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Abstract
Quantum key agreement (QKA) is an advanced technique that allows multiple parties to 
share a secret key through cooperation. At present, most QKA protocols have the problems 
of weak anti-noise ability and low qubit efficiency. In this paper, two improved two-party 
QKA protocols are proposed using two sets of special logical qubits, which are immune to 
the collective noise. The main idea of these two protocols is that first, through the measure-
ment correlation of the six-particle entangled states, the communication parties can fairly 
build a common key. Then, decoy logical qubits and delayed measurement technology are 
employed to prevent eavesdropping in quantum channels. Security analysis indicates that 
both protocols are unconditionally secure and capable of resisting internal and external 
attacks. In addition, compared with existing protocols, both protocols improve the effi-
ciency because they transmit longer qubits.

Keywords  Six-particle entangled states · Collective noise · Quantum key agreement · 
Qubit efficiency · Logical qubits

1  Introduction

With the advent of the Shor algorithm [1] and the further development of quantum com-
puting, the RSA encryption algorithm [2] based on large integer factorization can be easily 
cracked. There has been an increasing interest in quantum cryptography, a type of encryp-
tion that can ensure data security [3, 4]. Quantum cryptography makes use of superpo-
sition, entangled state, measurement collapse, and other theories in quantum mechanics 
to truly realize unconditional security. It can generate dynamic random keys [5, 6] and 
detect eavesdropping with high probability during communication [7]. QKA is an essential 
subfield of quantum cryptography. It aims to solve the problem that communication par-
ties negotiate a shared key without the participation of a third party. Unlike quantum key 
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distribution (QKD) [8–10], fairness and security are two critical requirements of QKA. In 
the QKA protocol, each party is required to contribute equally to the ultimate key and can-
not decide independently in advance.

Zhou et  al. [11] first put forth the QKA protocol in 2004. Since then, numerous 
QKA protocols have been proposed [12–15]. Nevertheless, the early QKA protocols 
were all implemented through ideal quantum channels without noise. In real applica-
tions, noise typically has an impact on particles, and attackers can launch malicious 
attacks under cover of it. Therefore, when designing the QKA protocol, noise must 
be taken into account. In 2003, Walton et  al. [16] found that qubits in decoherence-
free subspaces (DFS) are not affected by collective noise, which is an ideal strategy to 
combat noise. In light of Walton et al.’s theory, Huang et al. [17, 18] raised two corre-
sponding variables in the QKA protocol for the first time to immunize collective noise. 
In 2016, He et  al. [19] designed an ingenious QKA protocol against collective noise 
using logical χ  states and logical Bell states. Subsequently, in order to improve the 
qubit efficiency, Gao et al. [20] suggested QKA protocols that are immune to collective 
noise based on the four-particle entangled GHZ state. Meanwhile, Yang et al. [21] pro-
posed a QKA protocol based on logical Bell states, which is robust to collective noise 
and superior to most current QKA protocols concerning qubit efficiency and quantum 
resource cost. In [22], Wang et al. utilized decoy logical qubits to devise a QKA pro-
tocol against collective noise, significantly improving qubit efficiency. Due to quantum 
entanglement swapping technology, Zhou et al. [23] suggested a QKA protocol in 2020 
that is resistant to collective noise. Later, qubit efficiency was further enhanced by Guo 
et al. [24], who presented novel QKA protocols on account of logical GHZ states and 
their measurement correlation.

In recent years, some researchers have focused on multi-party quantum key agree-
ment (MQKA). Wang et al. [25] proposed a three-party QKA protocol using quantum 
Fourier transform. Later, Yang et al. [26] proposed a tree-type MQKA protocol, which 
increased the number of participants to N parties. This year, Zhao et al. [27] established 
a MQKA protocol using non-maximally entangled states with unknown parameters for 
the first time, which is more suitable for real-world situations. However, the research on 
MQKA protocol is still in the initial stage due to its low efficiency and inability to resist 
collective noise.

The scheme described in this essay can further boost qubit efficiency while resisting 
collective noise. This scheme utilizes six-particle entangled states, decoy logical qubits 
[29–32], and delayed measurement technology [13, 28] to provide two QKA protocols 
immune to different types of collective noise. Both protocols are based on the measure-
ment correlation of six-particle entangled states, allowing two participants to establish 
a shared key fairly. Eavesdroppers cannot successfully carry out Trojan horse attacks 
[33–35] since each particle is sent only once in our protocols. Internal and external 
attacks have shown our two QKA protocols to be secure. Furthermore, both protocols 
have excellent qubit efficiency.

The remainder of this essay is arranged as follows. The second section introduces the-
oretical knowledge of our protocols, including the four unitary operations, six-particle 
entangled states, and collective noise. Our protocols are fully explained in the next section. 
The security and efficiency analyses are the main topics of Sections 4 and 5, respectively. 
Last but not least, we draw a conclusion in Section 6.
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2 � Theoretical Knowledge

2.1 � Unitary Operations and Quantum Entangled States

The Z-basis is well known to consist of {| 0〉| | 1〉}, and the X-basis is known to consist 
of {| +〉| | −〉}, where ∣ +⟩ = 1∕

√
2(�0⟩ + �1⟩) and ∣ −⟩ = 1∕

√
2(�0⟩ − �1⟩) . The four unitary 

operations are denoted as U00 ≡ I =  ∣ 0〉〈0|  + | 1〉〈1∣, U01 ≡ X =  ∣ 0〉〈1|  + | 1〉〈0∣, U10 ≡ Z =  ∣ 0〉
〈0|  − | 1〉〈1∣, and U11 ≡ iY =  ∣ 0〉〈1|  − | 1〉〈0∣. Then we introduce four Bell states which are 
described as ∣ Ψ±⟩ = 1∕

√
2(�01⟩ ± �10⟩) and ∣ Φ±⟩ = 1∕

√
2(�00⟩ ± �11⟩) . After a unitary 

operation Ui1i2

(
i1, i2 = 0, 1

)
 is applied to a Bell state’s second particle, it will change into 

another Bell state. The results of the transformation between four Bell states are shown in 
Table 1.

This paper uses the six-particle entangled state [36] as the quantum resource, defined as

If Bob performs the ZZZZ basis{∣0000〉,∣0001〉,∣0010〉,∣0011〉,∣0100〉,∣0101〉,∣0110〉,∣0
111〉,∣1000〉,∣1001〉,∣1010〉,∣1011〉,∣1100〉,∣1101〉,∣1110〉,∣1111〉} measurement on particles 
A, B, E and F, and Alice carries out the Bell measurement on particles C and D, the state 
∣ψ〉ABCDEF  will collapse to the states∣0000〉ABEF ∣ Φ−〉CD,∣0110〉ABEF ∣ Φ−〉CD,∣1001〉ABEF ∣ Φ
−〉CD,∣1111〉ABEF ∣ Φ−〉CD,∣0001〉ABEF ∣ Ψ+〉CD,∣0111〉ABEF ∣ Ψ+〉CD, ∣1000〉ABEF ∣ Ψ+〉CD,∣1110
〉ABEF ∣ Ψ+〉CD,∣0010〉ABEF ∣ Ψ−〉CD,∣0100〉ABEF ∣ Ψ−〉CD,∣1011〉ABEF ∣ Ψ−〉CD,∣1011〉ABEF ∣ Ψ−〉CD
,∣0011〉ABEF ∣ Φ+〉CD,∣0101〉ABEF ∣ Φ+〉CD,∣1010〉ABEF ∣ Φ+〉CD and ∣1100〉ABEF ∣ Φ+〉CD with the 
probability of 1/16, respectively. As we can see, Alice and Bob’s measurement results have 
a distinct correlation.

