS codes. In 2020, Wang et al. [32] obtained a series of EAQEC codes of
length q−1

a (q + 1) from cyclic and negacyclic codes, and they turned out that the number
of required entanglement bits can take almost all possible values. In 2022, Lu et al. [25, 26]
constructed EAQMDS codes from cyclic codes with flexible parameters and large minimum
distance.

In this work, we pay attention to EAQEC codes of length n = q2−1
r , where r is a positive

divisor of q + 1. Most of these codes are new, and some of them have better performance
than ones obtained in the literature [8, 24, 25, 27, 30]. The EAQEC codes in this paper
are MDS if the minimum distance d ≤ n+2

2 . The paper is organized as follows. Some
related basic knowledge and theorems are listed in Section 2. In Section 3, by characterizing
the q2-cyclotomic cosets modulo rn, some EAQEC codes with large minimum distance
are provided. In Section 4, two classes of EAQMDS codes consuming one or two pairs of
maximally entangled states with larger minimum distance are obtained. Section 5 compares
EAQEC codes in this paper with the known ones.

2 Preliminaries

Let q be a prime power. Let Fq2 denote the finite field with q2 elements, and F
∗
q2

denote

the multiplicative group consisted of the nonzero elements of Fq2 . For each α ∈ F
∗
q2
,

the conjugate of α is defined by ᾱ = αq . Given two vectors x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) ∈ F

n
q2
, their Hermitian inner product is defined by

(x, y)h =
n∑

i=1

x̄i yi = x̄1y1 + x̄2y2 + · · · + x̄n yn .

A linear code C over Fq2 of length n is a subspace of Fn
q2
. The Hermitian dual code of C is

C⊥h = {x ∈ F
n
q2 | (x,y)h = 0, for any y ∈ C}.
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If C⊥h ⊆ C, then C is called a Hermitian dual-containing code.
Assume that gcd(n, q) = 1. Let λ ∈ F

∗
q2

have order r , i.e., ord(λ) = r . For each vector

(c0, c1, . . . , cn−1) ∈ F
n
q2
, a λ-constacyclic shift fλ is denoted by

fλ(c0, c1, . . . , cn−1) = (λcn−1, c0, . . . , cn−2).

A linear code C over Fq2 of length n is a λ-constacyclic code if it is invariant under the λ-
constacyclic shift fλ onFn

q2
.By identifying a vector c = (c0, c1, . . . , cn−1)with a polynomial

c(x) = c0 +c1x +· · ·+cn−1xn−1, a λ-constacyclic code C over Fq2 of length n is an ideal in
Fq2 [x]
〈xn−λ〉 . Note that

Fq2 [x]
〈xn−λ〉 is a principal ideal ring. So, there is a monic divisor g(x) of xn − λ

in Fq2 [x] such that C = 〈g(x)〉. The polynomial g(x) is called the generator polynomial and
the dimension of C is n − deg(g(x)).

Let m be the multiplicative order of q2 modulo rn. Then rn | (q2m − 1), and so n |
(q2m − 1). Let β be a primitive rn-th root of unity in Fq2m and ξ = βr ∈ Fq2m . Then ξ is
a primitive n-th root of unity. Thus, βξ i = β1+ri , 0 ≤ i ≤ n − 1, are the roots of xn − λ.
Denote �rn = {1 + ri | 0 ≤ i ≤ n − 1}. The set

T = {i ∈ �rn | g(β i ) = 0}
is called the defining set of C. The q2-cyclotomic coset of i modulo rn is given by

Ci = {iq2 j (mod rn) | j = 0, 1, . . . ,mi − 1},
where mi is the smallest positive integer l such that iq2l ≡ i(mod rn). Then, Ms(x) =∏

j∈Cs
(x − β j ) must be in Fq2 [x] and is called the minimal polynomial of βs over Fq2 . If

rn−qi ∈ Ci , thenCi is skew symmetric, otherwise skew asymmetric. The skew asymmetric
cosets Ci and C−qi = Crn−qi come in pair, and we denote such skew asymmetric pair as
(Ci ,C−qi ).

Assume that r | (q + 1). Then the Hermitian dual codes of λ-constacyclic codes over Fq2

are still λ-constacyclic. A λ-constacyclic code C of length n over Fq2 is a constacyclic BCH
code with designed distance δ (δ ≥ 2) if, for some b = 1 + ri , its generator polynomial is

g(x) = lcm
{
Mb(x), Mb+r (x), . . . , Mb+r(δ−2)(x)

}
.

For a constacyclic code, the minimum distance has the following bound.

Lemma 1 (BCH bound for constacyclic codes) [36] Let C be a λ-constacyclic code over
Fq2 of length n. Let ord(λ) = r and β be a primitive rn-th root of unity. If the generator

polynomial g(x) of C has the elements {β1+ri | 0 ≤ i ≤ δ−2} as the roots, then the minimum
distance of C is not less than δ.

Definition 1 [19] Let λ ∈ Fq2 be a primitive r -th root of unity and r | (q + 1). Let C be a
λ-constacyclic code over Fq2 of length n with defining set T. Denote Tss = −qT ∩ T and
Tsas = T \ Tss , where −qT = {rn−qi | i ∈ T }. We call T = Tss ∪ Tsas is a decomposition
of the defining set of C.

According toDefinition 1, Liu et al. [24] gave the following lemma to calculate the number
of needed ebits.

Lemma 2 [24]Let C be aλ-constacyclic code overFq2 of length n with defining set T. Suppose
that T = Tss ∪Tsas is the decomposition of T . If C has parameters [n, n−|T |, d], then there
is an [[n, n − 2|T | + |Tss |, d; |Tss |]]q EAQEC code.
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Throughout this paper, denote by [u, v] a positive integers set, whose elements are not
less than u and not bigger than v. Assume that u ≡ 1(mod r). Denote [u, v]r ⊆ [u, v] and
s ≡ 1(mod r) with s ∈ [u, v]r . The following lemma is useful in the sequel.

Lemma 3 [24] Let r be a positive divisor of q+1 and n = q2−1
r . For a given integer i2 ∈ �rn,

i2 can be denoted by i2 = αq − β for two proper integers 1 ≤ α, β ≤ q. Then, there is an
integer i1 ∈ �rn such that (Ci1 ,Ci2) is a skew asymmetric pair if and only if i1 = βq − α.

3 EAQEC Codes with LargeMinimumDistance

Let q be a prime power, and r be a positive divisor of q + 1. We take n = q2−1
r and

a = q+1
r . In this section, we will construct new [[n, n − 2d + c + 2, d; c]]q EAQEC codes

with 1 ≤ c ≤ 6r − 4 and q+3−a
2 ≤ d ≤ 5q−3

2 .

