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Abstract
The essential singularity in Einstein’s gravity can be avoidable if the preconditions of Pen-
rose’s theorem can be bypassed, i.e., if the strong energy condition is broken in the vicinity of
a black hole center. The singularity mentioned here includes two aspects: (i) the divergence
of curvature invariants, and (ii) the incompleteness of geodesics. Both aspects are now taken
into account in order to determine whether a black hole contains essential singularities. In
this sense, black holes without essential singularities are dubbed regular (non-singular) black
holes. The regular black holes have some intriguing phenomena that are different from those
of singular black holes, and such phenomena have inspired numerous studies. In this review,
we summarize the current topics that are associated with regular black holes.

Keywords Regular black holes · Rotations · Energy conditions · Black hole
thermodynamics

1 Introduction

Regular black holes (RBHs) are a collection of black holes (BHs) that have coordinate
singularities (horizons) but lack essential singularities in the entire spacetime. In most cases,
the strategy to determine aRBHrefers [1–3] to the spacetimewithfinite curvature invariantsaa
everywhere, particularly at the BH center. This is related to Markov’s limiting curvature
conjecture [5–8], which states that the curvature invariants must be uniformly restricted by
a certain universal value. However, such a strategy fails [9, 10] in the well-known Taub-

a The curvature invariants are a set of independent scalars that are constructed by a Riemann tensor and a
metric [4], for instance, the Ricci curvature R = gμν Rμν , the contraction of two Ricci tensors Rμν Rμν , and
the Kretschmann scalar Rμναβ R

μναβ .
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NUT BH, see the end of Section 2.2. because the null and timelike geodesics are incomplete
at the horizon, which contradicts [11, 12] the alternative strategy to determine a regular
spacetime based on the geodesic completeness.b The strategy of complete geodesics also
encounters [13, 14] counterexamples, see e.g.Refs. [15, 16],where the geodesics are complete
but the curvature invariants are divergent, which consequently contradicts Markov’s limiting
curvature conjecture. In this sense, the two strategies should be complementary to each other
in order to judge RBHs.

The studies of RBHs can date back to Sakharov and Gliner’s works [17, 18], where
they stated that the essential singularities can be avoided if the vacuum is replaced by a
vacuum-like medium endowed with a de Sitter metric. This idea has been developed further
by Dynmnikova, Gurevich, and Starobinsky [19–21], see also the reviews [22, 23]. The first
model of RBHs was implemented by Bardeen [24], now called the Bardeen BH, which was
constructed by simply replacing themass of Schwarzschild BHswith a r -dependent function.
As a result, the essential singularity of the Kretschmann scalar is removed in the Bardeen
BH, meanwhile, the core of this BH is of de Sitter, i.e., the Ricci curvature is positive in the
vicinity of the BH center.

After three decades of Bardeen’s proposal, Ayón-Beato and García provided [25] the first
interpretation of the Bardeen BH in field theory, i.e., they speculated a source, a magnetic
monopole in the context of nonlinear electrodynamics, which can lead to the Bardeen BH
solution from Einstein’s field equations. Recently, a large number of RBH models have been
given in this way. In particular, such an approach has been extended [3, 26–31] to interpret
all RBH models with spherical symmetry. It is different from the usual way in finding BH
solutions by solving Einstein’s field equations. According to this approach, one writes the
desiredRBHandmagneticmonopole solutions at first, and then determines the corresponding
action of nonlinear electrodynamics. Because of such a special logic, i.e., from the solutions to
the action ofmatters, the RBHs have nontrivial (phantom) scalar hairs [27, 32–34].Moreover,
they are regarded to be classical objects as they are the solutions of Einstein’s field equations.

There are two different ways to construct RBH models: one is to solve Einstein’s field
equations that are associated with a kind of special sources, e.g., the matters with spatial
distributions [1, 35–41]; and the other is to derive RBHs as quantum corrections to the
classical BHs with singularity, e.g., the loop quantum gravity and asymptotic safety method
[42–50]. Based on the former way, the RBHs behave semiclassically; whereas based on the
latter, those RBHmodels exhibit quantum behaviors. In other words, RBHs are now regarded
as a tool to study the classical limit of quantum black holes becausewe do not have a complete
theory of quantum gravity at the moment.

Besides the structures of RBHs [51–58], the study also extends to the other areas of
BH physics, including thermodynamics [26, 59–62], dynamics [63–68], shadows [69–78],
quasinormal modes [63, 79–88], superradiance [89], and synchrotron radiations [90–92] ,
etc. All of the research on RBHs aims to explore how RBHs differ from singular black holes
(SBHs) and thus shed light on further research for quantum gravity. Currently, the study of
RBHs has made great progress in depth and breadth, which leads to the necessity for us to
summarize the new results in a systematic way. Comparing with the previous reviews [23, 36,
93], we would like to gather the new progress developed recently. This is the main motivation
for drafting this review.

Our review is organized as follows. In Section 2, we address the issue of the construction
for both the non-rotating and rotating RBHs, where we also discuss the number of curvature

b According to this strategy, a spacetime is regular if its null and timelike geodesics are complete, i.e., the
affine parameter of a test particle will not terminate at any finite value [11, 12].
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invariants among the Zakhary-Mcintosh invariants (a complete set of curvature invariants)
for determining whether a BH is regular or not. Section 3 includes the clarification for under-
standing RBHs and the establishment of the sources of RBHs in terms of Petrov’s approach.
We end this section by showing the peculiarity of RBHs on scalar hairs, which does not
break the non-hair theorem. In Section 4 we demonstrate the role played by the strong energy
condition in RBHs, and provide an illustration or a resolution of the issue of the violation
of the other energy conditions in RBHs. Section 5 is dedicated to the thermodynamics of
RBHs, wherewe give a discussion on the entropy-area law, based onwhich the self-consistent
first law of thermodynamics is given in Section 5.2. In Section 6, we discuss thermodynamic
geometry for RBHs because they are the nontrivial extensions of interesting issues associated
with SBHs. Finally, we conclude in Section 7 with some outlooks.

2 Construction of Regular Black Holes

In this section, we summarize the approaches for both the non-rotating and rotating RBHs,
meanwhile, we analyze the minimum set of curvature invariants that are needed to judge an
RBH. Here the curvature invariants refer to the Zakhary-Mcintosh (ZM) invariants [94, 95]
that form a complete set of Riemann invariants and contain seventeen elements, see also App.
2. The reason that we adopt the ZM invariants rather than the usual ones, such as the Ricci
scalar and Kretschmann scalar [7, 26, 96], will be explained in Section 2.2.

2.1 How to Construct Non-rotating Regular Black Holes?

Despite the complexity of ZM invariants, the calculation of ZM invariants becomes simple
for those BHs with spherical symmetry. The RBHs with spherical symmetry have two types
of metrics: A metric in the first type involves one shape function, see the specific square of
line elements,

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2, (1)

and a metric in the second type involves two shape functions, see the specific square of line
elements,

ds2 = − f (r)dt2 + f −1(r)A2(r)dr2 + r2d�2, (2)

which is equivalent to

ds2 = − f (ξ)dt2 + f −1(ξ)dξ2 + r2(ξ)d�2, (3)

where ξ is a newly defined variable,

ξ ≡
∫

dr A(r). (4)

In the following of this subsection, we shall give some restrictions to the two types of metrics,
which will reveal that the RBHs depicted by the two types of metrics have finite curvature
invariants.

2.1.1 The Case with One Shape Function

It is quite general for us to write the shape function as follows,

f (r) = 1 − 2Mσ(r)

r
, (5)
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where σ(r) is a function of the radial variable r and M is BH mass. In order to observe the
regularity, we expand σ(r) by the power series around r = 0,

σ(r) = σ1r + σ2r
2 + σ3r

3 + O(r4), (6)

whereσi are constant coefficients. Then, by substituting (1), (5) and (6) into theZM invariants,
we can find the conditions of finite curvatures, that is, the coefficients σ1 and σ2 must vanish,

σ1 = 0 = σ2. (7)

As an example, we write the behaviors of three usual candidates among the seventeen ZM
invariants around r = 0: The Ricci scalar R, the Weyl scalar W = WαβμνWαβμν , and the
Kretschmann scalar K have the asymptotic behaviors for RBHs,

R = 24Mσ3 + O(r), W = O(r2), K = 96M2σ 2
3 + O(r). (8)

Alternatively, we can select three curvatures from the seventeen ZM invariants and write
σ(r), σ ′(r), and σ ′′(r) as functions of these three curvatures because the ZM invariants
contain σ(r) and only its first and second order derivatives, σ ′(r) and σ ′′(r). Then, requiring
the finiteness of the three curvatures, we can find the behavior of σ(r) around the center
r = 0, i.e., σ(r) should not decrease slower than r3 as r approaches to zero [97], otherwise,
some of the ZM invariants will diverge at r = 0.