(1)

��⟩
ABCDEF

=
1√
32

(�000000⟩ + �111111⟩ + �000011⟩ + �111100⟩ + �000101⟩ + �111010⟩+

�000110⟩ + �111001⟩ + �001001⟩ + �110110⟩ + �001111⟩ + �110000⟩+
�010001⟩ + �101110⟩ + �010010⟩ + �101101⟩ + �011000⟩ + �100111⟩+
�011101⟩ + �100010⟩ − �001010⟩ − �110101⟩ − �001100⟩ − �110011⟩+
�010100⟩ + �101011⟩ + �010111⟩ + �101000⟩ + �011011⟩ + �100100⟩+
�011110⟩ + �100001⟩)

ABCDEF

=
1

8

����000⟩ABEF + �0110⟩
ABEF

−�1001⟩
ABEF

− �1111⟩
ABEF

)�Φ−⟩CD+

(�0001⟩
ABEF

−�0111⟩
ABEF

−�1001⟩
ABEF

+ �1110⟩
ABEF

)�Ψ+⟩
CD
+

(�0010⟩
ABEF

−�0100⟩
ABEF

+�1011⟩
ABEF

− �1101⟩
ABEF

)�Ψ−⟩
CD
+

(�0011⟩
ABEF

+�0101⟩
ABEF

+�1010⟩
ABEF

+ �1100⟩
ABEF

)�Φ+⟩CD]

Table 1   Unitary operations and 
their transformation results

I ⊗ U00 I ⊗ U01 I ⊗ U10 I ⊗ U11

∣Φ±〉 ∣Φ±〉 ∣Ψ±〉 ∣Φ∓〉 ∣Ψ∓〉
∣Ψ±〉 ∣Ψ±〉 ∣Φ±〉 ∣Ψ∓〉 ∣Φ∓〉
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2.2 � Collective Noise

According to the literature [16], collective noise can fall into two categories: collective-
dephasing noise and collective-rotation noise. Next, we use the evolution of quantum states to 
illustrate the effects of these two noises on the Z-basis. Qubits ∣0〉 and ∣1〉 in the first type of 
noise evolve as follows:

where Udp represents the matrix form of collective-dephasing noise, and φ(t) represents the 
phase noise parameter that varies with time. Similarly, qubits ∣0〉 and ∣1〉 in collective-rota-
tion noise undergo the following evolution:

where Ur represents the matrix form of collective-rotation noise, and θ(t) represents the 
rotation noise parameter that varies with time.

3 � The Two‑Party QKA Protocols Against Collective Noise

3.1 � The QKA Protocol Against Collective‑Dephasing Noise

Two logical qubits, ∣0dp〉 =  ∣ 01〉 and ∣1dp〉 =  ∣ 10〉 [16], as well as their superposition states 
∣ +dp⟩ = 1∕

√
2(�0dp⟩ + �1dp⟩) and ∣ −dp⟩ = 1∕

√
2
�
�0dp⟩ − �1dp⟩

�
 are unaffected in the col-

lective-dephasing noise channel.
Then exploiting this, we provide a two-party QKA protocol with logical six-particle 

entangled states resistant to collective-dephasing noise. The protocol works as follows.

Step 1	 Each of Alice and Bob produces 4n-bit keys at random:

where Ki
A
,Ki

B
∈{0000,0001,0010,0011,0100,0101,0110,0111,1000,1001,1010,1011,11

00,1101,1110,1111}, i = 1, 2…, n.

(2)
Udp ∣ 0⟩ =

�
1 0

0 ei�(t)

��
1

0

�
=∣ 0⟩

Udp ∣ 1⟩ =
�
1 0

0 ei�(t)

��
0

1

�
= ei�(t) ∣ 1⟩

(3)
U

r
∣ 0⟩ =

�
cos �(t) sin �(t)
− sin �(t) cos �(t)

��
1

0

�
= cos �(t) ∣ 0⟩ + sin �(t) ∣ 1⟩

U
r
∣ 1⟩ =

�
cos �(t) sin �(t)
− sin �(t) cos �(t)

��
0

1

�
= − sin �(t) ∣ 0⟩ + cos �(t) ∣ 1⟩

KA = K1

A
∥ K2

A
∥ ⋯ ∥ Kn

A

KB = K1

B
∥ K2

B
∥ ⋯ ∥ Kn

B
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Step 2	 Alice is going to prepare n logical six-particle entangled states ∣ψdp〉ABCDEF:

These logical states are separated into six ordered sequences SA, SB, SC, SD, SE, and SF, 
consisting of logical qubits A, logical qubits B, particles C, particles D, logical qubits E and 
logical qubits F, respectively. Among them, the logical qubits A, B, E , and F are made up 
of two physical qubits, namely A1 and A2, B1 and B2, E1 and E2, and F1 and F2, respectively. 
Alice randomly selects logical qubits from {| 0dp〉 | 1dp〉 | +dp〉 | −dp〉} as decoy states and 
inserts them into SA, SB, SE, and SF to obtain S′

A
 , S′

B
 , S′

E
 , and S′

F
 . Afterwards, Alice sends 

them to Bob and holds the sequences SC and SD.

Step 3	 After confirming that Bob has received sequences S′
A
 , S′

B
 , S′

E
 , and S′

F
 , Alice announces 

the decoy logical qubits’ locations and the measurement basis ({| 0dp〉|  1dp〉} or {| +dp〉|  
−dp〉}). Bob uses the correct measurement basis to measure these decoy logical qubits 

(4)

