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Abstract
Quantum convolutional codes, which are the correct generalization to quantum domain of
their classical analogs, were introduced to overcome decoherence during long distance quan-
tum communications. In this paper, we construct some classes of quantum convolutional
codes via classical constacyclic codes. These codes are maximum-distance-separable (MDS)
codes in the sense that they achieve the Singleton bound for pure convolutional stabilizer
codes. Furthermore, compared with some of the codes available in the literature, our codes
have better parameters and are more general.

Keywords Quantum convolutional codes · Constacyclic codes · Negacyclic codes ·
MDS codes

1 Introduction

Quantum convolutional codes were first introduced by Chau in [3, 4], and then Ollivier and
Tillich [21] gave the stabilizer framework for such codes, encoding and decoding methods of
quantum convolutional codeswere also described. Similar to quantum codes, the construction
of quantum convolutional codes with good properties is also an interesting task. Many quan-
tum convolutional codes had been constructed by various methods. Almeida and Palazzo [9]
constructed a concatenated quantumconvolutional codewith parameters [(4, 1, 3)]. Quantum
convolutional codes of rate (n − 2)/n had been constructed from self-orthogonal classical
convolutional codes by Forney et al. in [10], which also have low decoding complexity.
Grassl and Rötteler [11] constructed some quantum convolutional codes via product codes,
and they also presented an algorithm for non-catastrophic encoders in [12].Tan and Li [22]
constructed quantum convolutional codes through LDPC codes. Wilde and Brun [24] used
two arbitrary binary convolutional codes to construct entanglement-assisted quantum con-
volutional codes. As quantum codes, the parameters of quantum convolutional codes are
mutually restricted. Aly et al. [2] established the Singleton bound for pure convolutional
stabilizer codes, and a class of quantum convolutional codes achieves such bound is derived
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from generalized Reed-Solomon codes. Later, La Guardia [17] constructed several classes
of optimal quantum convolutional codes via BCH codes using an algebraic method. Due to
the rich algebraic structure and efficient encoding and decoding circuits, constacyclic codes
including cyclic codes and negacyclic codes are preferred objects on the construction of
quantum convolutional codes. Lots of quantum convolutional codes with good parameters
had been constructed from them (please see [1, 8, 14, 25] and the references therein). Partic-
ularly, many quantum MDS convolutional codes had been constructed. Among the obtained
results, the lengths of these quantum MDS convolutional codes divide q2 − 1 (please see [7,
8, 25, 28]) or q2 + 1 (please see [5–7, 18–20, 25, 26, 28]).

Going on the line of the above studies, we construct eight classes of quantum MDS
convolutional codes via classical constacyclic codes (including negacyclic codes). Precisely
speaking, for any odd prime power q , the quantum MDS convolutional codes have the
following parameters.

– [( q2+1
ρ

,
q2+1

ρ
− 4δ + 2, 1; 2, 2δ + 2)]q , where q = 2ρm + 2a + 1, ρ = a2 + (a + 1)2,

a and m are positive integers, and 2 ≤ δ ≤ (2a+1)q+1
2ρ − 1.

– [( q2+1
ρ

,
q2+1

ρ
− 4δ + 2, 1; 2, 2δ + 2)]q , where q = 2ρm − 2a − 1, ρ = a2 + (a + 1)2,

a and m are positive integers, and 2 ≤ δ ≤ (2a+1)q−1
2ρ − 1.

– [( q2−1
μ

,
q2−1

μ
−2δ, 1; 1, δ+2)]q , where q = μm+�,μ = �2−1,m is a positive integer,

� is a positive odd integer, and 2 ≤ δ ≤ �m − 1.

– [( q2−1
μ

,
q2−1

μ
−2δ, 1; 1, δ+2)]q , where q = μm−�,μ = �2−1,m is a positive integer,

� is a positive odd integer, and 2 ≤ δ ≤ (� − 1)m − 3.

– [( q2−1
μ

,
q2−1

μ
− 2δ, 1; 1, δ + 2)]q , where q = μm + �, μ = �2−1

2 , � ≡ 1(mod4), m is a
positive integer, � is a positive odd integer, and 2 ≤ δ ≤ �m.

– [( q2−1
μ

,
q2−1

μ
− 2δ, 1; 1, δ + 2)]q , where q = μm + �, μ = �2−1

2 , � ≡ 3(mod4), m is a

positive integer, � is a positive odd integer, and 2 ≤ δ ≤ �+1
2 m − 1.

– [( q2−1
μ

,
q2−1

μ
− 2δ, 1; 1, δ + 2)]q , where q = μm − �, μ = �2−1

2 , � ≡ 1(mod4), m is a

positive integer, � is a positive odd integer, and 2 ≤ δ ≤ �−1
2 m − 3.