2.1.2 The Case with Two Shape Functions

For the RBHs with two shape functions [7, 27, 98, 99], we apply a similar procedure to the
above, that is, we expand both of shape functions (see Eq. (2)) by the power series,

A(r) = A0 + A1r + A2r
2 + O(r3), (9a)

f (r) = B0 + B1r + B2r
2 + O(r3). (9b)

After substituting (2), (9a) and (9b) into the ZM invariants, we can find the conditions for
finite curvatures,

A0 = B0, A1 = B1 = 0, (10)

i.e., the first order of r must be absent in the power expansions. We still give three curvature
invariants for RBHs as an example when r goes to zero,

R = 6(A2 − 2B2)

A0
+ O(r), W = O(r2), S = 3A2

2

A2
0

+ O(r), (11)

where S and Sμν are defined [7] by S ≡ SμνSμν and Sμν ≡ Rμν − gμνR/4, respectively.

2.2 HowMany Curvature Invariants do we Need to Define a Regular Black Hole?

Generally, the finite curvature invariants and geodesic completeness are not equivalent to
each other,c but they can be regarded as two independent necessary conditions for checking
whether a BH is regular. Moreover, the former is coordinate-independent, i.e., a coordinate
singularity does not appear in curvature invariants, whereas in order to prove the regularity
by the latter, one has to eliminate the coordinate singularity by selecting an appropriate

c For certain cases, these two conditions are equivalent, e.g., for spherically symmetric BHs with one shape
function, i.e., ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2.
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coordinate. Thus, the latter often involves the choice of a coordinate system in practice. For
instance, in the Rindler spacetime [12, 100], ds2 = −z2dt2+dx2+dy2+dz2, the geodesics
cannot be extended along the z-direction because the corresponding affine parameter is finite
at z = 0. In other words, the point z = 0 acts as a singularity in this spacetime. However,
after an appropriate transformation,

t → tanh−1 T

Z
, x → X , y → Y , z →

√
Z2 − T 2, (12)

the original metric converts to that of the Minkowski spacetime, ds2 = −dT 2 + dX2 +
dY 2 +dZ2, i.e., there is no singularity anywhere. From this point of view, we can see that the
condition of finite curvature invariants has its advantage, i.e., it does not need to be concerned
about selecting appropriate coordinates.

Nevertheless, there are two questions associated with the criterion of finite curvature
invariants. The first is whether the curvature invariants can reveal the singularity of spacetime,
and the second is howmany curvature invariants have to be used in order to determine a RBH
if the first question has a positive answer.

It is known that the components of Riemann tensors are not suitable to describe spacetime
[101] because they depend on the choices of coordinate systems. However, the scalars con-
structed by Riemann tensors and metrics can improve the situation. These curvature scalars
are important for investigating singularities. In other words, the curvature scalars are believed
to describe the primary properties of spacetime, in particular, to determine the existence of
spacetime singularities.

Considering the independent components of Riemann tensors and metrics together with
the constraints from coordinate transformation, one can construct 14 curvature scalarsd in
the 4D spacetime [4]. For simple cases, there exist only three curvature scalarse that are
connected by the Ricci decomposition, i.e., the Ricci scalar (R), the Kretschmann scalar (K )
and the contraction of two Ricci tensors (R2).

For certain cases in the presence of matter, the 14 scalars are not complete, i.e., more than
14 scalars are required [102]. Here the completeness implies theminimal number of invariants
for all 6 Petrov types and 15 Segré types [103]. It has been proved [94] that the complete
set of curvature invariants should contain 17 elements that are known as ZM invariants.
These invariants are originally defined by the spinorial quantities in the Penrose-Newman
formalism, and are recast in the explicit algebraic expressions in Ref. [95].

Thus, the twoquestionsmentioned abovebecomewhether theZMinvariants candetermine
the singularities of spacetime and how many elements are required in this set. The second
question has been analyzed for several cases, for instance, four scalars are necessary for
rotating RBHs [104], while two scalars are enough for non-rotating ones [105]. As to the
first question, the situation is relatively complicated and no definite answer is given at the
moment.

Let us see the well-known Taub-NUT BH [103, 106] as a sample,

ds2 = − f (r) [dt + 2n cos(θ)dφ]2 + dr2

f (r)
+ ζ 2 [

dθ2 + sin2(θ)dφ2] (13)

d This number comes from 20 independent components of a Riemann tensor plus 10 independent components
of a metric but minus 16 constraints imposed by the general coordinate transformation.
e Alternatively, K and R2 are replaced by W ≡ CμναβC

μναβ , the contraction of two Weyl tensors, and
S ≡ SμνSμν , where Sμν ≡ Rμν − gμν R/4 [7].
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with

f (r) = �

ζ 2 , � = r2 − 2Mr − n2, ζ =
√
r2 + n2, (14)

where M is mass, the NUT parameter n is positive and referred to as magnetic mass, and
the horizon is located at rH = M + √

M2 + n2. Now the Taub-NUT BH is regarded [107,
108] as the electric-magnetic duality of Schwarzschild BHs. It is shown [10, 109] that the
geodesics are incomplete at the horizon.

We turn to the investigation of the curvature invariants of the Taub-NUT BH. The Ricci
tensor vanishes, Rμν = 0. The Kretschmann scalar reads

K ∼ 48
(
n2 − M2

)
n6

+ O (r) , (15)

which is finite as r approaches zero. Moreover, R2 is also finite when r goes to zero. As a
result, the three curvature invariants, R, K , and R2 are finite in the Taub-NUT BH spacetime.
As done for the center r = 0, we can show that the horizon has no singularity when we check
R, K , and R2. Further, we confirm that all the ZM invariants are regular everywhere in the
Taub-NUT BH spacetime, i.e., the finite-curvature method cannot ensure the completeness
of geodesics [10, 109]. This implies that the ZM curvature invariants are not able to fully
reflect the singularity of spacetime, or more invariants than the ZM ones are needed. The
validity of these statements remains open at the moment.

2.3 How to Construct Rotating Regular Black Holes?

It is considerably difficult to obtain rotating RBH’s solutions from the Einstein field equations
because the complexity of Einstein’s field equations in the case of rotation is much greater
than that of the static case. Therefore, the widely-used method for constructing rotating BHs
is the Newman-Janis algorithm (NJA) [110].

The NJA originated from the connection between a static BH and a rotating one in general
relativity. It is well known that the Schwarzschild, Reissner-Nordström (RN), Kerr, and Kerr-
Newman (KN) BHs were obtained by solving Einstein’s field equations in electro-vacuum.
These solutions have clear physical explanations. By comparing the metrics of these BHs,
Newman and Janis proposed the NJA to mathematically describe the transformation from
spherically symmetric Schwarzschild BHs to axially symmetric Kerr BHs. The algorithm
can also describe the transformation from RN BHs to KN BHs.

Subsequently, Gürses and Gürsey extended [111] this algorithm for the Kerr-Schild type
of BHs, namely, the metric of one shape function mentioned in Section 2.1. Further, Drake
and Szekeres generalized [112] the NJA for general spherically symmetric BHs. Based on
the above algorithms, many spherically symmetric RBHs have been extended to their axially
symmetric counterparts, such as the noncommutative BHs [36, 113, 114], loop quantum
corrected BHs [115, 116], Bardeen BHs [24, 117], and Hayward BHs [117, 118], phantom
RBHs [119], etc.

2.3.1 What are the Problems Faced by the Newman-Janis Algorithm?

The NJA faces the uncertainty of complex transformation of metrics. This problem arises
from the complex transformation of coordinates [120–122]:

r → r + ia cos θ, u → u − ia cos θ, (16)
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where (u, r , θ, ϕ) are the advanced null coordinates anda is the rotation parameter.According
to the transformation, we need to convert a static and spherically symmetric metric function
into a rotational and axially symmetric function, and ensure that the latter is real but not
complex. As a result, this conversion of metric functions must follow certain rules. However,
such rules are ambiguous in the NJA.

The commonly-used rule is obtained by comparing the RN metric with the KN metric.
The t t-component of the RN metric reads

g(RN)tt = 1 − 2M

r
+ q2

r2
, (17)

where M is mass and q is charge. The t t-component of the KN metric takes the form,

g(KN)tt = 1 − 2Mr

r2 + a2 cos2 θ
+ q2

r2 + a2 cos2 θ
. (18)

The conversion rule is as follows:

r2 = rr∗ → (r + ia cos θ)(r − ia cos θ) = r2 + a cos2 θ, (19)

1

r
= 1

2

(
1

r
+ 1

r∗

)
→ 1

2

(
1

r + ia cos θ
+ 1

r − ia cos θ

)
= r

r2 + a2 cos2 θ
. (20)

However, the above conversion rule may not be applicable to RBH metrics due to their
complexity. Here we take the black-bounce spacetime [98] as an example, where its metric’s
t t-component reads

g(BB)tt = 1 − 2M√
r2 + l2

, (21)

where l is the regularization parameter. When l vanishes, the metric becomes the form of
Schwarzschild’s spacetime. Therefore, the rotation formulation of this metric should reduce
to the Kerr metric when l = 0. But this is not the case. The rotating black-bounce metric
under the above conversion rule takes the form,

g(rBB)tt = 1 − 2M√
r2 + a2 cos2 θ + l2

, (22)

whereas the t t-component of the Kerr metric is

g(K)tt = 1 − 2Mr

r2 + a2 cos2 θ
. (23)

Obviously, g(rBB)tt does not reduce to g(K)tt when l = 0. As a result, the above conversion
rule does not apply to the black-bounce spacetime. Owing to the failure of this rule, we
need to find such a rule that applies to more models. Furthermore, the ambiguity related to
coordinate transformations leads to difficulties in the generalization of the NJA.