��dp⟩ABCDEF
=1∕

√
32(�0dp⟩�0dp⟩�00⟩�0dp⟩�0dp⟩ + �1dp⟩�1dp⟩�11⟩�1dp⟩�1dp⟩+

�0dp⟩�0dp⟩�00⟩�1dp⟩�1dp⟩ + �1dp⟩�1dp⟩�11⟩�0dp⟩�0dp⟩ + �0dp⟩�0dp⟩�01⟩�0dp⟩�1dp⟩+
�1dp⟩�1dp⟩�10⟩�1dp⟩�0dp⟩ + �0dp⟩�0dp⟩�01⟩�1dp⟩�0dp⟩ + �1dp⟩�1dp⟩�10⟩�0dp⟩�1dp⟩+
�0dp⟩�0dp⟩�10⟩�0dp⟩�1dp⟩ + �1dp⟩�1dp⟩�01⟩�1dp⟩�0dp⟩ + �0dp⟩�0dp⟩�11⟩�1dp⟩�1dp⟩+
�1dp⟩�1dp⟩�00⟩�0dp⟩�0dp⟩ + �0dp⟩�1dp⟩�00⟩�0dp⟩�1dp⟩ + �1dp⟩�0dp⟩�11⟩�1dp⟩�0dp⟩+
�0dp⟩�1dp⟩�00⟩�1dp⟩�0dp⟩ + �1dp⟩�0dp⟩�11⟩�0dp⟩�1dp⟩ + �0dp⟩�1dp⟩�10⟩�0dp⟩�0dp⟩+
�1dp⟩�0dp⟩�01⟩�1dp⟩�1dp⟩ + �0dp⟩�1dp⟩�11⟩�0dp⟩�1dp⟩ + �1dp⟩�0dp⟩�00⟩�1dp⟩�0dp⟩−
�0dp⟩�0dp⟩�10⟩�1dp⟩�0dp⟩ − �1dp⟩�1dp⟩�01⟩�0dp⟩�1dp⟩ − �0dp⟩�1dp⟩�11⟩�0dp⟩�0dp⟩−
�1dp⟩�1dp⟩�00⟩�1dp⟩�1dp⟩ + �0dp⟩�1dp⟩�01⟩�0dp⟩�0dp⟩ + �1dp⟩�0dp⟩�10⟩�1dp⟩�1dp⟩+
�0dp⟩�1dp⟩�01⟩�1dp⟩�1dp⟩ + �1dp⟩�0dp⟩�00⟩�0dp⟩�0dp⟩ + �0dp⟩�1dp⟩�10⟩�1dp⟩�1dp⟩+
�1dp⟩�0dp⟩�01⟩�0dp⟩�0dp⟩ + �0dp⟩�1dp⟩�11⟩�1dp⟩�0dp⟩ + �1dp⟩�0dp⟩�00⟩�0dp⟩�1dp⟩)ABCDEF

=
1

8
[(�0dp⟩A�0dp⟩B�0dp⟩E�0dp⟩F + �0dp⟩A�1dp⟩B�1dp⟩E�0dp⟩F − �1dp⟩A�0dp⟩B�0dp⟩E�1dp⟩F−

�1dp⟩A�1dp⟩B�1dp⟩E�1dp⟩F�Φ−⟩CD + (�0dp⟩A�0dp⟩B�0dp⟩E�1dp⟩F − �0dp⟩A�1dp⟩B�1dp⟩E�1dp⟩F−
�1dp⟩A�0dp⟩B�0dp⟩E�0dp⟩F + �1dp⟩A�1dp⟩B�1dp⟩E�0dp⟩F)�Ψ+⟩CD + (�0dp⟩A�0dp⟩B�1dp⟩E�0dp⟩F−
�0dp⟩A�1dp⟩B�0dp⟩E�0dp⟩F + �1dp⟩A�0dp⟩B�1dp⟩E�1dp⟩F − �1dp⟩A�1dp⟩B�0dp⟩E�0dp⟩E�1dp⟩F)�Ψ−⟩CD+
(�0dp⟩A�0dp⟩B�1dp⟩E�1dp⟩F�0dp⟩A�1dp⟩B�0dp⟩E�1dp⟩F + �1dp⟩A�0dp⟩B�1dp⟩E�0dp⟩F+
�1dp⟩A�1dp⟩B�0dp⟩E�0dp⟩F)�Φ+⟩CD]

=
1

8
[(�01⟩A

1
A
2
�01⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
+ �01⟩A

1
A
2
�10⟩B

1
B
2
�10⟩E

1
E
2
�01⟩F

1
F
2
−

�10⟩A
1
A
2
�01⟩B

1
B
2
�01⟩E

1
E
2
�10⟩F

1
F
2
− �10⟩A

1
A
2
�10⟩B

1
B
2
�10⟩E

1
E
2
�10⟩F

1
F
2
)�Φ−⟩CD+

(�01⟩A
1
A
2
�01⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
− �01⟩A

1
A
2
�10⟩B

1
B
2
�10⟩E

1
E
2
�10⟩F

1
F
2
−

�10⟩A
1
A
2
�01⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
+ �10⟩A

1
A
2
�10⟩B

1
B
2
�10⟩E

1
E
2
�01⟩F

1
F
2
)�Ψ+⟩CD+

(�01⟩A
1
A
2
�01⟩B

1
B
2
�10⟩E

1
E
2
�01⟩F

1
F
2
− �01⟩A

1
A
2
�10⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
+

�10⟩A
1
A
2
�01⟩B

1
B
2
�10⟩E

1
E
2
�10⟩F

1
F
2
− �10⟩A

1
A
2
�10⟩B

1
B
2
�01⟩E

1
E
2
�10⟩F

1
F
2
)�Ψ−⟩CD+

(�01⟩A
1
A
2
�01⟩B

1
B
2
�10⟩E

1
E
2
�10⟩F

1
F
2
+ �01⟩A

1
A
2
�10⟩B

1
B
2
�01⟩E

1
E
2
�10⟩F

1
F
2
+

�10⟩A
1
A
2
�01⟩B

1
B
2
�10⟩E

1
E
2
�01⟩F

1
F
2
+ �10⟩A

1
A
2
�10⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
)�Φ+⟩CD]
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and notifies Alice of the results. Thus, Alice can calculate the error rate. If the error 
rate is lower than predetermined threshold, go to Step 4. Otherwise, there exists eaves-
dropping in quantum channels. Abort the protocol and restart from Step 1.

Step 4	 After removing the decoy logical qubits, the sequences S′
A
 , S′

B
 , S′

E
 , and S′

F
 revert to 

SA, SB, SE, and SF. Bob executes the CNOT operations on the logical qubits A, B, E, 
and F, respectively. Particles A1, B1, E1, and F1 serve as control qubits, while par-
ticles A2, B2, E2, and F2 serve as target qubits. After four CNOT operations, each 
logical quantum state ∣ψdp〉ABCDEF is converted to

(5)