Lemma 4 Let r be an odd integer with r | (q + 1), and let s1 ≥ s2 > 0 be integers with
s1, s2 ∈ �rn. Then Cs1 = −qCs2 if and only if s1 and s2 satisfy one of the following forms:
when l is odd, {

s1 = ( rl−1
2 + t)q − ( rl−1

2 − t),
s2 = ( rl−1

2 − t)q − ( rl−1
2 + t),

(1)

and when l is even, {
s1 = ( rl2 + t)q − ( rl2 − t − 1),
s2 = ( rl2 − t − 1)q − ( rl2 + t),

(2)

where 0 ≤ t ≤ 
 rl−1
2 � − 1 and 1 ≤ l ≤ 2a − 1.

Proof If Cs1 = −qCs2 , then s1 + qs2 ≡ 0(mod rn). Thus, s1 + s2 ≡ 0(mod q − 1) and
s1 − s2 ≡ 0(mod q + 1). Then there are integers l1, l2 such that

s1 + s2 = l1(q − 1) and s1 − s2 = l2(q + 1). (3)

Since s1 ≡ s2 ≡ 1(mod r) and q ≡ −1(mod r), then −2l1 ≡ l1(q − 1) = s1 + s2 ≡
2(mod r). Then l1 ≡ −1(mod r) since r is odd. Thus there is an integer l such that l1 =
rl − 1. By (3), we get {

s1 = rl−1+l2
2 q − rl−1−l2

2 ,

s2 = rl−1−l2
2 q − rl−1+l2

2 .

Since s1, s2 are positive integers and r is odd, then l, l2 have different parities. Let t = 
 l22 �.
Based on the parity of l, we can get (1) and (2). From s1 ≥ s2 ≥ 1 and 1 < s1 < q2 − 1, we
have 0 ≤ t ≤ 
 rl−1

2 � − 1 and 1 ≤ l ≤ 2a − 1.
If s1, s2 satisfy (1) and (2), then one can get Cs1 = −qCs2 easily. This completes the

proof. ��

Lemma 4 shows when r is odd, Cs is skew symmetric if and only if t = 0 and l is
odd; if and only if (q − 1) | s. By Lemmas 3 and 4, if s1 > s2 and (Cs1 ,Cs2) is a skew
asymmetric pair, s2 can be determined by s1 immediately. To be specific, set i1 = rl−1+l2

2
and i2 = rl−1−l2

2 . If s1 = i1q − i2, then s2 = i2q − i1. Thus, we only give the value of s1 in
the following discussions.
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Lemma 5 Let r ≥ 5 be an odd divisor of q + 1 and a = q+1
r ≥ 2. Let C be a λ-constacyclic

code over Fq2 of length n with defining set T = ⋃d−2
i=0 C1+ri , where 2 ≤ d ≤ 5q−3−a

2 . Let

T = T ss ∪ T sas. For a fixed integer t with 0 ≤ t ≤ r−5
2 ,

|Tss | =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2t, q+3−a
2 + at ≤ d ≤ q+1+a

2 + at,
r − 2, q + 2 − 2a ≤ d ≤ q,

r + 2t, q + 1 + at ≤ d ≤ q + a(t + 1),
2r − 3, 3

2 (q + 1 − a) ≤ d ≤ 3q−1−a
2 ,

2r + 4t, 3q+3−a
2 + at ≤ d ≤ 3q−1+a

2 + at and 0 ≤ t ≤ r−3
2 ,

4r − 4, 2q + 1 − a ≤ d ≤ 2q − 1,
4r + 4t, 2q + 1 + at ≤ d ≤ 2q − 1 + a(t + 1),
6r − 6, 5q+3−3a

2 ≤ d ≤ 5q−3−a
2 , a ≥ 3.

(4)

Proof If 0 ≤ i ≤ 5q−3−a
2 − 2, then 1 ≤ 1 + ri ≤ 5r−1

2 q − 7r−1
2 . Denote the set L =[

1, 5r−1
2 q − 7r−1

2

]
r . By Lemma 4, we can get the skew symmetric cyclotomic cosets Cs and

skew asymmetric pairs (Cs1 ,Cs2) satisfying s1 > s2 in L are contained in the following set

� =
{
s1, s2 : s1, s2 satisfy (1) or (2), for 1 ≤ l ≤ 4 and 0 ≤ t ≤

⌊
rl − 1

2

⌋
− 1

}
.

Denote the set � by Sl when 1 ≤ l ≤ 4. Then

S1 =
{
s1 =

(
r − 1

2
+ t

)
q −

(
r − 1

2
− t

)
: 0 ≤ t ≤ r − 3

2

}
∪

{
s2 : 0 ≤ t ≤ r − 3

2

}
.

Assume that

S21 =
{
s1 = (r + t)q − (r − t − 1) : 0 ≤ t ≤ r − 3

2

}
∪

{
s2 : 0 ≤ t ≤ r − 3

2

}

and

S22 =
{
s1 =

(
3r − 1

2
+ t

)
q −

(
r − 1

2
+ t

)
: 0 ≤ t ≤ r − 3

2

}
∪

{
s2 : 0 ≤ t ≤ r − 3

2

}
.

Then

S2 = {s1 = (r + t)q − (r − t − 1) : 0 ≤ t ≤ r − 2} ∪ {s2 : 0 ≤ t ≤ r − 2} = S21 ∪ S22.

Assume that

S31 =
{
s1 =

(
3r − 1

2
+ t

)
q −

(
3r − 1

2
− t

)
: 0 ≤ t ≤ r − 3

2

}
∪

{
s2 : 0 ≤ t ≤ r − 3

2

}
,

S32 = {(2r − 1)q − r , rq − (2r − 1)},

S33 =
{
s1 = (2r + t)q − (r − t − 1) : 0 ≤ t ≤ r − 3

2

}
∪

{
s2 : 0 ≤ t ≤ r − 3

2

}
,

and

S34 =
{
s1 =

(
5r − 1

2
+ t

)
q −

(
r − 1

2
− t

)
: 0 ≤ t ≤ r − 3

2

}
∪

{
s2 : 0 ≤ t ≤ r − 3

2

}
.
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Then

S3 =
{
s1 =

(
3r− 1

2
+ t

)
q−

(
3r − 1

2
− t

)
: 0≤ t≤ 3r − 3

2

}
∪

{
s2 : 0≤ t ≤ 3r − 3

2

}

=
4⋃

i=1

S3i .

Assume that

S41 =
{
s1 = (2r + t)q − (2r − t − 1) : 0 ≤ t ≤ r − 3

2

}
∪

{
s2 : 0 ≤ t ≤ r − 3

2

}
,

then

S4= S41∪
{
s1= (2r+t)q− (2r− t− 1) : r − 1

2
≤ t ≤2r−2

}
∪

{
s2 : r − 1

2
≤ t ≤2r−2

}
.