2.3.2 How to Modify the Newman-Janis Algorithm?

In order to avoid the ambiguity caused by the complex transformation, Azreg-Ainou mod-
ified [120, 121] the NJA as follows.

For a general static metric,

ds2 = −G(r)dt2 + dr2

F(r)
+ H(r)

(
dθ2 + sin2 θdϕ2) , (24)
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one introduces the advanced null coordinates (u, r , θ, ϕ) defined by

du = dt − dr√
FG

, (25)

and expresses the contravariant form of the metric in terms of a null tetrad,

gμν = −lμnν − lνnμ + mμm∗ν + mνm∗μ, (26)

where
lμ = δμ

r , (27a)

nμ =
√

F

G
δμ
u − F

2
δμ
r , (27b)

mμ = 1√
2H

(
δ
μ
θ + i

sin θ
δμ
ϕ

)
, (27c)

lμl
μ = mμm

μ = nνnν = lμm
μ = nμm

μ = 0, (27d)

lμn
μ = −mμm

∗μ = 1. (27e)

Then, one introduces the rotation via the complex transformation, (16), under which δ
μ
ν

transform as a vector:

δμ
r → δμ

r , δμ
u → δμ

u , δ
μ
θ → δ

μ
θ + ia sin θ(δμ

u − δμ
r ), δμ

ϕ → δμ
ϕ . (28)

For an SBH, the metric function of its rotating counterpart can be determined under the
above complex transformation.However, such a transformation does notworkwell for aRBH
as we discussed in Section 2.3.1. Thus, one assumes that {G, F, H} transform to {A, B, �}:

{G(r), F(r), H(r)} → {A(r , θ, a), B(r , θ, a),�(r , θ, a)}, (29)

where {A, B, �} are real functions to be determined, and they should recover their static
counterparts in the limit a → 0, namely,

lim
a→0

A(r , θ, a) = G(r), lim
a→0

B(r , θ, a) = F(r), lim
a→0

�(r , θ, a) = H(r). (30)

According to (28) and (29), the null tetrad becomes

lμ = δμ
r , (31a)

nμ =
√

B

A
δμ
u − B

2
δμ
r , (31b)

mμ = 1√
2�

[
δ
μ
θ + ia sin θ(δμ

u − δμ
r ) + i

sin θ
δμ
ϕ

]
, (31c)

and the corresponding metric with rotation takes the form,

ds2 = − Adu2 − 2

√
A

B
dudr − 2a sin2 θ

(√
A

B
− A

)
dudϕ + 2a sin2 θ

√
A

B
drdϕ

+ �dθ2 + sin2 θ

[
� + a2 sin2 θ

(
2

√
A

B
− A

)]
dϕ2.

(32)
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Next, one rewrites the above metric with the Boyer-Lindquist coordinates, and lets the
metric have only one off-diagonal term gtφ . To reach the goal, one needs the following
coordinate transformation,

du = dt + λ(r)dr , dϕ = dφ + χ(r)dr , (33)

where {λ(r), χ(r)} must depend only on r to ensure integrability. If the transformation (29)
is a priori determined, {λ(r), χ(r)} may not exist. Considering these constraints, one has the
formulations of {A(r , θ, a), B(r , θ, a), λ(r), χ(r)},

A(r , θ) = (FH + a2 cos2 θ)�

(K + a2 cos2 θ)2
, (34a)

B(r , θ) = FH + a2 cos2 θ

�
, (34b)

λ(r) = − K + a2

FH + a2
, (34c)

χ(r) = − a

FH + a2
, (34d)

where K (r) is defined by

K (r) ≡
√

F(r)

G(r)
H(r). (35)

As a result, one obtains the metric for rotating RBHs with the Kerr-like form,

ds2 = �

ρ2

[
−

(
1 − 2 f

ρ2

)
dt2 + ρ2

�
dr2 − 4a f sin2 θ

ρ2 dtdφ + ρ2dθ2 + � sin2 θ

ρ2 dφ2
]

,

(36)
where

ρ2 ≡ K + a2 cos2 θ, 2 f (r) ≡ K − FH

�(r) ≡ FH + a2, � ≡ (K + a2)2 − a2� sin2 θ.
(37)

In the abovemetric,�(r , θ, a) remains unknown andmay be determined by some specific
physical interpretations. For example, if the source is interpreted as an imperfect fluid rotating
about the z axis, � obeys [120] the Einstein field equations,

(
K + a2y2

)2 (
3�,r�,y2 − 2��,r y2

) = 3a2K,r�
2, (38)

[
K 2

,r + K (2 − K,rr ) − a2y2(2 + K,rr )
]
� + (K + a2y2)(4y2�,y2 − K,r�,r ) = 0, (39)

where “,” in the subscript of variables means derivatives and y ≡ cos θ . However, it is almost
impossible to determine �(r , θ, a) in this way because of the high complexity. For the RBH
metrics mentioned in Section 2.1, one usually chooses

�(r , θ, a) = H(r) + a2 cos2 θ. (40)

While doing so may lose a reasonable physical explanation, it needs to be tested case by case
whether such a choice really loses a physical explanation. It is worth mentioning that (40) is
compatible with the NJA and is available to construct a rotating RBH, but it is still unclear
whether (40) is the only choice or not.
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2.3.3 What are the Regularity Conditions of Rotating Regular Black Holes?

For the seed metric with one shape function, the metric of rotating RBHs takes the form
via the NJA,

ds2 = − �

ρ2 (dt − a sin2 θdφ)2 + ρ2

�
dr2 + ρ2dθ2 + sin2 θ

ρ2

[
adt − (r2 + a2)dφ

]2
, (41)

where
ρ2 = r2 + a2 cos2 θ, � = r2 − 2Mσ(r)r + a2. (42)

This metric reduces to the Kerr metric when σ(r) = 1, and to the KN metric when σ(r) =
1 − q2/(2Mr).

Further, the metric (41) belongs [93, 104] to the Petrov type D because �2 can be the
only non-vanishing scalar when �0, �1, �3 and �4 vanish simultaneously, where the five
complex scalar functions can be expressed by the Weyl tensor Cκλμν as follows:

�0 = Cκλμνl
κmλlμmν, (43a)

�1 = Cκλμνl
κkλlμmν, (43b)

�2 = Cκλμνl
κmλm∗μkν, (43c)

�3 = Cκλμνk
κ lλkμm∗ν, (43d)

�4 = Cκλμνk
κm∗λkμm∗ν . (43e)

Therefore, the algebraically complete set of second-order invariants is {R, I , I6, K } [93, 94,
104], which means that (41) is regular if the set of invariants does not diverge anywhere. The
definitions of R and K have been given in Section 2.2, and the definitions of I and I6 are

I ≡ 1

24
C∗

αβγ δC
∗αβγ δ, (44)

I6 ≡ 1

12
Sα

βSβ
α, (45)

which also belong to the seventeen ZM invairants. According to the set of invariants, one
can deduce the necessary and sufficient condition for the regularity of (41): If σ(r) is a C3

function, then it demands

σ(0) = 0, σ ′(0) = 0, σ ′′(0) = 0. (46)

For the seed metric with two shape functions, a general analytical method is still lacking
for the regularity conditions of rotating RBHs, and what one can do is to verify the regularity
only by calculating R and K in most cases [123–125].

3 Interpretation of Regular Black Holes

A complete RBH theory refers to physical interpretations from either the quantum theory
of gravity, such as loop quantum gravity and asymptotic safety method, or the construction
of gravitational sources in the context of classical field theory. In this section, we explain
RBHs from the perspective of coordinate transformations at first, and then we summarize the
techniques for constructing gravitational sources for both non-rotating and rotating RBHs.
At the end of this section, we give a short discussion on the scalar hair of RBHs because it
relates to classical field interpretations.
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3.1 How to Understand Regular Black Holes Correctly?

It is a confusing issue whether RBHs exist in nature or they are just mathematical tricks,
which was emphasized in Refs. [98, 126], where a RBH is constructed by a seeming “coordi-
nate transformation”. Tomake the following discussions clear, we ask the question in another
way:

Is a RBH a full spacetime, or is it just a “good” coordinate system that does not cover
the entire spacetime in the radial direction?

Let us examine the Schwarzschild BH as an example to see the essence of the above
question, where the Penrose diagram is shown in Fig. 1a.