�Λdp⟩ABCDEF = U
A
1
A
2

CNOT
⊗ U

B
1
B
2

CNOT
⊗ U

E
1
E
2

CNOT
⊗ U

F
1
F
2

CNOT
⊗ �𝜓dp⟩ABCDEF

=1
�
8

�����01A1
A
2

���01B1
B
2

���01E1
E
2

���01F1
F
2
+ �01⟩A

1
A
2
�11⟩B

1
B
2
�11⟩E

1
E
2
�01⟩F

1
F
2
−

�11⟩A
1
A
2
�01⟩B

1
B
2
�01⟩E

1
E
2
�11⟩F

1
F
2
− �11⟩A

1
A
2
�11⟩B

1
B
2
�11⟩E

1
E
2
�11⟩F

1
F
2
)�Φ−⟩CD+

(�01⟩B
1
B
2
�01⟩E

1
E
2
�11⟩F

1
F
2
− �01⟩A

1
A
2
�11⟩B

1
B
2
�11⟩E

1
E
2
�11⟩F

1
F
2
−

�11⟩A
1
A
2
�01⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
+ �11⟩A

1
A
2
�11⟩B

1
B
2
�11⟩E

1
E
2
�01⟩F

1
F
2
)�Ψ+⟩CD+

(�01⟩B
1
B
2
�11⟩E

1
E
2
�01⟩F

1
F
2
− �01⟩A

1
A
2
�11⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
+

�11⟩A
1
A
2
�01⟩B

1
B
2
�11⟩E

1
E
2
�11⟩F

1
F
2
− �11⟩A

1
A
2
�10⟩B

1
B
2
�01⟩E

1
E
2
�11⟩F

1
F
2
)�Ψ−⟩CD+

(�01⟩B
1
B
2
�11⟩E

1
E
2
�11⟩F

1
F
2
+ �01⟩A

1
A
2
�11⟩B

1
B
2
�01⟩E

1
E
2
�11⟩F

1
F
2
+

�11⟩A
1
A
2
�01⟩B

1
B
2
�11⟩E

1
E
2
�01⟩F

1
F
2
+ �11⟩A

1
A
2
�11⟩B

1
B
2
�01⟩E

1
E
2
�01⟩F

1
F
2
)�Φ+⟩CD]

=1∕8[(�0000 ⟩⟩A1B1E1F1 + �0110⟩A
1
B
1
E
1
F
1
− �1001⟩A

1
B
1
E
1
F
1
− �1111⟩A

1
B
1
E
1
F
1
�Φ−⟩CD+

(�0001⟩A
1
B
1
E
1
F
1
− �0111⟩A

1
B
1
E
1
F
1
− �1000⟩A

1
B
1
E
1
F
1
+ �1110⟩A

1
B
1
E
1
F
1
�Ψ+⟩CD+

(�0010⟩A
1
B
1
E
1
F
1
− (�0100⟩A

1
B
1
E
1
F
1
+ (�1011⟩A

1
B
1
E
1
F
1
− (�1101⟩A

1
B
1
E
1
F
1
�Ψ−⟩CD+

(�0011⟩A
1
B
1
E
1
F
1
+ (�0101⟩A

1
B
1
E
1
F
1
+ (�1010⟩A

1
B
1
E
1
F
1
+ (�1100⟩A

1
B
1
E
1
F
1
�Φ+⟩CD]⊗ �1111⟩A

2
B
2
E
2
F
2

= �𝜓⟩A
1
B
1
CDE

1
F
1
⊗ �1111⟩A

2
B
2
E
2
F
2

Table 2   Measurement results and 
corresponding values

Alice’s measurement result Bob’s measurement result Mi

∣Φ−〉 ∣0000〉 0000
∣Φ−〉 ∣0110〉 0110
∣Φ−〉 ∣1001〉 1001
∣Φ−〉 ∣1111〉 1111
∣Ψ+〉 ∣0001〉 0001
∣Ψ+〉 ∣0111〉 0111
∣Ψ+〉 ∣1000〉 1000
∣Ψ+〉 ∣1110〉 1110
∣Ψ−〉 ∣0010〉 0010
∣Ψ−〉 ∣0100〉 0100
∣Ψ−〉 ∣1011〉 1011
∣Ψ−〉 ∣1101〉 1101
∣Φ+〉 ∣0011〉 0011
∣Φ+〉 ∣0101〉 0101
∣Φ+〉 ∣1010〉 1010
∣Φ+〉 ∣1100〉 1100
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Later, Alice applies the Bell measurement to each pair of the corresponding particles in 
sequences SC and SD, and Bob applies the ZZZZ  basis measurement to the corresponding 
particles A1 in SA, B1 in SB, E1 in SE, and F1 in SF. The encoding scheme agreed upon by 
Alice and Bob is

Afterwards, all the Bob’s measurement results are coded as M = M1 ∥ M2 ∥ ⋯ ∥ Mn, 
where Mi is the code of Bob’s ith measurement result (i = 1, 2, ···, n). Table 2 displays the 
measurement results and corresponding values.

When Bob finally publishes the measurement results for particles A1 and B1, Alice and 
Bob will know each other’s results. As a consequence, they share a classic bit string M.

Step 5	 Introduce the four unitary operations U00, U01, U10 and U11. According to the key 
KA, Alice lets i1i2 = Ki

A12
 and i3i4 = Ki

A34
 (i = 1, 2, … , n). Then Alice executes the 

unitary operation Ui1i2
 on the ith particle in SD to obtain the new sequence S∗

D
 . By 

matching two particles in SC and S∗
D
 , a new Bell state is generated. Alice prepares 

the corresponding logical Bell state ∣ �dp⟩C1C2D1D2
 in accordance with the new Bell 

state. Then Alice executes the unitary operation Ui3i4
 on the ith particle in S∗

D
 to 

obtain the new sequence S∗(1)
D

 . The matched two particles in SC and S∗(1)
D

 constitute 
a new Bell state. Similarly, Alice prepares the corresponding logical Bell state 
�
∗
dp⟩C1C2D1D2

 . The following are the definitions of the four logical Bell states [37]:

Alice divides the logical Bell state ∣ �dp⟩C1C2D1D2
 into two ordered sequences S(1)

C
 and 

S
(1)

D
 , consisting of logical qubits C (two physical qubits C1 and C2) and logical qubits D 

(6)

∣ 0000⟩→ 0000, ∣ 0001⟩ → 0001, ∣ 0010⟩→ 0010, ∣ 0011⟩ → 0011,

∣ 0100⟩→ 0100, ∣ 0101⟩ → 0101, ∣ 0110⟩→ 0110, ∣ 0111⟩ → 0111,

∣ 1000⟩→ 1000, ∣ 1001⟩ → 1001, ∣ 1010⟩→ 1010, ∣ 1011⟩ → 1011,

∣ 1100⟩→ 1100, ∣ 1101⟩ → 1101, ∣ 1110⟩→ 1110, ∣ 1111⟩ → 1111

(7)

∣ �+
dp
⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0dp⟩�0dp⟩ + �1dp⟩�1dp⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��+⟩��+⟩ − ��−⟩��−⟩

�
C
1
D

1
C
2
D

2

∣ �−
dp
⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0dp⟩�0dp⟩ − �1dp⟩�1dp⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��−⟩��+⟩ − ��+⟩��−⟩

�
C
1
D

1
C
2
D

2

∣ �+
dp
⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0dp⟩�1dp⟩ + �1dp⟩�0dp⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��+⟩��+⟩ − ��−⟩��−⟩

�
C
1
D

1
C
2
D

2

∣ �−
dp
⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0dp⟩�1dp⟩ − �1dp⟩�0dp⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��−⟩��+⟩ − ��+⟩��−⟩

�
C
1
D

1
C
2
D

2
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(two physical qubits D1 and D2), respectively. Likewise, the logical Bell state ��∗
Rr
⟩C1C2D1D2

 
is also divided into two ordered sequences S(2)

C
 and S(2)

D
 . Then Alice performs a permutation 

operator ∏n on S(1)
C

 and S(2)
C

 to get two random sequences S(1)∗
C

 and S(2)∗
C

 . Alice randomly 
selects the decoy logical qubits and inserts them into S(1)∗

C
 , S(1)∗

D
 , S(2)∗

C
 and S(2)

D
 to generate 

the sequences S(1)∗
C

�
 , S(1)

D

�
 , S(2)∗

C

�
 and S(2)

D

�
 , in which the decoy logical qubits are randomly 

taken from the set {| 0dp〉 | 1dp〉 | +dp〉 | −dp〉}. Alice sends the sequences S(1)∗
C

�
 , S(1)

D

�
 , S(2)∗

C

�
 and 

S
(2)

D

�
 to Bob.