In fact, we can get that the skew symmetric cyclotomic cosets Cs and skew asymmetric pairs
(Cs1 ,Cs2) satisfying s1 > s2 in L form the set S = S1 ∪ S2 ∪ S31 ∪ S32 ∪ S33 ∪ S41.

For the sake of expressing clearly, let Ti and Tssi substitute for the defining set T of C
and Tss in the (i)-th case respectively, where 1 ≤ i ≤ 8. Thus, in order to determine Tssi , we
need to discuss Ti ∩ S.

(1) For a fixed integer t with 0 ≤ t ≤ r−5
2 , assume that

T10 =
[
1, 1 + r

(
q − 1 − a

2
+ at

)]

r
=

[
1,

(
r − 1

2
+ t

)
q −

(
r − 1

2
− t

)]

r
,

and

T11 =
[
1, 1 + r

(
q − 3 + a

2
+ at

)]

r
=

[
1,

(
r + 1

2
+ t

)
q −

(
3r − 1

2
− t − 1

)]

r
.

If C is a λ-constacyclic code with defining set T1 = ⋃d−2
i=0 C1+ri , where

q+3−a
2 + at ≤ d ≤

q+1+a
2 + at , then T10 ⊆ T1 ⊆ T11 and (T11 \ T10) ∩ S = ∅. Thus,
Tss1 = −qT1 ∩ T1 = −qT10 ∩ T10

=
{
s1 =

(
r − 1

2
+ t ′

)
q −

(
r − 1

2
− t ′

)
: 0 ≤ t ′ ≤ t

}
∪ {

s2 : 0 ≤ t ′ ≤ t
}
.

Thus, |Tss1| = 1 + 2t .
(2) Assume that

T20 = [1, 1 + r(q − 2a)]r = [1, (r − 2)q − 1]r ,

and
T21 = [1, 1 + r(q − 2)]r = [1, rq − 2r + 1]r

If C is a λ-constacyclic code with defining set T2 = ⋃d−2
i=0 C1+ri , where q+2−2a ≤ d ≤ q ,

then T20 ⊆ T2 ⊆ T21 and (T21 \ T20) ∩ S = ∅. Thus, we can get Tss2 = −qT2 ∩ T2 =
−qT20 ∩ T20 = S1. Thus, |Tss2| = r − 2.

(3) For a fixed integer t with 0 ≤ t ≤ r−5
2 , assume that

T30 = [1, 1 + r(q − 1 + at)]r = [1, (r + t)q − r + t + 1]r ,

and
T31 = [1, 1 + r(q + a(t + 1) − 2)]r = [1, (r + t + 1)q − 2r + t + 2]r .
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If C is a λ-constacyclic code with defining set T3 = ⋃d−2
i=0 C1+ri , where q + 1 + at ≤ d ≤

q + a(t + 1), then T30 ⊆ T3 ⊆ T31. Notice that (T31 \ T30) ∩ S = ∅. Thus, we have
Tss3 = −qT3 ∩ T3 = −qT30 ∩ T30

= Tss2 ∪ {
s1 = (r + t ′)q − (r − t ′ − 1) : 0 ≤ t ′ ≤ t

} ∪ {
s2 : 0 ≤ t ′ ≤ t

}
.

Thus, |Tss3| = r − 2 + 2(1 + t) = r + 2t .
(4) Assume that

T40 =
[
1, 1 + r

(
3

2
(q + 1 − a) − 2

)]

r
=

[
1,

3(r − 1)

2
q − r + 1

2

]

r
,

and

T41 =
[
1, 1 + r

(
3q − 1 − a

2
− 2

)]

r
=

[
1,

3r − 1

2
q − 5r − 1

2

]

r
.

If C is a λ-constacyclic code with defining set T4 = ⋃d−2
i=0 C1+ri , where 3

2 (q +1−a) ≤ d ≤
3q−1−a

2 , then T40 ⊆ T4 ⊆ T41 and (T41 \ T40) ∩ S = ∅. Thus,
Tss4 = −qT4 ∩ T4 = −qT40 ∩ T40 = Tss2 ∪ S21.

Thus, |Tss4| = r − 2 + 2 · r−1
2 = 2r − 3.

(5) For a fixed integer t with 0 ≤ t ≤ r−3
2 , assume that

T50 =
[
1, 1 + r

(
3q + 3 − a

2
+ at − 2

)]

r
=

[
1,

(
3r − 1

2
+ t

)
q −

(
r − 1

2
− t

)]

r
,

and

T51 =
[
1, 1 + r

(
3q − 1 + a

2
+ at − 2

)]

r
=

[
1,

(
3r + 1

2
+ t

)
q −

(
5r − 3

2
− t

)]

r
.

If C is a λ-constacyclic code with defining set T5 = ⋃d−2
i=0 C1+ri , where

3q+3−a
2 +

at ≤ d ≤ 3q−1+a
2 + at , then T50 ⊆ T5 ⊆ T51 and (T51 \ T50) ∩ S = ∅.

Let S′
22 = {

s1 = ( 3r−1
2 + t ′)q − ( r−1

2 − t ′) : 0 ≤ t ′ ≤ t
} ∪ {

s2 : 0 ≤ t ′ ≤ t
}
and S′

31 ={
s1 = ( 3r−1

2 + t ′)q − ( 3r−1
2 − t ′) : 0 ≤ t ′ ≤ t

} ∪ {
s2 : 0 ≤ t ′ ≤ t

}
. Then S′

22 ⊆ S22 and
S′
31 ⊆ S31. Hence,

Tss5 = −qT5 ∩ T5 = Tss2 ∪ S′
22 ∪ S′

31.

Thus, |Tss5| = 2r − 3 + 2(t + 1) + 1 + 2t = 2r + 4t .
(6) Assume that

T60 = [1, 1 + r(2q − 1 − a)]r = [1, (2r − 1)q − r ]r ,

and
T61 = [1, 1 + r(2q − 3)]r = [1, (2r − 1)q − r ]r .

If C is a λ-constacyclic code with defining set T6 = ⋃d−2
i=0 C1+ri , where 2q + 1 − a ≤ d ≤

2q − 1, then T60 ⊆ T6 ⊆ T61 and (T61 \ T60) ∩ S = ∅. This gives that
Tss6 = −qT6 ∩ T6 = Tss4 ∪ S22 ∪ S31 ∪ S32.

Thus, |Tss6| = 2r − 3 + 2 r−1
2 + 1 + 2 r−3

2 + 2 = 4r − 4.
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(7) For a fixed integer t with 0 ≤ t ≤ r−5
2 , assume that

T70 = [1, 1 + r(2q − 1 + at)]r = [
1, (2r + t)q − r + t + 1

]
r

and
T71 = [1, 1 + r(2q − 3 + a(t + 1))]r = [1, (2r + t + 1)q − 3r + t + 2]r .