In order to construct a RBH, we drag the coordinate system downward by a transformation
r → r(ξ), in such a way that the coordinate system cannot cover the singularity after
the operation, see Fig. 1b, where r → √

ξ2 + l2 with l > 0. In other words, we put the
singularity r = 0 down on the “non-physical” domain in the new coordinate system if
the new radial coordinate ξ is defined in ξ ∈ [0,∞), i.e., the singularity is dragged to
the imaginary axis after analytically continuing ξ into a complex plane. This operation is
equivalent to restricting the old radial coordinate in r ∈ [l,∞) by hands. The singularity is
subtracted from the “old” spacetime, such that the “new” spacetime is regular. In other words,
the “new” coordinates cover a smaller portion of the manifold than the old coordinates in
the Schwarzschild spacetime, but the topology of the manifold never changes. We call the
Schwarzschild BH in ξ as a fake RBH.

Now let us see a real RBH which does not redisplay the singularity by a transformation.
Taking the Bardeen BH as an example [24],

ds2 = − f dt2 + f −1dr2 + r2d�2, f = 1 − 2Mr2

(r2 + g2)3/2
, (47)

where M is mass and gmagnetic charge of monopoles, we know that the Kretschmann scalar
is regular in r ∈ [0,∞). After a replacement, r2 → ξ2 − g2, the metric (47) becomes

ds2 = − f dt2 + f −1ξ2

ξ2 − g2
dξ2 + (ξ2 − g2)d�2, f = 1 − 2M(ξ2 − g2)

ξ3
. (48)

Fig. 1 Penrose diagrams of a Schwarzschild BH in two different radial coordinates
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If we take (48) as an independent metric describing a “new” spacetime, the corresponding
Kretschmann scalar diverges around ξ = 0,

K ∼ 900g8M2

ξ14
+ O

(
1

ξ13

)
. (49)

It seems that the Bardeen BH redisplays the singularity at ξ = 0, and even that almost all
the RBHs regain singularities by a replacement of r → r(ξ). However, this is not the case
because ξ could never be smaller than g, otherwise the signature in (48) changes in such a
way that the line-element represents a manifold with two time dimensions (breaking of the
causality) and two space dimensions and the integral measure

√−g becomes complex.
The above two examples reflect the fact that the singularity cannot be resolved by a

coordinate transformation, which is consistent with the essence of singularities in BHs.
Further, if one analytically continues the radial coordinate to a complex plane, the complex

singularities may emerge again. Considering the Kretschmann scalar of Bardeen BHs,

K = 12M2
(−4g6r2 + 47g4r4 − 12g2r6 + 8g8 + 4r8

)
(
g2 + r2

)7 , (50)

we observe that the singularities are moved to the non-physical domain, e.g., r = ±ig ∈ C.
Generally, one can classify RBHs into three types by the characteristics of singularities [87]:

• The first type corresponds to those RBHs whose geodesics are complete in the domain
of r ∈ [0,∞) although their curvature invariants have essential singularities at r = 0
from the perspective of complex analysis, e.g., σ(r) = e−1/r , see Ref. [96];

• The second type corresponds to those RBHs whose singularities of curvature invariants
are moved to the non-physical domain, e.g., the Bardeen and Hayward BHs [127];

• The third type corresponds to thoseRBHswhose curvature invariants haveno singularities
on the entire complex plane, e.g., the noncommutative geometry inspired BH [35].

This classification directly affects the calculation of the asymptotic frequencies of quasi-
normal modes (QNMs) by the monodromy method [87].

3.2 How to Find the Sources of Non-rotating Regular Black Holes?

Gliner discussed [18] an algebraic property of a four-dimensional energy-momentum tensor
(EMT) denoted by [(1111)], where symbol 1 corresponds to one diagonal component of the
EMT and the parentheses imply equal components,f see Refs. [103, 128] for the Segré
notations. The matter with the algebraic property [(1111)], called a μ-vacuum, has a de
Sitter-like metric and thus avoids singularities. Later, Gliner’s work was extended [1, 129],
where there are four types of algebraic properties in general for spherically symmetric BHs,

[(1111)], [(11)(11)], [11(11)], [(111)1]. (51)

The matter with these algebraic properties can generate RBHs.
For instance, one RBH given in Ref. [1] has the property [(11)(11)]. Generally, all RBHs

withmetric (1) can have this algebraic property because the Einstein tensor is of the following
form,

G0
0 = G1

1 = f ′(r)
r

+ f (r)

r2
− 1

r2
, (52a)

f As in Ref. [18], we do not distinguish between time and space components by a comma.
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G2
2 = G3

3 = f ′(r)
r

+ f ′′(r)
2

, (52b)

where we have supposed that Einstein’s theory of gravity still holds, Gμ
ν = 8πTμ

ν , thus we
can discuss the algebraic properties of EMTs in terms of Einstein’s tensor.

One example given in Ref. [98] has the property [11(11)]. For the metric with the form
of (3), one has the components of the Einstein tensor,

G0
0 = f ′ρ′

ρ
+ f ρ′2

ρ2 + 2 f ρ′′

ρ
− 1

ρ2 , (53a)

G1
1 = f ′ρ′

ρ
+ f ρ′2

ρ2 − 1

ρ2 , (53b)

G2
2 = G3

3 = f ′ρ′

ρ
+ f ′′

2
+ f ρ′′

ρ
, (53c)

where G0
0 does not equal G

1
1 generally. However, when ρ ∝ r , G0

0 = G1
1 appears, and

then [11(11)] reduces to [(11)(11)].
For the EMT with the algebraic property [(111)1], there is an example in Refs. [27, 52].

Here [(111)1] implies G0
0 = G2

2 = G3
3.

It seems that the algebraic properties do not give us any aid in the construction of RBHs.
However, these properties are extremely important. Themain reason is that they are associated
closely with the construction of RBHs which is different from the construction of SBHs. Let
us see the details as follows.

Generally, a complete theory of RBHs can be established with one of two distinct logics.
The first is the so-called bottom-up approach, in which the metric with finite curvature
invariants is derived based on the First Principle, such as the loop quantum gravity or the
theory of asymptotic safety, etc. The second logic is the so-called top-down approach, in
which the metric with finite curvature invariants or complete geodesics is postulated at first,
and then the classical field that yields such a metric is found. Therefore, it is necessary to
clarify the algebraic properties of the gravitational field for searching matter sources in the
second approach.

For instance, the RBH with metric (1) cannot be interpreted by a scalar phantom field
depending only on the radial coordinate, but the RBH with metric (3) can. The reason is that
the algebraic property of a scalar phantom field EMT is consistent with the Einstein tensor
based on (3), i.e., the components of Einstein’s tensor match the algebra, [(111)1].

Furthermore, the algebraic properties depend on specific gravitational theories. For the
metric (1), the algebra is [(11)(11)] in the Einstein gravity, but it changes in the F(R) theory.
For instance, if we choose a special case of Starobinsky’s action [130–132],

F(R) = R + αR2, (54)

the gravitational equations read

Fμ
ν ≡ F ′(R)Rμ

ν − 1

2
F(R)gμ

ν − [∇μ∇ν − gμ
ν�]F ′(R) = 8πTμ

ν. (55)

For the metric (1), the components of tensor Fμ
ν take the forms,

2r4F0
0 = − 4α − 2r3 f ′ (2α f ′′ + αr f (3) − 1

)

+ 2 f
[
12α − 2αr2

(
r2 f (4) + 2 f ′′ + 6r f (3)

)
+ 8αr f ′ + r2

]

+ 4αr2 f ′2 + αr4 f ′′2 − 20α f 2 − 2r2,

(56a)
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2r4F1
1 = − 4α − 2r3 f ′ (2α f ′′ + αr f (3) − 1

)

+ 2 f
[
−12α − 4αr2

(
4 f ′′ + r f (3)

)
+ 8αr f ′ + r2

]

+ 4αr2 f ′2 + αr4 f ′′2 + 28α f 2 − 2r2,

(56b)

2r4F2
2 = 2r4F3

3 =4α + 2r f ′ [−12α − 2αr2
(
5 f ′′ + r f (3)

)
+ r2

]

+ 4α f
[
2r2 f ′′ − r3

(
5 f (3) + r f (4)

)
+ 8r f ′ + 6

]

+ 8αr2 f ′2 + r4 f ′′ (1 − α f ′′) − 28α f 2.

(56c)

Generally, we have the algebraic structure, [11(11)]. In other words, the RBHwith the metric
(1) can be generated by the matter with the algebra, [11(11)].

Similarly, the change of algebraic structures appears in the conformal gravity with the
following action [133],

S =
∫

d4x
√−g W , (57)

where W is the Weyl scalar defined by contracting two Weyl tensors. The variation to the
action gives the gravitation-dependent field, Bμ

ν , which is called the Bach tensor. For the
metric (1), we obtain

24r4B0
0 = − 4r f

[
r
(
r2 f (4) − f ′′ + 3r f (3)

)
+ 2 f ′]

+ r2
(
r f ′′ − 2 f ′)2 − 2r4 f (3) f ′ + 4 f 2 − 4,

(58a)

24r4B1
1 = −2r3 f (3) (

r f ′ − 2 f
) + [

r
(
r f ′′ − 2 f ′) + 2 f

]2 − 4, (58b)

24r4B2
2 = 24r4B3

3 = − r2
(
r f ′′ − 2 f ′)2 + 2r4 f (3) f ′ − 4 f 2 + 4

+ 2r f
[
r
(
r2 f (4) − 2 f ′′ + 2r f (3)

)
+ 4 f ′] ,

(58c)

whose algebraic structure is also [11(11)].