– [( q2−1
μ

,
q2−1

μ
− 2δ, 1; 1, δ + 2)]q , where q = μm − �, μ = �2−1

2 , � ≡ 3(mod4), m is a
positive integer, � is a positive odd integer, and 2 ≤ δ ≤ �m − 4.

The paper is organized as follows. In Section 2,we recall some basic results of constacyclic
codes. In Section 3, we state some notations and results about quantum convolutional codes.
In Sections 4 and 5, we give the constructions of quantum MDS convolutional codes based

on classical constacyclic codes of length q2+1
ρ

and classical negacyclic codes of length q2−1
μ

,
respectively. A conclusion is given in Section 6.

2 Constacyclic Codes

In this paper, we will consider the codes under the Hermitian inner product. Let Fq2 be the
finite field with q2 elements, where p is an odd prime number and q is a power of p. A
linear code C over Fq2 of length n with dimension k and minimum distance d , denoted as
[n, k, d]q2 , is a linear subspace of Fn

q2
. The parameters of such codes satisfy the well-known

Singleton bound: d ≤ n−k+1. If d achieves such bound, then C is called anMDS code. For
any two vectors x = (x0, x1, . . . , xn−1), and y = (y0, y1, . . . , yn−1) ∈ F

n
q2
, the Hermitian
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inner product is defined as

〈x, y〉H := x0y
q
0 + x1y

q
1 + · · · + xn−1y

q
n−1.

If 〈x, y〉H = 0, then the vectors x and y are called orthogonal with respect to the Hermitian
inner product. The Hermitian dual code C⊥H of C is defined as

C⊥H := {x ∈ F
n
q2 |〈x, y〉H = 0 for all y ∈ C }.

It is easy to see that C⊥H is also a linear code, which has dimension n − dim(C ).
For any nonzero element λ ∈ Fq2 , defining a map

ϕ : Fn
q2 −→ F

n
q2 ,

(c0, c1, . . . , cn−1) 	−→ (λcn−1, c0, . . . , cn−2).

If ϕ(C ) = C , then C is called a λ-constacyclic code. In the case λ = 1, C is a cyclic code,
while in the case λ = −1, C is the so-called negacyclic code. Defining the following map

ψ : Fn
q2 −→ R = Fq2 [x]

〈xn − λ〉 ,

(c0, c1, . . . , cn−1) 	−→ c0 + c1x + c2x
2 + · · · + cn−1x

n−1.

Then C is a λ-constacyclic code if and only if ψ(C ) = {ψ(c)|c ∈ C )} is an ideal of the
quotient ring R. As we know, R is a principal ideal ring. Assume that C = 〈 f (x)〉 is a
λ-constacyclic code of length n over Fq2 , where f (x) is a monic polynomial of minimal
degree in C . Then f (x)|(xn − λ) and f (x) is called the generator polynomial of C . The
dimension of C is n − deg( f (x)).

Assume that gcd(n, q) = 1, the order of λ is r , i.e., ord(λ) = r , and the multiplicative
order of q2 modulo rn is u, i.e., ordrn(q2) = u. Then there is a primitive rn-th root of
unity ξ ∈ Fq2u such that ξn = λ, which implies that xn − λ = ∏n−1

i=0 (x − ξ1+ri ). Let
Zn = {0, 1, 2, . . . , n − 1} be the ring of integers modulo n and Zrn be the ring of integers
modulo rn. Suppose that mi (x) is the minimal polynomial of ξ1+ri over Fq2 . If C = 〈 f (x)〉
is a λ-constacyclic code of length n over Fq2 , then there is a subset Ω ⊆ Zn such that
f (x) = ∏

i∈Ω mi (x). For every i ∈ Zrn , the q2-cyclotomic coset of i modulo rn is defined
by

Ci := {iq2l(modrn)|0 ≤ l ≤ li − 1},
where li is the smallest positive integer such that i ≡ iq2li (mod rn). Let Z = {i ∈
Zrn | f (ξ i ) = 0}. The set Z is called the defining set of C . It is clear that Z is a union of
some q2-cyclotomic cosets and dim(C ) = n − |Z |, where |Z | means the cardinality of the
set Z . As we know, it is hard to know the exact value of the distance of code C , but it can
be estimated by the following well-known bound.

Theorem 1 (BCH bound) [16] Let δ be an integer in the range 2 ≤ δ ≤ n. Assume that C
is a λ-constacyclic code of length n over Fq2 with defining set Z . If Z consists of δ − 1
consecutive elements, then d(C ) ≥ δ.

The following lemma gives a parity-check matrix of C , which will play an important role
in our construction.