If C is a λ-constacyclic code with defining set T7 = ⋃d−2
i=0 C1+ri , where 2q + 1 +

at ≤ d ≤ 2q − 1 + a(t + 1), then T70 ⊆ T7 ⊆ T71 and (T71 \ T70) ∩ S = ∅.
Let S′

32 = {
s1 = (2r + t ′)q − (r − t ′ − 1) : 0 ≤ t ′ ≤ t

} ∪ {
s2 : 0 ≤ t ′ ≤ t

}
and S′

41 ={
s1 = (2r + t ′)q − (2r − t ′ − 1) : 0 ≤ t ′ ≤ t

} ∪ {
s2 : 0 ≤ t ′ ≤ t

}
, then S′

32 ⊆ S32 and
S′
41 ⊆ S41. By Lemma 4, we know

Tss7 = −qT7 ∩ T7 = Tss3 ∪ S′
32 ∪ S′

41.

Thus, |Tss7| = 4r − 4 + 4(t + 1) = 4r + 4t .

(8) Assume that T80 =
[
1, 1 + r 5q−1−3a

2

]

r
=

[
1, 5r−3

2 q − r+1
2

]

r
. If C is a λ-constacyclic

code with defining set T8 = ⋃d−2
i=0 C1+ri , where

5q+3−3a
2 ≤ d ≤ 5q−3−a

2 and a ≥ 3, then
T80 ⊆ T8 ⊆ L and Tss8 = −qT8 ∩ T8 = Tss6 ∪ S33 ∪ S41. Thus, |Tss8| = 4r − 4+ 4 · r−1

2 =
6r − 6. This completes the proof. ��

By Lemmas 2 and 5, new EAQEC codes of length n with flexible parameters can be
constructed from λ-constacyclic codes over Fq2 of length n, as below.

Theorem 2 Let r ≥ 5 be an odd divisor of q + 1 and a = q+1
r ≥ 2. Then for a fixed integer

t with 0 ≤ t ≤ r−5
2 , there are EAQEC codes with the following parameters

(1) [[n, n − 2d + 2t + 3, d; 1 + 2t]]q , where q+3−a
2 + at ≤ d ≤ q+1+a

2 + at;
(2) [[n, n − 2d + r , d; r − 2]]q , where q + 2 − 2a ≤ d ≤ q;
(3) [[n, n − 2d + r + 2 + 2t, d; r + 2t]]q , where q + 1 + at ≤ d ≤ q + a(t + 1);
(4) [[n, n − 2d + 2r − 1, d; 2r − 3]]q , where 3

2 (q + 1 − a) ≤ d ≤ 3q−1−a
2 ;

(5) [[n, n − 2d + 2r + 2 + 4t, d; 2r + 4t]]q , where 3q+3−a
2 + at ≤ d ≤ 3q−1+a

2 + at and
0 ≤ t ≤ r−3

2 ;
(6) [[n, n − 2d + 4r − 2, d; 4r − 4]]q , where 2q + 1 − a ≤ d ≤ 2q − 1;
(7) [[n, n − 2d + 4r + 2+ 4t, d; 4r + 4t]]q , where 2q + 1+ at ≤ d ≤ 2q − 1+ a(t + 1);

(8) [[n, n − 2d + 6r − 4, d; 6r − 6]]q , where 5q+3−3a
2 ≤ d ≤ 5q−3−a

2 , a ≥ 3.

Remark 1 In fact, for r = 3, Lemma 5 and Theorem 2 hold true if the cases (2), (4), (6) and
(8) are only considered.

Lemma 6 Let r be an even divisor of q + 1. Let s1 ≥ s2 > 0 be integers with s1, s2 ∈ �rn.
Then Cs1 = −qCs2 if and only if

{
s1 = ( rl2 + t)q − ( rl2 − t − 1),
s2 = ( rl2 − t − 1)q − ( rl2 + t),

(5)

where l, t are integers with 0 ≤ t ≤ rl
2 − 2 and 1 ≤ l ≤ 2a − 1.
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Proof Similar to Lemma 4, we can get −2l1 ≡ l1(q − 1) = s1 + s2 ≡ 2(mod r). Then
l1 ≡ −1(mod r

2 ). So there is an integer l ′ such that l1 = r
2 l

′ − 1. Then we can get
{
s1 = (

r
2 l

′−1+l2
2 )q − (

r
2 l

′−1−l2
2 ),

s2 = (
r
2 l

′−1−l2
2 )q − (

r
2 l

′−1+l2
2 ).

Since q ≡ −1(mod r), then s1 ≡ − r
2 l

′ + 1(mod r) and s2 ≡ − r
2 l

′ + 1(mod r). It follows

that l ′ is even due to s1 ≡ s2 ≡ 1(mod r). Assume that l ′ = 2l and t = l2−1
2 , then the

system (5) can be derived. Similar to Lemma 4 the ranges of t and l can be obtained. And
the sufficiency can be verified easily. This completes the proof. ��

In fact, Lemma 6 gives a necessary and sufficient condition of two q2-cyclotomic cosets
modulo rn to be a skew asymmetric pair when r is even. And Lemma 6 shows when r is even,
it is impossible thatCs is skew symmetric. If s1 > s2 and (Cs1 ,Cs2) is a skew asymmetric pair,
by Lemmas 3 and 6, s2 can be determined by s1 immediately. To be specific, set i1 = rl

2 + t
and i2 = rl

2 − t − 1. If s1 = i1q − i2, then s2 = i2q − i1. Thus, we only give the value of s1
in the following discussions.

Lemma 7 Let r ≥ 6 be an even divisor of q + 1 and a = q+1
r > 2. Let C be a λ-constacyclic

code over Fq2 of length n = q2−1
r with defining set T = ⋃d−2

i=0 C1+ri , where 2 ≤ d ≤ 5q−3
2 .

Let T = Tss ∪ Tsas . For a fixed integer t with 0 ≤ t ≤ r
2 − 2,

|Tss | =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(t + 1), q+3
2 + at ≤ d ≤ q+1

2 + a(t + 1) and t ≤ r
2 − 3,

r − 2, q + 2 − 2a ≤ d ≤ q,

r + 2t, q + 1 + at ≤ d ≤ q + a(t + 1),
2r − 2, 3

2 (q + 1) − a ≤ d ≤ 3q−1
2 ,

2r + 4t + 2, 3q+3
2 + at ≤ d ≤ 3q−1

2 + a(t + 1),
4r − 4, 2q + 1 − a ≤ d ≤ 2q − 1,
4r + 4t, 2q + 1 + at ≤ d ≤ 2q − 1 + a(t + 1),
6r − 4, 5q+3

2 − a ≤ d ≤ 5q−3
2 , a ≥ 3.