3.3 What are the Difficulties for us to Find the Sources of Rotating Regular Black
Holes?

The physical interpretation of a rotating RBH should coincide with that of its non-rotating
counterpart called a seed metric. For the seed metric with one shape function, the physical
interpretation contains two aspects: An imperfect fluid and a gravitational field coupled to
nonlinear electrodynamics. Although the interpretation from an imperfect fluid is trivial, it is
often adopted for spacetimewithout electromagnetic fields.Meanwhile, the resulting rotating
RBH matches [93, 104, 134] the Segré type, [(11)(11)]. So the interpretation works well in
the aspect of imperfect fluids for the models in Refs. [113, 120].

For the spacetime with electromagnetic fields, it is widely used [2, 25, 96] for the physical
interpretation that a gravitational field is coupled to nonlinear electrodynamics. However, it
is difficult to extend this interpretation to a rotating spacetime. The main reason is that the
number of non-zero components of Fμν is changed from one to four by the introduction
of rotation, that is, F01, F02, F13 and F23 are non-trivial, where the field strength is defined
by Fμν ≡ ∂μAν − ∂ν Aμ. In the metric (41), these four components satisfy [135, 136] the
relations,

F31 = a sin2 θF10, aF23 = (r2 + a2)F02. (59)
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The gravitational field coupled to nonlinear electrodynamics is described by the action,

S = 1

16π

∫
d4x

√−g[R − L (F)], (60)

F = FμνF
μν. (61)

Using the Einstein field equations,

Gμν = 2LF FμαFν
α − 1

2
δμνL , (62)

one can determine L and LF , where LF ≡ dL /dF . To further determine Fμν one needs
to utilize the dynamic equations. The variation of the action with respect to Aμ yields the
dynamic equations,

∇μ

(
LF F

μν
) = 0, ∇μ

∗Fμν = 0, (63)

where ∗Fμν ≡ 1
2η

μναβFαβ , and η0123 = −1/
√−g. Then one obtains that the non-zero

components of Fμν satisfy the following equations,

∂

∂r

[
(r2 + a2) sin θLF F10

] + ∂

∂θ
[sin θLF F20] = 0, (64a)

∂

∂r
[a sin θLF F10] + ∂

∂θ

[
1

a sin θ
LF F20

]
= 0, (64b)

∂

∂r
F20 − ∂

∂θ
F10 = 0, (64c)

∂

∂θ

[
a2 sin2 θF10

] − ∂

∂r

[
(r2 + a2)F20

] = 0. (64d)

Because LF is quite complicated and these equations are highly nonlinear, it is almost
impossible to solve these equations directly. Instead of solving the above equations, one then
turns to the nonlinear electromagnetic field by studying [137–139] the change of gauge fields
under the NJA. When the RN metric is transformed into the KN metric, the gauge potential
Aμ changes [140] in the following way.

In the RN metric, Aμ can be written as

Aμ = q

r
δuμ, (65)

and its contravariant counterpart takes the form,

Aμ = −q

r
δμ
r = −q

r
lμ, (66)

where lμ is the tetrad in (27). Under the transformation governed by (19) and (28), the gauge
potential becomes

Ãμ = −qr

ρ2 δμ
r , (67)

and its 1-form reads
Ã = qr

ρ2 (du − a sin2 θdθ), (68)

which can be written as

Ã = qr

ρ2

(
dt − ρ2

�
dr − a sin2 θdθ

)
, (69)
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due to du = dt − ρ2

�
dr . Because the factor qr

�
depends only on r , the term of dr can be

removed by a gauge transformation and the final formulation of the gauge potential can be
simplified to be

Ã = qr

ρ2

(
dt − a sin2 θdφ

)
, (70)

which is just the gauge potential of the KN metric.
However, this method encounters a problem in the NJA, that is, the conversion rule (19)

may not be applicable to the gauge potentials in RBHs. For example, the gauge field of
spherically symmetric RBHs with the magnetic charge Qm is Aμ = Qm cos θδ

φ
μ, then the

gauge field of rotating RBHs will become [139]

Aμ = −Qma cos θ

ρ2 δtμ + Qm(r2 + a2) cos θ

ρ2 δφ
μ, (71)

if one uses the above method. ButLF calculated by (71) is different [141] from that by (62),
which means that this method should be modified in the case of RBHs.

For the seed metric with two shape functions, there are mainly two types of RBHs:
One is associated with the loop quantum gravity and the other type is associated with the
black-bounce spacetimes. For the first type, the physical interpretation of rotating metrics
is just from the loop quantum gravity [50, 125]. And for the second type, the physical
interpretation involves two aspects, where one is the stress-energy tensor of a scalar field
with nonzero self-interaction potentials and the other is a magnetic field in the framework of
nonlinear electrodynamics [142]. In addition, there are two different physical interpretations
for rotating black-bounce spacetimes, where one is the gravitational field coupled with a
nonlinear electrodynamic field together with a contribution of charged dusts and the other is
an anisotropic fluid [123]. However, it needs further studies to judge which interpretation is
more reasonable.

3.4 Can Regular Black Holes have Scalar Hairs?

SBHs are governed by the non-scalar-hair theorem [143, 144]. In RBHs, the situation is
improved [27, 119, 133, 145]. For instance, the metric of conformal RBHs in Ref. [133] reads

ds2 =
(
1 + L2

r2

)2n (− f dt2 + f −1dr2 + r2d�2) , (72)

where L is the regularization parameter with the length dimension and f = 1− 2M/r . This
RBH model can be produced by the following action,

Iconf = −1

2

∫
d4x

√−gφ

(
1

6
Rφ − �φ

)
, (73)

where φ is the scalar field. The equation of motion for the scalar field φ is

�φ = 1

6
Rφ, (74)

and its solution takes [146] the form,

φ =
(
1 + L2

r2

)−n [
c1
2M

ln

(
1 − 2M

r

)
+ c2

]
, (75)
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where c1 and c2 are integration constants. This solution is divergent at the horizon, rH = 2M ,
which implies c1 = 0, i.e., the solution can be simplified to be

φ = c2

(
1 + L2

r2

)−n

. (76)

Since n ≥ 1, φ is bounded by 0 ≤ φ ≤ c2. In other words, (73) has a non-trivial scalar hair
because of a non-minimal coupling [143].

Another example is shown in Ref. [27, 52], where the action is cast in the Einstein gravity
with a minimally coupled (phantom) scalar field φ,

Iphatom =
∫

d4x
√−g

[
R − ∂μφ∂μφ − 2V (φ)

]
, (77)

where V (φ) is potential, see Ref. [27, 52] for its formulation. This model gives a RBH
solution that has the form of (3) with two shape functions, where one of the functions reads

f (ρ) = 1 − ρ0
(
πb2 − 2bρ + πρ2

)
2b3

+ ρ0
(
b2 + ρ2

)
b3

tan−1
(ρ

b

)
, (78)

where we have used the condition 2bc = −πρ0 with ρ0 > 0 and b > 0 to replace c in the
original formula in Ref. [27, 52]. In addition, the potential takes the form,

V (φ) = − ρ0

2b3

[
2
√
2φ + 3 sin(

√
2φ) + (π − √

2φ) cos(
√
2φ) − 2π

]
, (79)

thus we obtain

φV ′(φ) = ρ0φ

2b3

[
(
√
2π − 2φ) sin(

√
2φ) − 2

√
2 cos(1 + √

2φ)
]
. (80)

Because φV ′(φ) is not always positive, it is not restricted [143] by the no-hair theorem.
Thus the non-trivial scalar-hair solution exists,

φ = ±√
2 tan−1

(ρ

b

)
+ φ0, (81)

where φ0 is integration constant, and it is bounded by φ0 − π/
√
2 < φ < φ0 + π/

√
2.

4 Energy Conditions of Regular Black Holes

The energy conditions are important to the study of RBHs. On one hand, they are related
to the formation of RBHs, and on the other hand, they are regarded as criteria if a RBH is
realistic or not. In this section, we explain these two aspects.

4.1 Is the Strong Energy Condition a Key to Lead to a Regular Black Hole?

It was originally thought [1, 147] that RBHs can be constructed when the singularity at
their centers is replaced by a de Sitter core, which implies the violation of the strong energy
condition (SEC).

Because of this, RBHs are not governed by the Penrose singularity theorem, which can
be understood from the Raychaudhuri equation [100, 148],

d�

dτ
= −Rμνu

μuν, (82)
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where τ is proper time, uμ is four-velocity and � depicts the expansion of geodesic congru-
ence. For simplicity, we have already ignored higher order terms associated with expansion,
rotation, and shear in the right hand of (82). Then, choosing uμ = (1, 0, 0, 0), we arrive at

d�

dτ
= −R00 = −4πG

(
ρ +

3∑
i=1

pi

)
, (83)

where ρ is energy density and pi are three components of pressure. The violation of SEC,
ρ + ∑3

i=1 pi < 0, implies an increasing � along the proper time, i.e., the interaction is
repulsive.