Step 6	 After Bob receives S(1)∗
C

�
 , S(1)∗

D

�
 , S(2)∗

C

�
 and S(2)

D

�
 , both parties conduct precisely the 

same eavesdropping check as the first time.
Step 7	 Bob announces the value K

�
B
= K

B
⊕M =

(
K

1

B
⊕M

1
)
∥
(
K

2

B
⊕M

2
)
∥ ⋯ ∥(

K
n

B
⊕M

n
)
 . Based on the classic bit string M, Alice can deduce the key KB. Assum-

ing that Alice and Bob’s default negotiation rule is KAB = (KA ⊕ KB) ∥ (KA ⊕ KB ⊕ M). 
Then they can calculate the shared key KAB of both parties.

 Step 8	Alice publishes the permutation operator ∏n; Bob performs its inverse permutation 
on the sequences S(1)∗

C
 and S(2)∗

C
 to obtain the sequences S(1)

C
 and S(2)

C
 . Bob associates 

the sequence S(1)
C

 with the sequence S(1)
D

 to obtain n logical Bell states and then carries 
out the Bell measurements on the particles C1, D1 and the particles C2, D2, respec-
tively. That is, Bob is aware of the logical Bell state ∣ �dp⟩C1C2D1D2

 sent by Alice and 
the physical Bell state corresponding to each pair of particles in SC and S∗

D
 . Accord-

ing to the initial Bell states and the transformed Bell states, Bob is able to deduce the 
value Ki

A12
 . Bob combines the sequences S(2)

C
 and S(2)

D
 to obtain n logical Bell states. 

Then the Bell measurements are performed on the particles C1, D1 and the particles 
C2, D2, respectively. Thus, Bob is aware of the logical Bell state ��∗

dp
⟩C1C2D1D2

 sent by 
Alice and the physical Bell state corresponding to each pair of particles in SC and 
S
∗(1)

D
 . Based on the transformation from the corresponding physical Bell state of each 

pair of particles in SC and S∗
D
 to the corresponding physical Bell state of each pair of 

particles in SC and S∗(1)
D

 , Bob can infer the value Ki
A34

 . Combining Ki
A12

 and Ki
A34

 , 
Bob is able to obtain the value KA and produce the shared key KAB.

3.2 � The QKA Protocol Against Collective‑Rotation Noise

In the collective-rotation noise channel, two logical qubits, ∣ 0
r
⟩ =∣ �+⟩ = 1∕

√
2(�00⟩ + �11⟩) 

and ∣ 1r⟩ =∣ �−⟩ = 1∕
√
2(�01⟩ − �10⟩) [16], as well as their superposition states 

∣ +r⟩ = 1∕
√
2(�0r⟩ + �1r⟩) and ∣ +r⟩ = 1∕

√
2(�0r⟩ + �1r⟩) are not affected by the collective-

rotation noise.
Now, we present a two-party QKA protocol immune to the collective-rotation noise 

with the logical six-particle entangled states. It consists of the following steps.

Step 1	 Each of Alice and Bob generates 4n-bit keys at random:

where Ki
A
,Ki

B
∈{0000,0001,0010,0011,0100,0101,0110,0111,1000,1001,1010,1011,1

100,1101,1110, 1111},i = 1, 2…, n. They adopt precisely the same rule of negotiation 
as the first protocol.

KA = K1

A
∥ K2

A
∥ ⋯ ∥ Kn

A

KB = K1

B
∥ K2

B
∥ ⋯ ∥ Kn

B
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Step 2	 Alice prepares n logical six-particle entangled states ∣ψr〉ABCDEF:

These logical states are broken up into six ordered sequences, SA, SB, SC, SD, SE, and 
SF, consisting of logical qubits A, logical qubits B, particles C, particles D, logical qubits 
E and logical qubits F, respectively. Among them, logical qubits A, B, E , and F are made 
up of two physical qubits, namely A1 and A2, B1 and B2, E1 and E2, and F1 and F2. Alice 
randomly selects logical qubits from {�0r⟩, �1r⟩, �+r⟩, �−r⟩} as decoy states and inserts them 
into SA, SB, SE, and SF to obtain S′

A
 , S′

B
 , S′

E
 , and S′

F
 . Later, Alice sends them to Bob and 

saves the sequences SC and SD.

Step 3	 After Bob has received the sequences S′
A
 , S′

B
 , S′

E
 , and S′

F
 , Alice announces the locations 

and the measurement basis ({�0r⟩, �1r⟩} or {�+r⟩, �−r⟩})  of the decoy logical qubits. 
Bob uses the correct measurement basis to measure the corresponding decoy logical 

(8)