(6)

Proof If 0 ≤ i ≤ 5q−3
2 − 2, then 1 ≤ 1 + ri ≤ 5r

2 q − 7r
2 + 1. Denote the set M =[

1, 5r
2 q − 7r

2 + 1
]
r . By Lemma 6, we know there do not exist skew symmetric cyclotomic

cosets in M and we can get the skew asymmetric pairs (Cs1 ,Cs2) satisfying s1 > s2 in M
are contained in the following set

	 =
{
s1, s2 : s1, s2 satisfy the system (5) with 1 ≤ l ≤ 4 and 0 ≤ t ≤ rl

2
− 2

}
.

Denote the set 	 by Sl when 1 ≤ l ≤ 4. Then

S1 =
{
s1 =

( r
2

+ t
)
q −

( r
2

− t − 1
)

: 0 ≤ t ≤ r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ r

2
− 2

}
.

Assume that

S21 =
{
s1 = (r + t)q − (r − t − 1) : 0 ≤ t ≤ r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ r

2
− 2

}
,

and

S22 =
{
s1 =

(
3r

2
+ t

)
q −

( r
2

+ t − 1
)

: 0 ≤ t ≤ r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ r

2
− 2

}
.
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Then

S2 = {s1 = (r + t)q − (r − t − 1) : 0 ≤ t ≤ r − 2} ∪ {s2 : 0 ≤ t ≤ r − 2}
= S21 ∪ S22.

Assume that

S31 =
{
s1 =

(
3r

2
+ t

)
q −

(
3r

2
− t − 1

)
: 0 ≤ t ≤ r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ r

2
− 2

}
,

S32 = {(2r − 1)q − r , rq − (2r − 1)} ,

S33 =
{
s1 = (2r + t)q − (r − t − 1) : 0 ≤ t ≤ r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ r

2
− 2

}

S34 =
{
s1 =

(
5r

2
+ t

)
q −

( r
2

− t − 1
)

: 0 ≤ t ≤ r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ r

2
− 2

}
.

Then

S3 =
{
s1 =

(
3r

2
+ t

)
q −

(
3r

2
− t − 1

)
: 0 ≤ t ≤ 3r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ 3r

2
− 2

}

=
4⋃

i=1

S3i .

Assume that

S41 =
{
s1 = (2r + t)q − (2r − t − 1) : 0 ≤ t ≤ r

2
− 2

}
∪

{
s2 : 0 ≤ t ≤ r

2
− 2

}
,

then

S4= S41 ∪
{
s1=(2r+t)q−(2r−t − 1) : r

2
−1≤ t≤2r−2

}
∪

{
s2 : r

2
−1≤ t≤2r−2

}
.

In fact, we can get the skew asymmetric pairs (Cs1 ,Cs2) satisfying s1 > s2 in 	 form the
set S = S1 ∪ S2 ∪ S31 ∪ S32 ∪ S33 ∪ S41.

Using a similar method to the proof of Lemma 5, one can derive the value of |Tss | in
different cases. ��

By Lemmas 2 and 7, new EAQEC codes of length n = q2−1
r , where r is an even divisor

of q + 1, can be constructed from λ-constacyclic codes over Fq2 of length n as follows.

Theorem 3 Let r ≥ 6 be an even divisor of q + 1 and a = q+1
r > 2. Then for a fixed integer

t with 0 ≤ t ≤ r
2 − 2, there are EAQEC codes with the following parameters

(1) [[n, n−2d+2t+4, d; 2(t+1)]]q , where q+3
2 +at ≤ d ≤ q+1

2 +a(t+1) and t ≤ r
2 −3;

(2) [[n, n − 2d + r , d; r − 2]]q , where q + 2 − 2a ≤ d ≤ q;
(3) [[n, n − 2d + r + 2 + 2t, d; r + 2t]]q , where q + 1 + at ≤ d ≤ q + a(t + 1);
(4) [[n, n − 2d + 2r , d; 2r − 2]]q , where 3

2 (q + 1) − a ≤ d ≤ 3q−1
2 ;

(5) [[n, n − 2d + 2r + 4+ 4t, d; 2r + 4t + 2]]q , where 3q+3
2 + at ≤ d ≤ 3q−1

2 + a(t + 1);
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(6) [[n, n − 2d + 4r − 2, d; 4r − 4]]q , where 2q + 1 − a ≤ d ≤ 2q − 1;
(7) [[n, n − 2d + 4r + 2+ 4t, d; 4r + 4t]]q , where 2q + 1+ at ≤ d ≤ 2q − 1+ a(t + 1);

(8) [[n, n − 2d + 6r − 2, d; 6r − 4]]q , where 5q+3
2 − a ≤ d ≤ 5q−3

2 , a ≥ 3.

Remark 2 In fact, for r = 4, Lemma 7 and Theorem 3 are ture in the cases (2),(4),(6) and
(8).

4 EAQMDS Codes with c = 1 or 2

An [[n, k, d; c]]q EAQMDS code can encode k logical qudits into n physical qudits by using
c pairs of maximally entangled states, and can correct up to 
 d−1

2 � quantum errors. Thus, for
fixed n and k, we wish that c would be smaller and d would be larger, in order to reduce the
overhead in practice. In this section, two classes of EAQMDS codes consuming one or two
pairs of maximally entangled states are obtained, whose minimum distances are larger than
those in Theorems 2 and 3.

Lemma 8 Let r be an even divisor of q + 1 and a = q+1
r > 2. Let C be a λ-constacyclic

code of length n = q2−1
r with defining set

T =
k⋃

i= q+1
2 −2a

C1+ri , where
q + 1

2
− 2a ≤ k ≤ q − 2.

Assume that T = Tss ∪ Tsas , then
(1) (C1+r q−1

2
,C1+r( q−1

2 − q+1
r )

) is a skew asymmetric pair;

(2) | Tss |= 2 if q−1
2 ≤ k ≤ q − 2.

Proof Since −q(1 + r q−1
2 ) = −q( r2q − ( r2 − 1)) ≡ − r

2 + ( r2 − 1)q = 1 + r( q−1
2 −

q+1
r )(mod rn), then (C1+r q−1

2
,C1+r( q−1

2 − q+1
r )

) is a skew asymmetric pair.

If q+1
2 − 2a ≤ i ≤ q − 2, then ( r2 − 2)q + r

2 − 1 ≤ 1 + ri ≤ rq − 2r + 1. Denote the
set 	 = [

( r2 − 2)q + r
2 − 1, rq − 2r + 1

]
r , then T ⊆ 	. Assume that

S =
{
s1 : s1 =

( r
2

+ t
)
q −

( r
2

− t − 1
)

, 0 ≤ t ≤ r

2
− 2

}
,

obviously, S ⊆ 	. By Lemma 6, we know

−qS =
{
s2 : s2 =

( r
2

− t − 1
)
q −

( r
2

+ t
)

, 0 ≤ t ≤ r

2
− 2

}
,

and for fixed q and t , s1 > s2. If t = 0, then s1 = 1+r q−1
2 and s2 = 1+r( q−1

2 − q+1
r ) ∈ 	,

and (Cs1 ,Cs2) forms a skew asymmetric pair in	. Now we consider the case 1 ≤ t ≤ r
2 −2.