Nevertheless, it was also discovered [56, 96, 149, 150] that RBHs can have an anti-de
Sitter or a flat core. For instance, the RBH constructed in Ref. [149] is described by

ds2 = − f dt2 + f −1dr2 + r2d�2, f = 1 + r4

r4 + 2qQ2
m

(
−2M

r
+ Q2

m

r2

)
, (84)

whereq is a positive parameter describing the non-minimal coupling ofYang-Mills fields, Qm

is a magnetic charge, and the cosmological constant is set to be zero in order to highlight the
essence. The anti-de Sitter core can be seen clearly from the following asymptotic relations,

f ∼ 1 + r2

2q
+ O(r3), R ∼ − 6

q
+ O (r) (85)

as r approaches zero. Moreover, a spherically symmetric RBH model with a flat core is
highlighted in Ref. [150, 151], where the shape function reads [152]

f = 1 − 2M

r
e−a/r . (86)

It is obvious that f → 1 and R → 0 as r approaches zero because the parameter a is positive.
These two examples meet the SEC in the cores because the AdS and Minkowski spacetimes
satisfy the SEC.

The problem immediately arises, if the SEC does not break, i.e., the gravity is attractive
in the core, how the collapse can be avoided. One interesting resolution is based [53] on the
introduction of the Tolman mass which can be regarded as a kind of integral SEC [153, 154],

mT = 1

4π

∫ √−gR00d
3x =

∫
r2R00dr . (87)

The integral SEC breaks in the core (r ∈ [0, r−], r− is the innermost horizon) if the Tolman
mass is negative. Due to the negative Tolman mass in these two models described by (84)
and (86), we can conclude that the two models violate the integral SEC in their cores.

In summaryg, it is the impressionist SEC that plays the key role in constructing RBHs,
not the pointillist one [155]. Because of this, it is not important whether the cores of RBHs
are de Sitter, anti-de Sitter or flat although the violation of SEC is a necessary condition for
the formation of RBHs from gravitational collapse [156].

g According to Ref. [155] the energy conditions can be divided into two categories: One restricts average
behaviors across regions of spacetime, and the other restricts behaviors at specific points. Here the “impres-
sionist SEC” means the former, and the “pointillist SEC” means the latter.
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4.2 What are the Energy Conditions of Regular Black Holes?

If the SEC answers how RBHs are formed, then the other three energy conditions actu-
ally focus on whether RBHs are realistic [51, 135, 157–160] through the characteristics of
classical matters.

Besides the SEC, the other three energy conditions are the weak energy condition (WEC),
the null energy condition (NEC), and the dominant energy condition (DEC) [155]. The
violation of WEC implies a negative local energy density, and the violation of DEC means
the superluminal speed of energy density flow. Moreover, the NEC is a relaxation of WEC,
i.e., the energy density can be negative as long as the sum of energy density and pressure is
positive [100].

For the RBHs with one shape function, see (5), the other three energy conditions except
the SEC can be reduced to the following differential inequalities,

WEC : σ ′ ≥ 0 ∪ rσ ′′ ≤ 2σ ′,
NEC : rσ ′′ ≤ 2σ ′,
DEC : σ ′ ≥ 0 ∪ −2σ ′ ≤ rσ ′′ ≤ 2σ ′,

(88)

where the prime denotes the derivatives w.r.t. r . The relation between these three energy
conditions can be represented by

NEC ⊂ WEC ⊂ DEC. (89)

Among these three independent differential inequalities in (88), σ ′ ≥ 0 implies that σ is
a monotone increasing function of r ; while rσ ′′ ≤ 2σ ′ provides σ ≤ σ0r3, where σ0 ≡
limr→0 σ/r3; the last one rσ ′′ ≥ −2σ ′ gives a solution, rσ ≥ 0, under the boundary
conditions, σ |r=0 = 0 = σ ′|r=0.

For the RBHs with two shape functions, see (3), the situation becomes complicated. The
differential inequalities now involve an additional unknown function, r(ξ), which causes the
inequalities to be unsolvable without extra specific constraints. Therefore, we cannot extract
any valuable information from these differential inequalities.

In addition, some RBH models violate [87, 161, 162] the three energy conditions. For
instance, the well-known Bardeen and Hayward BHs break the DEC, and the RBH generated
by the non-minimal coupled Wu-Yang monopole brakes [39, 40, 75, 163, 164] the WEC,
etc. A remedy is proposed in Ref. [165] by deforming the shape function. For a generic σ

function, its deformed formulation reads

σ = Mμν−3r3

(rμ + qμ)ν
, (90)

where M is mass and q regularization parameter, which contains the Bardeen and Hayward
BHs as special cases. Meanwhile, it will meet the three energy conditions if the parameters
μ and ν take the values in the following regions,

2

ν
< μ ≤ 1

2

√
49ν + 96

ν
− 7

2
when

2

5
< ν ≤ 3; (91a)

2

ν
< μ ≤ 3

ν
when ν > 3, (91b)

where Mμν−3 is introduced for balancing the dimension, and this parameterization is not
unique.
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5 Thermodynamics of Regular Black Holes

The thermodynamics of RBHs is a rather confusing battleground in the study of RBHs.
The confusion comes from the existence of extra terms in the first law ofmechanics such that
the correspondence between mechanical and thermodynamic quantities is problematic. In
this section, we give our clarifications on these problems in the context of Einstein’s gravity
coupled with nonlinear electrodynamics.

5.1 What is the Entropy of Regular Black Holes?

It was reported [37, 166–171] that RBHs have a deviation term in entropy, i.e., the entropy
of RBHs breaks the area law, S �= A/4, but the opposite opinion was also reported [26, 59,
62, 172–174]. This puzzle gives rise to an influence on the first law of thermodynamics and
the interpretation of RBHs, where ambiguous deviation terms appear for the former, while
the verification of Hawking’s quantum theory is hard to be executed for the latter.

Taking the Hayward BH [118] as an example, whose shape function is

f = 1 − 2M

r

r3

r3 + 2Ml2
, (92)

where l is the length scale introduced for regularization, we can obtain the entropy from the
first law of thermodynamics, dM = T dS,

S =
∫ r+

r−

dM

T
= SBH + �S, (93)

where r+ and r− are outer and inner horizons, respectively, SBH is the Bekenstein-Hawking
entropy,

SBH = π
(
r2+ − r2−

)
, (94a)

and �S is a deviation term,

�S = πl4
(
r2+ − r2−

)
(
r2− − l2

) (
r2+ − l2

) + 2πl2 ln

(
r2+ − l2

r2− − l2

)
. (94b)

We note �S > 0 because of r+ ≥ r− > l, otherwise, there will be no horizons. As a result,
if (93) is still used to calculate the entropy, the area law is violated, S �= A/4, even though a
pressure term,

P = − 3

8πl2
, (95)

is added [175, 176]. We note that the pressure in (95) is introduced in a dS spacetime, not
in an AdS spacetime due to the minus sign meaning an outward pressure from the center
of BHs. For a varying cosmological constant, its corresponding pressure can be introduced
whether a spacetime is an AdS or a dS one because the thermodynamic relations of BHs
can remain consistent from a mathematical standpoint, see, for instance, Refs. [175–177].
Here the Hayward BHs have a dS core. On one hand,the dS core is related to a length scale
regarded as the regularization parameter in (92). On the other hand, it is related to the pressure
expressed by the so-called dS radius in (95). Considering the uniqueness of the cosmological
constant, we can deduce the equality of the two length scales in (92) and (95).

As a matter of fact, if we interpret the metric, (1), as a spacetime produced by a field of
Dirac magnetic monopoles [2, 178], the entropy can be derived by Hawking’s path-integral
method for a given RBH depicted by (1).
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To start with, we write down the full action,

I = 1

16π

∫
d4x

√−g [R − L(F)] , (96)

where F is the contraction of the electromagnetic tensors, F ≡ FμνFμν = 2q/r4, and q is
the magnetic charge of the monopole. By solving one of Einstein’s equations [26],

L
2

− 2Mσ ′(r)
r2

= 0, (97)

and replacing r by r = [F/(2q)]1/4, we can determine the Lagrangian L(F).
To calculate the entropy,we apply the path-integralmethod in the zero-loop approximation

[179],

Z =
∫

Dg DA e−I ≈ e−Icl , (98)

where the full Euclidean action Icl consists of four parts,

Icl = IEH + IGHY − I0 + IM . (99)

IEH is the Einstein-Hilbert action,

IEH = − 1

16π

∫
M

d4x
√−g R, (100)

IGHY is the Gibbons-Hawking-York boundary term,

IGHY = − 1

8π

∫
∂M

d3x
√−h K , (101)

I0 is the subtraction term,

I0 = − 1

8π

∫
∂M

d3x
√−h K0, (102)

and IM is the matter action of a nonlinear electrodynamic source, where R is the Ricci cur-
vature of bulk space, K and K0 are extrinsic curvatures of surface and background reference,
respectively.