�
r
⟩
ABCDEF

=
1

4

√
2

(�0
r
⟩�0

r
⟩�00⟩�0

r
⟩�0

r
⟩ + �1

r
⟩�1

r
⟩�11⟩�1

r
⟩�1

r
⟩+

�0
r
⟩�0

r
⟩�00⟩�1

r
⟩�1

r
⟩ + �1

r
⟩�1

r
⟩�11⟩�0

r
⟩�0

r
⟩ + �0

r
⟩�0

r
⟩�01⟩�0

r
⟩�1

r
⟩+

�1
r
⟩�1

r
⟩�10⟩�1

r
⟩�0

r
⟩ + �0

r
⟩�0

r
⟩�01⟩�1

r
⟩�0

r
⟩ + �1

r
⟩�1

r
⟩�10⟩�0

r
⟩�1

r
⟩+

�0
r
⟩�0

r
⟩�10⟩�0

r
⟩�1

r
⟩ + �1

r
⟩�1

r
⟩�01⟩�1

r
⟩�0

r
⟩ + �0

r
⟩�0

r
⟩�11⟩�1

r
⟩�1

r
⟩+

�1
r
⟩�1

r
⟩�00⟩�0

r
⟩�0

r
⟩ + �0

r
⟩�1

r
⟩�00⟩�0

r
⟩�1

r
⟩ + �1

r
⟩�0

r
⟩�11⟩�1

r
⟩�0

r
⟩+

�0
r
⟩�1

r
⟩�00⟩�1

r
⟩�0

r
⟩ + �1

r
⟩�0

r
⟩�11⟩�0

r
⟩�1

r
⟩ + �0

r
⟩�1

r
⟩�10⟩�0

r
⟩�0

r
⟩+

�1
r
⟩�0

r
⟩�01⟩�1

r
⟩�1

r
⟩ + �0

r
⟩�1

r
⟩�11⟩�0

r
⟩�1

r
⟩ + �1

r
⟩�0

r
⟩�00⟩�1

r
⟩�0

r
⟩−

�0
r
⟩�0

r
⟩�10⟩�1

r
⟩�0

r
⟩ − �1

r
⟩�1

r
⟩�01⟩�0

r
⟩�1

r
⟩ − �0

r
⟩�1

r
⟩�11⟩�0

r
⟩�0

r
⟩−

�1
r
⟩�1

r
⟩�00⟩�1

r
⟩�1

r
⟩ + �0

r
⟩�1

r
⟩�01⟩�0

r
⟩�0

r
⟩ + �1

r
⟩�0

r
⟩�10⟩�1

r
⟩�1

r
⟩+

�0
r
⟩�1

r
⟩�01⟩�1

r
⟩�1

r
⟩ + �1

r
⟩�0

r
⟩�00⟩�0

r
⟩�0

r
⟩ + �0

r
⟩�1

r
⟩�10⟩�1

r
⟩�1

r
⟩+

�1
r
⟩�0

r
⟩�01⟩�0

r
⟩�0

r
⟩ + �0

r
⟩�1

r
⟩�11⟩�1

r
⟩�0

r
⟩ + �1

r
⟩�0

r
⟩�00⟩�0

r
⟩�1

r
⟩)

ABCDEF

=
1

8
[(�0

r
⟩
A
�0

r
⟩
B
�0

r
⟩
E
�0

r
⟩
F
+ �0

r
⟩
A
�1

r
⟩
B
�1

r
⟩
E
�0

r
⟩
F
− �1

r
⟩
A
�0

r
⟩
B
�0

r
⟩
E
�1

r
⟩
F
−

�1
r
⟩
A
�1

r
⟩
B
�1

r
⟩
E
�1

r
⟩
F
)�Φ−⟩

CD
+ (�0

r
⟩
A
�0

r
⟩
B
�0

r
⟩
E
�1

r
⟩
F
− �0

r
⟩
A
�1

r
⟩
B
�1

r
⟩
E
�1

r
⟩
F
−

�1
r
⟩
A
�0

r
⟩
B
�0

r
⟩
E
�0

r
⟩
F
+ �1

r
⟩
A
�1

r
⟩
B
�1

r
⟩
E
�0

r
⟩
F
)�Ψ+⟩

CD
+ (�0
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⟩
A
�0

r
⟩
B
�1

r
⟩
E
�0

r
⟩
F
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�0
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A
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r
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B
�0

r
⟩
E
�0

r
⟩
F
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r
⟩
A
�0
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⟩
B
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r
⟩
E
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r
⟩
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⟩
A
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⟩
B
�0

r
⟩
E
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r
⟩
F
)�Ψ−⟩

CD
+

(�0
r
⟩
A
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r
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B
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r
⟩
E
�1

r
⟩
F
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⟩
A
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r
⟩
B
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r
⟩
E
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⟩
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qubits and then notifies Alice of the results. In this way, Alice can calculate the error 
rate. If the error rate is lower than predetermined threshold, go to Step 4. Otherwise, 
quantum channels are bugged. Abort the protocol and restart from Step 1.

Step 4	 After removing the decoy logical qubits, the sequences S′
A
 , S′

B
 , S′

E
 , and S′

F
 are restored 

to SA, SB, SE and SF. Alice carries out the Bell measurement on each pair of the cor-
responding particles in sequences SC and SD, and Bob carries out the Bell measure-
ments on particles A1 and A2 in SA, B1 and B2 in SB, E1 and E2 in SE, F1 and F2 in SF. 
The encoding scheme agreed upon by Alice and Bob is

Like the first protocol, all the Bob’s measurement results are coded as 
M = M1 ∥ M2 ∥ ⋯ ∥ Mn, where Mi is the code of Bob’s ith measurement result (i = 1, 2, ···, n). 
Table 3 shows the measurement results and corresponding values.

When Bob finally publishes the Bell measurement results for A1 and A2 in SA, B1 and 
B2 in SB, Alice and Bob can deduce each other’s results. That is, they share a classic bit 
string M.

(9)

∣ �+
⟩
A
1
A
2
∣ �+

⟩
B
1
B
2
∣ �+

⟩
E
1
E
2
∣ �+

⟩
F
1
F
2
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⟩
A
1
A
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∣ �+

⟩
B
1
B
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∣ �+

⟩
E
1
E
2
∣ �−

⟩
F
1
F
2
→ 0001,

∣ �+
⟩
A
1
A
2
∣ �+

⟩
B
1
B
2
∣ �−

⟩
E
1
E
2
∣ �+

⟩
F
1
F
2
→ 0010, ∣ �+

⟩
A
1
A
2
∣ �+

⟩
B
1
B
2
∣ �−

⟩
E
1
E
2
∣ �−

⟩
F
1
F
2
→ 0011,
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⟩
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⟩
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⟩
E
1
E
2
∣ �+

⟩
F
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⟩
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∣ �−

⟩
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B
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⟩
E
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E
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∣ �−

⟩
F
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F
2
→ 0101,

∣ �+
⟩
A
1
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∣ �−

⟩
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B
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∣ �−

⟩
E
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E
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∣ �+

⟩
F
1
F
2
→ 0110, ∣ �+

⟩
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1
A
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∣ �−

⟩
B
1
B
2
∣ �−

⟩
E
1
E
2
∣ �−

⟩
F
1
F
2
→ 0111,
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⟩
A
1
A
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∣ �+

⟩
B
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B
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⟩
E
1
E
2
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⟩
F
1
F
2
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⟩
A
1
A
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⟩
B
1
B
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⟩
E
1
E
2
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⟩
F
1
F
2
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⟩
A
1
A
2
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⟩
B
1
B
2
∣ �−

⟩
E
1
E
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∣ �+

⟩
F
1
F
2
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⟩
A
1
A
2
∣ �+

⟩
B
1
B
2
∣ �−

⟩
E
1
E
2
∣ �−

⟩
F
1
F
2
→ 1011,

∣ �−
⟩
A
1
A
2
∣ �−

⟩
B
1
B
2
∣ �+

⟩
E
1
E
2
∣ �+

⟩
F
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F
2
→ 1100, ∣ �−

⟩
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A
2
∣ �−

⟩
B
1
B
2
∣ �+

⟩
E
1
E
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⟩
F
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⟩
A
1
A
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⟩
B
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B
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⟩
E
1
E
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⟩
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⟩
B
1
B
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⟩
E
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⟩
F
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→ 1111