When t = 1, s2 is the maximum one in −qS. And the value is ( r2 − 2)q − ( r2 + 1), which is

smaller than the smallest value ( r2 −2)q+ r
2 −1 in	. Hence,−qS∩T = {

1+r( q−1
2 − q+1

r )
}

if q−1
2 ≤ k ≤ q − 2.
Let

M =
[( r

2
− 1

)
q −

(
q − r

2
+ 1

)
,
( r
2

− 1
)
q − 3r

2

]

r
,

Lt =
[( r

2
+ t

)
q −

(
q − r

2
− t

)
,
( r
2

+ t
)
q −

(
3r

2
− t − 1

)]

r
,
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N1 = [(r − 2)q − 1 + r , (r − 1)q − r ]r and N2 = [rq − q, rq − (r − 1) − r ]r ,

where 0 ≤ t ≤ r
2 − 2. Assume that s(2,0) = 1 + r( q−1

2 − q+1
r ), then

	 \ (S ∪ {s(2,0)}) =
r
2−2⋃

t=0

Lt

2⋃

i=1

Ni ∪ M

and the intersections ofM, Lt , and Ni are empty. Next, we claim that−q(	\(S∪{s(2,0)}))∩
T = ∅. By Lemma 3, we can get

−qLt =
[(

3r

2
− t − 1

)
q −

( r
2

+ t
)

,
(
q − r

2
− t

)
q −

( r
2

+ t
)]

r
,

where 0 ≤ t ≤ r−4
2 . When t = r−4

2 , the value of ( 3r−1
2 − t)q − ( r−1

2 + t) is the minimum,
and it is equal to (r + 1)q − (r − 2), which is bigger than the largest value rq − 2r + 1 in
	. Thus −qLt ∩ T = ∅. Again by Lemma 3, we have

−qM =
[
3r

2
q −

( r
2

− 1
)

,
(
q − r

2
+ 1

)
q −

( r
2

− 1
)]

r
,

−qN1 = [rq − (r − 1), q − (r − 2)]r and − qN2 = [
(2r − 1)q − r , q2 − r

]
r .

And 3r
2 q−( r2−1), rq−(r−1) and (2r−1)q−r are bigger than the largest value rq−2r+1

in	.Hence,−qM∩T = ∅ and−qNi∩T = ∅, i = 1, 2.Thus,−q(	\(S∪{s(2,0)}))∩T = ∅,
and Tss = −qT ∩ T =

{
1 + r q−1

2 , 1 + r( q−1
2 − q+1

r )
}
if q−1

2 ≤ k ≤ q − 2. The desired

result follows. ��

Theorem 4 Let r be an even divisor of q + 1, a = q+1
r > 2. Then there exists a q-ary

[[n, n − 2d + 4, d; 2]]q EAQMDS code, where 2a + 1 ≤ d ≤ 2a + q−1
2 .

Proof Let λ ∈ F
∗
q2

and ord(λ) = r . Let C be a λ-constacyclic code of length n = q2−1
r ,

with defining set T = ⋃k
i= q+1

2 −2a
C1+ri , where

q+1
2 − 2a ≤ k ≤ q − 2. Then there are

k− q+1
2 +2a+1 consecutive integers in T and | T |= k− q+1

2 +2a+1 since | C1+ri |= 1. By

BCH bound for constacyclic codes, the minimum distance of C is at least k − q+1
2 + 2a + 2.

By the Singlton bound for linear codes, the parameters of C is [n, n − d + 1, d]. Using
Lemmas 2 and 9, the desired results follow. ��

Lemma 9 Let r be an odd positive divisor of q + 1, and a = q+1
r > 1. Let C be a λ-

constacyclic code of length n = q2−1
r with defining set

T =
k⋃

i= r−3
2 a

C1+ri , where
r − 3

2
a ≤ k ≤ q − 2.

Assume that T = Tss ∪ Tsas , then
(1) C1+r q−1−a

2
is skew symmetric,

(2) | Tss |= 1 if q−1−a
2 ≤ k ≤ q − 2.
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Proof Notice that−q(1+r q−1−a
2 ) = −q( r−1

2 (q−1)) ≡ − r−1
2 + r−1

2 q = 1+r q−1−a
2 ( mod

rn), thus C1+r q−1−a
2

is skew symmetric.

If r−3
2 a ≤ i ≤ q − 2, then r−3

2 q + r−1
2 ≤ 1 + ri ≤ rq − 2r + 1. Assume that

� = [ r−3
2 q + r−1

2 , rq − 2r + 1
]
r , then T ⊆ �. Let

S =
{
s1 : s1 =

(
r − 1

2
+ t

)
q −

(
r − 1

2
− t

)
, 0 ≤ t ≤ r − 3

2

}
,

It can be checked easily that S ⊆ �. By Lemma 4, we know

−qS =
{
s2 : s2 =

(
r − 1

2
− t

)
q −

(
r − 1

2
+ t

)
, 0 ≤ t ≤ r − 3

2

}
.

For a fixed q , if t = 0, then s1 = s2 = 1 + r q−1−a
2 ∈ �. Now we consider the case

1 ≤ t ≤ r−3
2 . If t = 1, s2 is the maximum in −qS and the value is r−3

2 q − r+1
2 which

is smaller than the smallest value r−3
2 q + r−1

2 in �. Hence, −qS ∩ T =
{
1 + r q−1−a

2

}
if

q−1−a
2 ≤ k ≤ q − 2. Let the sets

Lt =
[(

r − 1

2
+ t

)
q −

(
q − r − 1

2
− t

)
,

(
r − 1

2
+ t

)
q −

(
3r − 1

2
− t

)]

r
,

N1 = [
(r − 2)q − 1 + r , (r − 1)q − r

]
r and N2 = [rq − q, rq − (2r − 1)]r ,

where 0 ≤ t ≤ r−3
2 . Then � \ S = ⋃ r−3

2
t=0 Lt

⋃2
i=1 Ni and Lt ∩ Ni = ∅. Next, we claim that

−q(� \ S) ∩ T = ∅. By Lemma 3, we can get

−qLt =
[(

3r − 1

2
− t

)
q −

(
r − 1

2
+ t

)
,

(
q − r − 1

2
− t

)
q −

(
r − 1

2
+ t

)]

r
,

where 0 ≤ t ≤ r−3
2 . When t = r−3

2 , the value of ( 3r−1
2 − t)q − ( r−1

2 + t) is the minimum
in the set −qLt , and is equal to (r + 1)q − (r − 2), which is bigger than the largest value
rq − 2r + 1 in �. Thus, −qLt ∩ T = ∅. Again by Lemma 3, we have

−qN1 = [
rq − (r − 1), q − (r − 2)

]
r and − qN2 = [

(2r − 1)q − r , q2 − r
]
r .