For the metric (1), we obtain

IEH = β

2
(rH − M) − πr2H, (103)

IGHY = M

2
β

(
rσ ′ + 3σ

) − rβ ∼ 3M

2
β − rβ, (104)

I0 = −rβ

√
1 − 2Mσ

r
∼ −rβ + Mβ + O

(
r−1) , (105)

where β is the inverse of BH temperature, 1/T , and the last two asymptotic relations at the
boundary r → ∞ are derived based on the assumption that the RBH is asymptotic to the
Schwarzschild BH at infinity [96], i.e., limr→∞ σ = 1 and limr→∞ rσ ′ = 0.Meanwhile, the
action of matter can be determined with the help of one component of Einstein’s equations
(97),

IM = βM − βrH
2

. (106)

Substituting (103)-(106) into (99), we arrive at the total Euclidean action,

Icl = βM − πr2H. (107)
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On the other hand, the thermodynamic law for the canonical ensemble is F = M − T S,
where F = T Icl is Helmholtz free energy. Thus, we can read S = πr2H from (107), which
exhibits the well-known entropy-area law of BHs. The same result can be obtained byWald’s
Noether-charge approach. Since the Lagrangian of themodel, (1) is just R, the entropy density
can be read off directly from Table I in Ref. [180].

However, the problem is far more complicated than it appears — the above calculation
relies on the interpretation of the metric. That is, the calculation depends on the nonlinear
magnetic interpretation of metrics, see (96). If we reinterpret the source as dyons, the path-
integral method is not applicable because no actions for dyons can be constructed [26].
Furthermore, if we interpret a metric by using an alternative gravity, such as f (R), the
entropy-area law will be changed.

5.2 What is the Correct First Law of Thermodynamics for Regular Black Holes?

One feature of RBHs is that their mechanical theorems differ from those of SBHs [181].
More precisely, unexpected extra termsh will appear in the first mechanical laws of RBHs,
and the number of extra terms depends on the number of parameters involved in Lagrangian
of matters.

For instance, the Lagrangian of Bardeen BHs contains two parameters, mass M and
magnetic charge q [25], thus the first mechanical law reads [181]

dM = κ

8π
dA + �Hdq + KMdM + Kqdq, (108)

where κ is the surface gravity, �H is the magnetic potential and the last two terms are extra.
As a result, one encounters several problems when attempting to construct the first ther-
modynamic law, e.g., what is the correspondence between mechanical and thermodynamic
variables and what is the dimension of the thermodynamic phase space?

To construct the first thermodynamic law, Fan andWang [26] introduced a parameter α in
the action of nonlinear electrodynamics. According to their method, the first thermodynamic
law for the Bardeen BH, (47), can be cast in the following form,

dE = T dS + �HdQm + �dα, (109)

where the three thermodynamic variables,

E = M, Qm = √
Mq/2, α = q3/M = 8Q6

m/M4, (110)

are not independent of each other in the phase space. In other words, the dimension of thermo-
dynamic phase space is two because α is a redundant dimension. The other correspondences
between thermodynamic and mechanical variables are

T ←→ κ

2π
, S ←→ A

4
. (111)

Nevertheless, (109) is still problematic because

A

4
= S �=

∫
dE

T
=

∫
dM

T
, (112)

h Extra terms indicate additional terms for a parameter, e.g., for mass M in (108), KMdM is an extra term,
while for charge q, Kqdq is an extra term.
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where the integral is calculated under the condition, dQm = 0 = dα. The reason of S �=∫
dM/T or T �= (∂E/∂S)Q,α is that the relations, dQm = 0 = dα, imply that M is also a

constant, see (110), which leads to a trivial integral,
∫
dM/T ≡ 0.

If only one parameter is fixed, say dQm = 0, we have

A

4
=

∫
dM

T

(
1 + 32Q6

m�

M5

)
�=

∫
dM

T
, (113)

namely, the simple thermodynamic relation, S = ∫
dM/T , is broken. This result gives rise

to a tendency to abandon [37, 166–171, 182–184] the area-entropy law,

S =
∫

dE

T
�= A

4
. (114)

In the above treatment, the entropy S cannot be determined if the first law of thermodynamics
is not applied. The worst point is that the broken area-entropy relation contradicts the results
obtained from either Hawking’s path-integral or Wald’s entropy formula.

Therefore, the question naturally arises — what a correct first thermodynamic law is. We
list its most important features below:

1. The area law should be maintained, i.e., S = A/4, if one explains RBHs in the context
of Einstein’s gravity. Generally, the entropy in the first thermodynamic law should be
consistent with that calculated from either Hawking’s path-integral or Wald’s entropy
formula.

2. Every thermodynamic variable should be independent of the first thermodynamic law,
i.e., it can be determined without the first thermodynamic law, but the thermodynamic
formula, S = ∫

dE/T , must hold. Here are some counterexamples: Temperature is not
independent in Ref. [185], deviation of internal energy is not independent in Ref. [186],
etc.

3. Every thermodynamic variable should be independent of each other, e.g., dM = T dS +
K1dα + K2dβ + . . ., is ill-defined if α = M and β = T M that make α and β dependent
on M in the thermodynamic phase space.

In order to establish awell-definedfirst thermodynamic law thatmeets the above conditions
for RBHs with two parameters, such as Bardeen BHs, we have applied [97, 185, 187] the
following form in terms of the Gliner vacuum,

dU = T dS − P+dV , (115)

where the total internal energy reads

U = r+
2

, (116)

P+ and V are the thermodynamic pressure and volume, respectively,

P+ = Gr
r

8π

∣∣∣∣
r=r+

, V = 4

3
πr3+. (117)

6 Thermodynamic Geometry of Regular Black Holes

Thermodynamic geometry gives a different way to understand BHs and it is also a very
powerful tool for exploring the microstructures of RBHs. The study of Ruppeiner geometry
and Weinhold geometry can help us to further understand the thermodynamic properties of
RBHs.
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6.1 What is Thermodynamics of Regular Black Hole?

6.1.1 Thermodynamic Phase Transition and Shift of Critical Points

In recent years, there have been a lot of studies on thermodynamic behaviors of RBHs, and
these behaviors are similar to those in thermodynamics of SBHs, such as gas/liquid phase
transitions [182, 188, 189], van der Waals-like fluid properties [190–193], triple points [194,
195], and heat engines [196–200]. For a given equation of state, the critical point (Tc, Pc,
Vc) of phase transitions can be determined by the following condition,

(
∂P

∂V

)
T

= 0,

(
∂2P

∂V 2

)
T

= 0. (118)

The behaviors of critical points allow us to make a deep analogy between BHs and gas/liquid
systems. In particular, the phase transitions of van der Waals-like fluid have been well tested
[201, 202] in different theories of gravity. However, due to the problematic first law of
thermodynamics, the Maxwell equal area law is no longer valid for RBHs. The exotic equal
area law for Hayward AdS BHs reads [59]

∮
VdP = −

∮
�dQm +

∮
extra term, (119)

which makes Maxwell’s equal area law invalid in the P − V plane. Thus, the critical point
(Tc , Pc) of the first-order small/large BH transition does not coincide with the inflection
point of isotherms.

6.1.2 Regular Black Hole as a Heat Engine

That BHs behave like the van der Waals fluid and have gas/liquid phase transitions also
makes it possible to treat BHs as heat engines. The first holographic heat enginewas proposed
[203] by Johnson, where BHs act as a working substance. The heat engine flows in a cycle
as shown in Fig. 1 of Ref. [203]. Using equations of state of AdS BHs, for instance, we can
compute the total mechanical work as follows,

W = QH − QC , (120)

where QH is the net input heat flow and QC is the net output heat flow. Therefore, the
efficiency of heat engines is defined by

η ≡ W

QH
= 1 − QC

QH
. (121)

Recently, some progress has been made [196, 198, 204, 205] in the studies of heat engines
for RBHs, where the relation between efficiency and entropy (pressure) has been obtained
[198] and the comparisons of efficiency among RBHs have also been made. We note that it is
subtle to construct heat engines and especially the engine cycles in the P−V plane for RBHs,
and that some other progress has provided [206–208] a new perspective on thermodynamic
properties of RBHs.
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6.2 How to Eliminate the Singularity of Thermodynamic Geometry for Regular Black
Holes?