Table 3   Measurement results and 
corresponding values

Alice’s measure-
ment result

Bob’s measurement result Mi

∣Φ−〉 ∣ Φ+
⟩
A
1
A
2
∣ Φ+

⟩
B
1
B
2
∣ Φ+

⟩
E
1
E
2
∣ Φ+

⟩
F
1
F
2

0000
∣Φ−〉 ∣ Φ+

⟩
A
1
A
2
∣ Ψ−

⟩
B
1
B
2
∣ Ψ−

⟩
E
1
E
2
∣ Φ+

⟩
F
1
F
2

0110
∣Φ−〉 ∣ Ψ−

⟩
A
1
A
2
∣ Φ+

⟩
B
1
B
2
∣ Φ+

⟩
E
1
E
2
∣ Ψ−

⟩
F
1
F
2
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∣Φ−〉 ∣ Ψ−

⟩
A
1
A
2
∣ Ψ−

⟩
B
1
B
2
∣ Ψ−

⟩
E
1
E
2
∣ Ψ−

⟩
F
1
F
2
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∣Ψ+〉 ∣ Φ+

⟩
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⟩
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⟩
F
1
F
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⟩
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⟩
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⟩
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⟩
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⟩
E
1
E
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⟩
F
1
F
2
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⟩
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A
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1
B
2
∣ Ψ−

⟩
E
1
E
2
∣ Φ+

⟩
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1
F
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⟩
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A
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⟩
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1
B
2
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⟩
E
1
E
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⟩
F
1
F
2
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⟩
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A
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⟩
B
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B
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⟩
E
1
E
2
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⟩
F
1
F
2
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⟩
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⟩
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B
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⟩
E
1
E
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⟩
F
1
F
2
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⟩
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A
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⟩
B
1
B
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⟩
E
1
E
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⟩
F
1
F
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1
B
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1
E
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⟩
F
1
F
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A
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⟩
B
1
B
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⟩
E
1
E
2
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⟩
F
1
F
2
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⟩
A
1
A
2
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⟩
B
1
B
2
∣ Ψ−

⟩
E
1
E
2
∣ Φ+

⟩
F
1
F
2
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⟩
A
1
A
2
∣ Ψ−

⟩
B
1
B
2
∣ Φ+

⟩
E
1
E
2
∣ Φ+

⟩
F
1
F
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1100



International Journal of Theoretical Physics (2023) 62:235	

1 3

Page 11 of 16  235

Step 5	 According to the key KA, Alice lets i1i2 = Ki
A12

 and i3i4 = Ki
A34

 (i = 1, 2, … , n). Then 
Alice performs the unitary operation Ui1i2

 on the ith particle in SD to obtain the new 
sequence S∗

D
 . By matching two particles in SC and S∗

D
 , a new Bell state is produced in 

this manner. In accordance with the new Bell state, Alice prepares the relevant logical 
Bell state �r⟩C1C2D1D2

 . Then Alice performs the unitary operation Ui3i4
 on the ith par-

ticle in S∗
D
 to obtain the new sequence S∗(1)

D
 . The corresponding two particles in SC and 

S
∗(1)

D
 constitute a new Bell state. Similarly, Alice prepares the corresponding logical 

Bell state ∣ �∗
r
⟩
C
1
,C

2
,D

1
,D

2
 . The four logical Bell states [37] are described as follows:

Alice divides the logical Bell state ��r⟩C1C2D1D2
 into two ordered sequences S(1)

D
 and 

S
(1)

D
 , consisting of logical qubits C (two physical qubits C1 and C2) and logical qubits 

D (two physical qubits D1 and D2), respectively. Likewise, the logical Bell state 
∣ �∗r⟩C1C2D1D2

 is also divided into two ordered sequences S(2)
C

 and S(2)
D

 . Then Alice per-
forms a permutation operator ∏n on S(1)

C
 and S(2)

C
 to get two random sequences S(1)∗

C
 and 

S
(2)∗

C
 . Alice randomly selects the decoy logical qubits and inserts them into S(1)∗

C
 , S(1)

D
 , 

S
(2)∗

C
 and S(2)

D
 to generate the sequences S(1)∗

C

�
 , S(1)

D

�
 , S(2)∗

C

�
 and S(2)

D

�
 , in which the decoy 

logical qubits are randomly taken from the set {�0r⟩, �1r⟩, �+r⟩, �−r⟩}  . Alice sends the 
sequences S(1)∗

C

�
 , S(1)

D

�
 , S(2)∗

C

�
 and S(2)

D

�
 to Bob.

Step 6	 These steps resemble steps 6-8 of the protocol against collective-dephasing noise.

3.3 � Correctness Analysis of Two Protocols

Reference [38] proved that logical states ∣0dp〉 and ∣1dp〉 can resist collective-dephasing 
noise, while logical states ∣0r〉 and ∣1r〉 can resist collective-rotation noise. Afterwards, 
Kwiat et al. [39] verified the noise resistance of logical qubits in DFS through experiments. 
Walton et al [16] first proposed the use of logical qubits to implement quantum key distri-
bution under collective noise.

(10)

∣ �+
r
⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0r⟩�0r⟩ + �1r⟩�1r⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��+⟩��+⟩ + ��−⟩��−⟩

�
C
1
D

1
C
2
D

2

∣ �−
r
⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0r⟩�0r⟩ − �1r⟩�1r⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��−⟩��−⟩ + ��+⟩��+⟩

�
C
1
D

1
C
2
D

2

∣ �+
r
⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0r⟩�1r⟩ + �1r⟩�0r⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��−⟩��+⟩ − ��+⟩��−⟩

�
C
1
D

1
C
2
D

2

∣ �−
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⟩C

1
C
2
D

1
D

2
=

1√
2

�
�0r⟩�1r⟩ − �1r⟩�0r⟩

�
C
1
C
2
D

1
D

2

=
1√
2

�
��+⟩��−⟩ − ��−⟩��+⟩

�
C
1
D

1
C
2
D
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Take the first protocol as an example, we replace the qubits to be transmitted with the cor-
responding logical states, that is

Therefore, the quantum source, decoy states, and Bell states undergo the following 
transformation in the protocol:

These transformed quantum states are unaffected in noisy channels. Among them, the 
logical six-particle entangled states and the logical Bell states can transmit information 
through entanglement swapping, and the logical decoy states can be used as eavesdropping 
checks. Consequently, our protocols are working.

4 � Security Analysis

Since all the transmitted particles are logical states, the above protocols can resist col-
lective-dephasing noise and collective-rotation noise, respectively. Next, we analyze the 
impact of malicious attacks on protocols. QKA protocols are mainly involved in two types 
of attacks: internal and external attacks. In order to demonstrate the security of the proto-
cols, we will discuss both types of attacks separately.

4.1 � Internal Attack

Because of delayed measurement technology, Bob can only infer KA after announcing 
K�
B
= KB ⊕M . As a result, he is unable to use the key KA to manipulate the key KB, which 

prevents him from carrying out the internal attack. Before sending the encoded message 
qubits, Alice is unaware of the key KB; therefore, she would not alter KA depending on it. 
So Alice’s internal attack is invalid.