Notice that rq − (r − 1) and (2r − 1)q − r are bigger than the largest value of �. Thus,
−qNi ∩T = ∅, i = 1, 2 and−q(�\ S)∩T = ∅. Hence, | Tss |= 1 if q−1−a

2 ≤ k ≤ q−2.��

Theorem 5 Let r be an odd divisor of q + 1, a = q+1
r > 1. Then there exists a q-ary

[[n, n − 2d + 3, d; 1]]q EAQMDS code, where a + 1 ≤ d ≤ q−1+3a
2 .

Proof Let λ ∈ F
∗
q2

and ord(λ) = r . Let C be a λ-constacyclic code of length n = q2−1
r with

defining set T = ⋃k
i= r−3

2 a
C1+ri , where r−3

2 a ≤ k ≤ q − 2. Then there are k − r−3
2 a + 1

consecutive integers in T and | T |= k − r−3
2 a + 1 since | C1+ri |= 1. By Lemma 1, the

minimum distance of C is not less than k − r−3
2 a + 2. Then C is an MDS code. Applying

Lemmas 2 and 9, the desired results follow. ��
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Table 1 EAQMDS codes of length n = q2−1
5 with 5 | (q + 1)

[[n, k, d; c]]q d in Thm 2 d in Refs.

[[n, n − 2d + 7, d; 5]]q , q > 13 q + 1 ≤ d ≤ 6q+1
5 q + 1 ≤ d ≤ 6q+1

5 [24]

[[n, n − 2d + 9, d; 7]]q , q > 15 6(q+1)
5 ≤ d ≤ 7q−3

5
6(q+1)

5 − 1 ≤ d ≤ 7q−3
5 [25]

[[n, n − 2d + 12, d; 10]]q , q > 17 7(q+1)
5 ≤ d ≤ 8q−2

5 New

[[n, n − 2d + 16, d; 14]]q , q ≥ 19 8(q+1)
5 ≤ d ≤ 9q−1

5 New

[[n, n − 2d + 18, d; 16]]q , q > 21 9q+4
5 ≤ d ≤ 2q − 1 New

[[n, n − 2d + 22, d; 20]]q , q > 23 2q + 1 ≤ d ≤ 11q−4
5 New

[[n, n − 2d + 26, d; 24]]q , q > 25 11q+6
5 ≤ d ≤ 12q−8

5 New

Table 2 EAQMDS codes of length n = q2−1
6 with 6 | (q + 1)

[[n, k, d; c]]q d in Thm 3 d in Refs.

[[n, n − 2d + 8, d; 6]]q , q > 15 q + 1 ≤ d ≤ 7q+1
6 q + 1 ≤ d ≤ 7q+1

6 [24]

[[n, n − 2d + 10, d; 8]]q , q > 17 7(q+1)
6 ≤ d ≤ 4q+1

3 New

[[n, n − 2d + 12, d; 10]]q , q > 19 4(q+1)
3 ≤ d ≤ 3q−1

2 New

[[n, n − 2d + 16, d; 14]]q , q > 21 3(q+1)
2 ≤ d ≤ 5q−1

3 New

[[n, n − 2d + 20, d; 18]]q , , q ≥ 23 5(q+1)
3 ≤ d ≤ 11q−1

6 New

[[n, n − 2d + 22, d; 20]]q , q > 25 11q+5
3 ≤ d ≤ 2q − 1 New

[[n, n − 2d + 26, d; 24]]q , q > 27 2q + 1 ≤ d ≤ 13q−5
6 New

[[n, n − 2d + 30, d; 28]]q , q ≥ 29 13q+7
6 ≤ d ≤ 7q−2

3 New

[[n, n − 2d + 34, d; 32]]q , q > 31 7q+4
3 ≤ d ≤ 5q−3

2 New

Table 3 EAQMDS codes of length n = q2−1
7 with 7 | (q + 1)

[[n, k, d; c]]q d in Thm 2 d in Refs.

[[n, n − 2d + 9, d; 7]]q , q > 17 q + 1 ≤ d ≤ 8q+1
7 q + 1 ≤ d ≤ 8q+1

7 [24]

[[n, n − 2d + 11, d; 9]]q , q > 19 8(q+1)
7 ≤ d ≤ 9q+2

7
8q+1
7 ≤ d ≤ 9q−5

7 [25]

[[n, n − 2d + 13, d; 11]]q , q > 21 9(q+1)
7 ≤ d ≤ 10q−4

7
9q+2
7 ≤ d ≤ 10q−4

7 [25]

[[n, n − 2d + 16, d; 14]]q , q > 23 10(q+1)
7 ≤ d ≤ 11q−3

7 New

[[n, n − 2d + 20, d; 18]]q , q > 25 11(q+1)
7 ≤ d ≤ 12q−2

7 New

[[n, n − 2d + 24, d; 22]]q , q ≥ 27 12(q+1)
7 ≤ d ≤ 13q−1

7 New

[[n, n − 2d + 26, d; 24]]q , q > 29 13q+6
7 ≤ d ≤ 2q − 1 New

[[n, n − 2d + 30, d; 28]]q , q > 31 2q + 1 ≤ d ≤ 15q−6
7 New

[[n, n − 2d + 34, d; 32]]q , q > 33 15q+8
7 ≤ d ≤ 16q−5

7 New

[[n, n − 2d + 38, d; 36]]q , q > 35 16q+9
7 ≤ d ≤ 17q−11

7 New
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5 Code Comparisons

In this paper, we have derived a family of EAQEC codes from constacyclic codes over Fq2 of

length n = q2−1
r , where r is a positive divisor of q + 1. Some standard quantumMDS codes

with the same length have been obtained in [4, 15, 34], and their minimum distances are not
greater than q + 1. The minimum distance of EAQEC codes in this paper is near by 5q−3

2 . If
d ≤ n+2

2 , our EAQEC codes are MDS. There are many results [8, 24, 25, 27, 30] about the

EAQMDS codes of length q+1
r (q − 1) for a certain r , our construction generalized almost

known results with the same length. And our construction can produce many new EAQMDS
codes with large minimum distance which are not covered in the literature.

Liu et al. [24] constructed EAQMDS codes of length q2−1
r from λ-constacyclic codes,

where 3 ≤ r ≤ 7. For other positive divisors of q + 1, the EAQMDS codes in this paper are
new. In addition, theminimumdistances in their construction are notmore than (r+1)(q+1)

r −1.