6.2.1 Construction of Thermodynamic Geometry

A similar situation has happened in the studies of thermodynamic geometry, where such
geometry has been shown to be a powerful tool for understanding the thermodynamic prop-
erties and microstructures of SBHs. The Ruppeiner metric is defined [209] by the Hessian
matrix of thermodynamic entropy,

gRμν ≡ − ∂2S(X)

∂Xμ∂Xν
, (122)

and the Weinhold metric is defined [210] by the Hessian matrix of BH mass,

gWμν = ∂2M(X)

∂Xμ∂Xν
, (123)

where Xμ denote thermodynamic variables. Further, we can see that there is the following
conformal relationship between the two kinds of thermodynamic geometries if we write the
metrics in terms of line elements,

ds2R = 1

T
ds2W. (124)

Note that the above two kinds of thermodynamic geometries are valid only for SBHs because
they are based on the corresponding first law of thermodynamics. For RBHs, however, the
first law of thermodynamics contains additional terms. Thus, we have to restrict the first law
in a subphase space, and rewrite it, as an example, for a RBH described by a four-dimensional
subphase space,

dM = T

1 − �
dS − P

1 − �
dV , (125)

where � is related to additional terms. In this case, if we constructed thermodynamic geom-
etry from the problematic first law (125), the thermodynamic metric would also contain
additional terms associated with� that has no thermodynamic counterpart. Correspondingly,
for RBHs the conformal relationship between Ruppeiner geometry and Weinhold geometry
becomes

ds2R = 1 − �

T
ds2W. (126)

It is important to emphasize that the construction of thermodynamic geometry for RBHs
is a challenging topic, and it must be based on the correct first law of thermodynamics. The
microstructure ofRBHshas also been studied [190, 211, 212] in different gravity theorieswith
the help of thermodynamic geometry. As is known, RBHs are very special BH models and
have been widely concerned [194, 200, 213, 214] recently. Their first law of thermodynamics
may need to be modified, and accordingly their thermodynamic geometry may be modified
as well. It is hopeful to deeply understand the thermodynamics of RBHs from the perspective
of thermodynamic geometry.

6.2.2 Singularity of Thermodynamic Geometry and Elimination

A very special feature of charged AdS BHs is that the heat capacity at constant volume
vanishes, i.e., CV = 0. This property makes the thermodynamic line element, (126), singu-
lar and the corresponding thermodynamic information is unavailable from thermodynamic
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geometry. A new normalized scalar curvature is defined [215],

RN = R CV , (127)

underwhich the divergence ofRuppeiner scalar curvature can subtly be eliminated. ForRBHs,
extra termswill appear in thermodynamic line elements due to themodification in the first law
of thermodynamics, which can be used to eliminate the divergence of thermodynamic scalar
curvature. Therefore, RBHs can be viewed as an optional item to address the divergence of
thermodynamic scalar curvature.

7 Conclusion and Outlook

We have presented several topics of RBHs in the current review, where the importance
of topics plays a major role in our choice. There are still three interesting issues we want
to mention here. The first is whether RBHs are trivial from the point of view of coordinate
transformations, the second issue is what sources that generate rotating RBHs are, and the
last issue is what differences between RBHs and SBHs are.

For the first issue, it is known that every RBH corresponds to a metric with several
coordinate singularities. Thus, one can always find a transformation to remove these singu-
larities. For instance, the coordinate singularity of Hayward BHs [105] can be removed in
the Painlevé-Gullstand coordinate system [216] and such a coordinate system is not unique,
that is, the Kruskal-Szekeres coordinate and Eddington-Finkelstein coordinate systems [12]
have the same effect. We note that we just eliminate the singularity on an event horizon but
not the event horizon itself.

The second issue arises due to the construction of rotating RBHs. Bambi and Modesto
utilized [117] the NJA to create the metrics of rotating RBHs. On one hand, the NJA depends
on theories of gravity. Taking a RBHmodel in the Chern-Simons gravity [217] as an example,
theNJA can provide a rotatingmetric, but the Pontryagin density, ∗RR, does not vanish [218],
which means that the constructed metric will not satisfy equations of motion. On the other
hand, as far as we know, there is still a lack of investigation on the classical field source of
rotating RBHs.

At last, themost intriguing issue is possibly what the differences between RBHs and SBHs
are. To answer this question, onemust distinguishwhich differences are caused by the absence
of singularities and which are caused by the models’ characteristics, such as the differences
between Schwarzschild and RN BHs. This issue is expected to play a fundamental role in the
study of RBHs. Because the interior of a black hole cannot be directly observed, we have to
investigate the dynamical and thermodynamic phenomena occurred outside horizons, in par-
ticular, the differences of phenomena with and without singularities. These differences may
provide a chance to test RBHs from observational consequences mentioned in Introduction,
e.g., the gravitational wave, X-ray, and BH shadows, etc. The theoretical predictions together
with currently available experimental data may shed some light on the existence of RBHs.

Appendix

Segré Notation

Segré notation (or Segré symbol) is a systematic method for studying the complete inter-
section of two quadrics in algebraic geometry [219]. It is extended by Petrov [128, 220, 221]
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to classify gravitational fields [103]. However, the original and extended notations aim at
different research subjects. The former targets second-order tensors in a vector space, and
acts as an algebraic classification of Ricci tensors in general relativity, called the Segré clas-
sification. The latter directs at fourth-order tensors in a bivector space in general relativity,
and acts as an algebraic classification of Weyl tensors, known as the Petrov classification.
The Segré notation refers to the Segré classification in our current context. It provides a guide
to searching the matter source in RBHs for a given metric and gravitational theory.

For two given tensors of order two,R and I, which can also be regarded as two matrixes,
one considers the λ-matrix, R − λI, and computes the corresponding elementary divisors.
Supposing that det(R − λI) = 0 as an algebraic equation has n distinct roots λ1, . . . , λn ,
we have the elementary divisors for every root λi ,

(λ − λi )
p(1)
i , . . . , (λ − λi )

p
(si )
i , p(1)

i ≤ · · · ≤ p(si )
i , (128)

where p
(s j )
i is the multiplicity of eigenvalue λi in the s j -th divisor. The Segré notation is the

collection, [
(p(1)

1 . . . p(s1)
1 ) . . . (p(1)

n . . . p(sn)
n )

]
. (129)

For a second-order EMT, one constructs an orthonormal basis êα
μ [148] on the spacetime

manifold (M, gμν), which satisfies

gαβ ê
α
μê

β
ν = ημν, η = diag{−1, 1, 1, 1}, (130)

then decomposes the EMT by

Tμν = ρêμ
0 ê

ν
0 + p1ê

μ
1 ê

ν
1 + p2ê

μ
2 ê

ν
2 + p3ê

μ
3 ê

ν
3 . (131)

In other words, the EMT in the basis êα
μ can be represented as a diagonal matrix. Thus, we

can use the Segré notation to classify the matter contents that have the possibility to generate
non-rotating or rotating RBHs.

Due to the algebraic and physical properties of (131), the multiplicity is unit, i.e. we
can use 1 and the parentheses to denote every diagonal component of Tμν and the equality
among individual components. For instance, the algebraic property of EMT with ρ = p1
and p2 = p3 can be represented by [(11)(11)]. Here, we do not use commas to separate the
time and space components.

Zakhary-Mcintosh Invariants

We list all the 17 ZM invariants following Ref. [95].

1. Ricci data construed by Ricci tensors,

I5 = gμνRμν, I6 = RμνR
μν, (132a)

I7 := R ν
μ R α

ν R μ
α , I8 := R ν

μ R α
ν R β

α R μ
β , (132b)

2. Weyl data construed by Weyl tensors Wαβμν ,

I1 := Wμν
αβW

αβ
μν, I3 := Wμν

αβW
αβ

ρσW
ρσ

μν, (133a)

I2 := −Wμν
αβW

∗αβ
μν, I4 := −Wμν

αβW
∗αβ

ρσW
ρσ

μν, (133b)
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3. Mixed data constructed by both Ricci and Weyl tensors,

I9 := WμαβνR
αβ Rνμ, I10 := −W ∗

μαβνR
αβ Rνμ, (134a)

I11 := RμνRαβ
(
W σ

ρμν W ρ
σαβ − W ∗ σ

ρμν W ∗ ρ
σαβ

)
, (134b)

I12 := −RμνRαβ
(
W ∗ σ

ρμν W ρ
σαβ + W σ

ρμνW
∗ ρ
σαβ

)
, (134c)

I13 := RμρR α
ρ Rνσ R β

σ Wμναβ, I14 := RμρR α
ρ Rνσ R β

σ W ∗
μναβ (134d)

I15 := 1

16
RμνRαβ

(
WρμνσW

ρ σ
αβ + W ∗

ρμνσW
∗ρ σ

αβ

)
, (134e)

I16 := − 1

32
Rαβ Rμν

(
Wρσγ ζW

ρ ζ
αβ W σ ζ

μν + Wρσγ ζW
∗ρ ζ

αβ W σ ζ
μν

− W ∗
ρσγ ζW

∗ρ ζ
αβ W σ ζ

μν + W ∗
ρσγ ζW

ρ ζ
αβ W ∗σ ζ

μν

)
,

(134f)

I17 := 1

32
Rαβ Rμν

(
W ∗

ρσγ ζW
ρ ζ
αβ W σ ζ

μν + W ∗
ρσγ ζW

∗ρ ζ
αβ W ∗σ ζ

μν

− Wρσγ ζW
∗ρ ζ

αβ W σ ζ
μν + Wρσγ ζW

ρ ζ
αβ W ∗σ ζ

μν

)
,

(134g)

where Wμναβ is Weyl tensor and W ∗
μναβ = εμνρσW

ρσ
αβ/2 denotes its dual.
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