4.2 � External Attack

External attack can be subdivided into the Trojan horse attacks, the intercept-resend attack, 
and the entangle-measure attack. Supposing Eve is an external attacker, she must eaves-
drop on the values of M and KA to acquire the shared key. The following is a detailed analy-
sis of three primary attack strategies.

Trojan horse attacks Since these two protocols are unidirectional QKA protocols, all 
particle sequences are transmitted just once in quantum channels. No opportunity exists 
for Eve to retrieve spy photons from particle sequences. In other words, the two proto-
cols can immunize Trojan horse attacks without using any specific detection device.
Intercept-resend attack Eve intends to execute an intercept-resend attack on the 
sequences S′

A
 , S′

B
 , S′

E
 , and S′

F
 transmitted in quantum channels. She has to intercept these 

sequences and send pseudo-random sequences to Bob. Nonetheless, Eve is uninformed 

(11)∣ 0
⟩
→∣ 0dp

⟩
, ∣ 1

⟩
→∣ 1dp

⟩

(12)
∣ �

�
ABCDEF →∣ �dp

�
ABCDEF

{�0⟩, �1⟩, �+⟩, �−⟩} →

�
�0dp⟩, �1dp⟩, �+dp⟩, �−dp⟩

�

∣ �+
�
→∣ �+

dp

�
∣ �−

�
→∣ �−

dp

�
∣ �+

�
→∣ �+

dp

�
∣ �−

�
→∣ �−

dp

�
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of the decoy logical qubit’s position and matched measurement basis before the eaves-
dropping check. Therefore Eve has only a 25% probability of successfully measuring 
the value of the decoy logical qubit. Assuming that the number of decoy logical qubits 
prepared for each sequence is λ, the probability of detecting eavesdropping is 1 − (3/4)λ, 
which shows that the participant can easily detect the eavesdropper’ presence when 
λ is large enough. Once the eavesdropper is detected, this protocol is terminated and 
restarted. As a result, it is almost impossible for Eve to get the final key via the inter-
cept-resend attack.
Entangle-measure attack Assuming Eve is motivated to make an entangle-measure 
attack on the two QKA protocols with her prepared auxiliary photon ∣p〉, she is likely to 
perform the unitary operation U on the intercepted qubit to entangle it with the auxiliary 
photon. Taking the QKA protocol immune to collective-dephasing noise as an example, 
the evolution process of the quantum system is as follows:

where |a00|2 + |a01|2 + |a10|2 + |a11|2 = |b00|2 + |b01|2 + |b10|2 + |b11|2 = 1, a00,a01,a10,a11,b00,b01, 
b10 and b11 denote the vector parameters of U, ∣p00〉,∣p01〉,∣p10〉,∣p11〉,∣ p�00⟩,∣ p

�
01
⟩,∣ p�

10
⟩ 

and ∣ p�
11
⟩ denote the states of the probe space. For the eavesdropping to go undetected, 

Eve’s operation U must meet three conditions:a00 = a10 = a11 = 0, b00 = b01 = b11 = 0, and 
a01 ∣ p01

⟩
= b10 ∣ p

�
10

⟩
 . Clearly, Eve introduces no error only when the auxiliary photon and 

the target particle are product states. That is, she just gets meaningless information on KA 
and KB. These two protocols are resistant to external attacks.

5 � Efficiency Analysis

Efficiency is an important factor limiting the large-scale application of QKA protocols. In 
the literature [40], Cabello defines qubit efficiency as � =

nk

nq+nc
 , where nk, nq, and nc denote 

the length of the final generated key, the number of qubits used, and the number of classi-
cal bits used, respectively. In our two protocols, it is assumed that n is the number of 

(13)

U�0dp⟩�p⟩ = a
00
�00⟩�p

00
⟩ + a

01
�01⟩�p

01
⟩ + a

10
�10⟩�p
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⟩ + a

11
�11⟩�p

11
⟩,

U�1dp⟩�p⟩ = b
00
�00⟩�p�

00
⟩ + b
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�01⟩�p�

01
⟩ + b

10
�10⟩�p�

10
⟩ + b

11
�11⟩�p�

11
⟩,

U�+dp⟩�p⟩ = 1∕
√
2(U�0dp⟩�p⟩ + U�1dp⟩�p⟩)

=1∕2[�Φ+⟩(a
00
�p

00
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11
�p

11
⟩ + b

00
�p�
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�p�

11
⟩)+

�Φ−⟩(a
00
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11
�p

11
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00
�p�
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�p�

11
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01
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√
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logical six-particle entangled states and m is the number of decoy logical qubits inserted in 
each transmitted quantum sequence.

Take the protocol immune to collective-dephasing noise as an example. According to Eq. (5), 
each logical quantum state ∣ψdp〉ABCDEF  is transformed into ∣ 𝜓

⟩
A1B1CDE1F1

⊗ ∣ 1111
⟩
A2B2E2F2

 , 
ultimately only six particles, A1, B1, C, D, E1, and F1, are used, totaling 6n qubits. In Step 5, 
Alice uses n logical Bell states ∣ �dp⟩C1C2D1D2

 and n logical Bell states ∣ �∗dp⟩C1C2D1D2
 , totaling 

(4n+4n) qubits. For the eavesdropping checks, Alice inserts m decoy logical states into each of 
the four sequences in Step 2, and the same applies in Step 5. Each decoy logical state consists of 
two particles, totaling (8m+8m) qubits. So the number of qubits used is nq = (6n + 4n + 4n) + (8
m + 8m). In Step 4 and Step 7, Bob publishes the measurement result for particles A1and B1, as 
well as the result for K�

B
= KB ⊕M =

(
K1

B
⊕M1

)
∥
(
K2

B
⊕M2

)
∥ ⋯ ∥

(
Kn
B
⊕Mn

)
 , respec-

tively. Therefore, the number of classical bits used is nc = (2n + 4n).
Thus, the qubit efficiency of the protocols is � =

8n

(6n+4n+4n+8m+8m+2n+4n)
 . Let m = n, we 

have η = 22.22%.
Table 4 compares our protocols with the current representative two-party protocols for 

immunity to collective noise, indicating that our protocols have higher qubit efficiency.

6 � Conclusion

On the basis of logical six-particle entangled states, this study presents two QKA protocols 
against different types of collective noise. At first, a significant advantage of proposed pro-
tocols is that only Bell or ZZZZ-basis measurements are required for quantum states. The 
equipment used in these two measurement methods is relatively simple and easy to realize 
under current conditions. In addition, security analysis demonstrates that the two protocols 
can also resist internal and external attacks. Lastly, we compute both protocols’ qubit effi-
ciency, and the results are relatively high.
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Table 4   Comparison with other similar protocols

QKA protocol Quantum resource Measurement basis Efficiency(%)

Huang’s [20] EPR pairs Z-basis and X-basis 16.67
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Zhou’s [25] Logical GHZ states ZZ-basis and Bell basis 21.05
Ours logical six-particle entan-

gled states
ZZZZ-basis and Bell basis 22.22
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