Thus, if (r+1)(q+1)
r ≤ d ≤ min

{
5q−3−a

2 , n+2
2

}
the EAQMDS codes in Theorems 2 and 3

are new.
Let q be an odd prime power. Recently, Lu et al. [25] constructed EAQMDS codes from

cyclic codes of length q2−1
r , where r = 3, 5, 7. The upper limit of minimum distance is 9q−6

5

if r = 5, and 11q−10
7 if r = 7, which are all less than 5q−3

2 . In Tables 1, 2 and 3, we compare
some EAQMDS codes in this paper with these in [24, 25] when r = 5, 6 and 7, respectively.
It can be seen that our construction in Theorems 2 and 3 can produce more codes processing
bigger minimum distance.

If q is an odd prime power and r is odd, Fan et al. [8] derived EAQMDS codes with

parameters [[ q2−1
r ,

q2−1
r − 2d + r + 2, d; r ]]q , where (r−1)(q+1)

r + 2 ≤ d ≤ (r+1)(q+1)
r − 2.

If r is even, the EAQMDS code in this paper are new. Obviously, 5q−3
2 >

(r+1)(q+1)
r − 2.

Thus, if d ≤ n+2
2 our construction can produce much more EAQMDS codes with large

minimum distance. In Table 5, we compare some EAQMDS codes from our construction
with the known ones in [8, 24, 25].

InTheorems 4 and 5,we improved theminimumdistance ofEAQMDScodeswith c = 1 or
2 in Theorems 2 and 3. In Table 4, we compare some EAQMDS codes which consume one or
two pairs of maximally entangled states in Theorems 4 and 5 with these in Theorems 2 and 3.
The minimum distance of EAQMDS codes in Theorems 4 and 5 is larger q+1

r than minimum

Table 4 Some new EAQMDS codes with a few entanglement bits

q r Our parameters d in Thms 4 or 5 d in Thms 2 or 3

17 6 [[48, 52 − 2d, d; 2]]17 7 ≤ d ≤ 14 10 ≤ d ≤ 12

17 9 [[32, 35 − 2d, d; 1]]17 3 ≤ d ≤ 11 9 ≤ d ≤ 10

23 6 [[88, 92 − 2d, d; 2]]23 9 ≤ d ≤ 19 13 ≤ d ≤ 16

23 8 [[66, 70 − 2d, d; 2]]23 7 ≤ d ≤ 17 13 ≤ d ≤ 15

29 6 [[140, 144 − 2d, d; 2]]29 11 ≤ d ≤ 24 16 ≤ d ≤ 20

29 15 [[56, 59 − 2d, d; 1]]29 3 ≤ d ≤ 17 15 ≤ d ≤ 16

31 8 [[120, 124 − 2d, d; 2]]31 9 ≤ d ≤ 23 17 ≤ d ≤ 20

32 11 [[93, 96 − 2d, d; 1]]32 4 ≤ d ≤ 20 16 ≤ d ≤ 18
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Table 5 Some new EAQMDS codes and comparisons

q r Our parameters d in Thms 2 or 3 d in Refs.

17 6 [[48, 56 − 2d, d; 6]]17 18 ≤ d ≤ 20 18 ≤ d ≤ 20 [24]

17 6 [[48, 58 − 2d, d; 8]]17 21 ≤ d ≤ 23 New

17 6 [[48, 60 − 2d, d; 10]]17 24 ≤ d ≤ 25 New

19 5 [[72, 79 − 2d, d; 5]]19 20 ≤ d ≤ 23 20 ≤ d ≤ 23 [24]

19 5 [[72, 81 − 2d, d; 7]]19 24 ≤ d ≤ 26 23 ≤ d ≤ 26 [25]

19 5 [[72, 84 − 2d, d; 10]]19 28 ≤ d ≤ 30 New

19 5 [[72, 88 − 2d, d; 14]]19 32 ≤ d ≤ 34 New

19 5 [[72, 90 − 2d, d; 16]]19 35 ≤ d ≤ 37 New

23 8 [[66, 72 − 2d, d; 4]]23 16 ≤ d ≤ 18 New

23 8 [[66, 74 − 2d, d; 6]]23 19 ≤ d ≤ 23 New

23 8 [[66, 76 − 2d, d; 8]]23 24 ≤ d ≤ 26 New

23 8 [[66, 78 − 2d, d; 10]]23 27 ≤ d ≤ 29 New

23 8 [[66, 80 − 2d, d; 12]]23 30 ≤ d ≤ 32 New

23 8 [[66, 82 − 2d, d; 14]]23 33 ≤ d ≤ 34 New

53 9 [[312, 317 − 2d, d; 3]]53 31 ≤ d ≤ 36 New

53 9 [[312, 319 − 2d, d; 5]]53 37 ≤ d ≤ 42 New

53 9 [[312, 321 − 2d, d; 7]]53 43 ≤ d ≤ 53 New

53 9 [[312, 323 − 2d, d; 9]]53 54 ≤ d ≤ 59 50 ≤ d ≤ 58 [8]

53 9 [[312, 325 − 2d, d; 11]]53 60 ≤ d ≤ 65 New

53 9 [[312, 327 − 2d, d; 13]]53 66 ≤ d ≤ 71 New

53 9 [[312, 329 − 2d, d; 15]]53 72 ≤ d ≤ 76 New

53 9 [[312, 332 − 2d, d; 18]]53 78 ≤ d ≤ 82 New

53 9 [[312, 336 − 2d, d; 22]]53 84 ≤ d ≤ 88 New

53 9 [[312, 340 − 2d, d; 26]]53 90 ≤ d ≤ 94 New

53 9 [[312, 344 − 2d, d; 30]]53 96 ≤ d ≤ 100 New

53 9 [[312, 346 − 2d, d; 32]]53 101 ≤ d ≤ 105 New

53 9 [[312, 350 − 2d, d; 36]]53 107 ≤ d ≤ 111 New

53 9 [[312, 354 − 2d, d; 40]]53 113 ≤ d ≤ 117 New

53 9 [[312, 358 − 2d, d; 44]]53 119 ≤ d ≤ 123 New

53 9 [[312, 362 − 2d, d; 48]]53 125 ≤ d ≤ 128 New

distance of the standard quantum MDS codes in [34]. Let q be an odd prime power. In [27],

the authors obtained EAQMDS codes with parameters [[ q2−1
r ,

q2−1
r − 2d + r + 2, d; 1]]q ,

where r = 3, 5, 7 and q+1
r +1 ≤ d ≤ (r+3)(q+1)

2r −1. Our construction in Theorems 4 and 5
generalized this result. Many new EAQMDS codes could be derived from Theorem 4 if r is
even, and Theorem 5 if q is even, or r is another odd divisor of q + 1.
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