Lemma 1 [16, 19] Assume that λ ∈ F
∗
q2
, ord(λ) = r , and ordrn(q2) = u. Taking a primitive

rn-th root of unity β ∈ Fq2u such that βn = λ. Suppose that C is a λ-constacyclic code of
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length n over Fq2 with defining setZ = ⋃δ−2
i=b C1+ri , where b is a nonnegative integer. Then

a parity-check matrix of C can be obtained from the matrix

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 β1+rb β2(1+rb) · · · β(n−1)(1+rb)

1 β1+r(b+1) β2[1+r(b+1)] · · · β(n−1)[1+r(b+1)]
...

...
...

...
...

1 β1+r(δ−3) β2[1+r(δ−3)] · · · β(n−1)[1+r(δ−3)]
1 β1+r(δ−2) β2[1+r(δ−2)] · · · β(n−1)[1+r(δ−2)]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

by expanding each entry as a column vector which contains u rows with respect to certain
Fq2 -basis of Fq2u and then removing any linearly dependent rows.

3 Quantum Convolutional Codes

In this section, we recall some basic notations and results about classical convolutional codes
and quantum convolutional codes over finite fields. Let Fq2 [D] be the polynomial ring in the
indeterminate D with coefficients in Fq2 and G(D) be a k × n matrix over Fq2 [D]. G(D)

is called basic if G(D) has a polynomial right inverse. A basic polynomial generator matrix
G(D) is called reduced if the overal constraint length γ = ∑k

i=1 γi attains the minimal value
among all basic generator matrices of the convolutional code V .

Definition 1 [2] A rate k/n convolutional code V with parameters (n, k, γ ;υ, d f )q2 is a
submodule ofFq2 [D]n generated by a reduced basic matrixG(D) = (gi j (D)) ∈ Fq2 [D]k×n ,
that is, V = {u(D)G(D)|u(D) ∈ Fq2 [D]k}, where n is the length, k is the dimension,

γi = max
1≤ j≤n

{deg gi j (D)} is the i-th row degree, γ = ∑k
i=1 γi is the degree, υ = max

1≤i≤k
{γi }

is the memory and d f = min{wt(v(D))|v(D) ∈ V , v(D) 
= 0} is the free distance of V .
Here, wt(v(D)) = ∑n

i=1 wt(vi (D)), where wt(vi (D)) is the number of nonzero coefficients
of vi (D).

Given any two n-tuples u(D) = ∑
i ui D

i and v(D) = ∑
i vi D

i in Fq2 [D]n , their Hermitian
inner product is defined as 〈u(D)|v(D)〉H = ∑

i ui · vqi , where ui , vi ∈ F
n
q2

and vqi =
(v

q
i1
, v

q
i2
, . . . , v

q
in

). The Hermitian dual code V ⊥H of a convolutional code V is defined as

V ⊥H = {u(D) ∈ Fq2 [D]n |〈u(D)|v(D)〉H = 0 for all v(D) ∈ V }.

The following lemma presents a relationship between V and V ⊥H .

Lemma 2 [28] If V is an (n, k, γ )q2 convolutional code, then V ⊥H is an (n, n − k, γ )q2

convolutional code.
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As we know, convolutional codes can be constructed from block codes. Let C be an
[n, k, d]q2 linear codewith parity-checkmatrix H . Splitting H into υ+1 disjoint submatrices
Hi such that

H =

⎛

⎜
⎜
⎜
⎝

H0

H1
...

Hυ

⎞

⎟
⎟
⎟
⎠

, (1)

where each Hi has n columns. Let κ be the largest number of rows among all the matrices
Hi , where 0 ≤ i ≤ υ. Each matrix Hi is enlarged to a matrix H̃i by adding zero-rows at the
bottom such that H̃i has κ rows in total. Let

G(D) = H̃0 + H̃1D + · · · + H̃υD
υ . (2)

Then G(D) generates a convolutional code V . The parameters of V can be derived from the
following theorem.

Theorem 2 [1] Let C be an [n, k, d]q2 linear code with parity-check matrix H ∈ F
(n−k)×n
q2

.
Suppose that H is partitioned into submatrices H0, H1, . . . , Hυ as in (1) such that κ =
rank(H0) and rank(Hi ) ≤ κ for 1 ≤ i ≤ υ. Let G(D) be defined as in (2), and the
convolutional code V = {u(D)G(D)|u(D) ∈ Fq2 [D]n−k}. Then we can get

(i) The matrix G(D) is a reduced basic generator matrix.
(ii) If C⊥H ⊆ C , then V ⊆ V ⊥H .

(iii) Let d f and d
⊥H
f be the free distance of V and V ⊥H , respectively. Let di be the minimum

Hamming distance of the code Ci = {c ∈ F
n
q2

|cH̃ T
i = 0}, and let d⊥H be the minimum

Hamming distance of C⊥H . Then min{d0 + dυ, d} ≤ d⊥H
f ≤ d and d f ≥ d⊥H .

Quantum convolutional codes are defined as infinite versions of quantum stabilizer codes.
The stabilizer can be defined by a matrix with polynomial entries

S(D) = (X(D)|Z(D)) ∈ Fq [D](n−k)×2n,

which satisfies X(D)Z(1/D)T − Z(D)X(1/D)T = 0. If a quantum convolutional codeQ is
generated by the full-rank stabilizer matrix S(D), thenQ has parameters [(n, k, υ; γ, d f )]q ,
where n is the frame size, k is the number of logical qudits per frame, γ is the degree, υ =
max1≤i≤n−k,1≤ j≤n{max{deg Xi j (D), deg Zi j (D)}} is thememory, and d f is the free distance
ofQ. It had already been shown in [2] that the free distance of a quantum convolutional code
Q must satisfy the following version of the Singleton bound.

Theorem 3 The free distance of an [(n, k, υ; γ, d f )]q Fq2 -linear pure convolutional stabi-
lizer code is bounded by

d f ≤ n − k

2

(⌊
2γ

n + k

⌋

+ 1

)

+ γ + 1.

If the free distance d f of the quantum convolutional code Q attains such bound, then Q
is called a quantum MDS convolutional code. Actually, it is not an easy task to construct
quantum MDS convolutional codes. The following theorem gives a connection between
classical convolutional codes and quantum convolutional codes.
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Theorem 4 [1] Let V be an (n, (n− k)/2, γ ;υ)q2 convolutional code such that V ⊆ V ⊥H .

Then there exists an [(n, k, υ; γ, d f )]q convolutional stabilizer code, where d f = wt(V ⊥H \
V ).

From the aforementioned theorem, we can apply Hermitian self-orthogonal convolutional
codes over Fq2 to construct quantum convolutional codes. In this paper, we first use consta-
cyclic codes and negacyclic codes to construct someHermitian self-orthogonal convolutional
codes and then some quantumMDS convolutional codes are derived from such convolutional
codes.

4 QuantumMDS Convolutional Codes of Length q2+1
�

Let η ∈ F
∗
q2

and ord(η) = q + 1. In this section, we will construct some quantum MDS

convolutional codes of length n = q2+1
ρ

via η-constacyclic codes, where ρ = a2 + (a + 1)2,
and a is a positive integer. As n should be an integer, it can be easily obtained that q is a
prime power with the form q = ρm + 2a + 1 or q = ρm − 2a − 1, where m is a positive
integer. Here we only consider q being odd with the form q = 2ρm ± (2a + 1). In order to
proceed further, we first recall some relevant results shown in the literature.

Lemma 3 [15] Let n = q2+1
ρ

, s = q2+1
2 , and ρ be odd. Then all cyclotomic cosets modulo

(q + 1)n containing 1 + (q + 1)i are as follows:

(1) Cs = {s} and Cs± q+1
2 n = {s ± q+1

2 n}.
(2) Cs−(q+1)i = {s − (q + 1)i, s + (q + 1)i} for 1 ≤ i ≤ n/2 − 1.

Lemma 4 Let q be an odd prime power with the form q = 2ρm + 2a + 1, where ρ =
a2 + (a + 1)2, and a,m are positive integers. Let n = q2+1

ρ
, s = q2+1

2 . If C is an η-

constacyclic code of length n over Fq2 with defining set Z = ⋃δ
j=0 Cs−(q+1) j , where

0 ≤ δ ≤ (2a+1)q+1
2ρ − 1, then C⊥H ⊆ C .

Proof The case a ≥ 2 had been proved in [13], while the case a = 1 had been proved in
[27]. Hence, the result is true. ��
Lemma 5 Let n = q2+1

ρ
and q be an odd prime power with the form q = 2ρm+2a+1, where

ρ = a2+(a+1)2, and a,m are positive integers. Then there exists an (n, n−2δ+1, 2; 1, 2δ+
2)q2 convolutional code which contains its Hermitian dual, where 2 ≤ δ ≤ (2a+1)q+1

2ρ − 1.

Proof According to Lemma 3, the order of q2 modulo (q + 1)n is equal to 2. Suppose
that β ∈ Fq4 is a primitive (q + 1)n-th root of unity such that βn = η. Let C be an

η-constacyclic code of length n over Fq2 with defining set Z = ⋃δ
j=0 Cs−(q+1) j , where

2 ≤ δ ≤ (2a+1)q+1
2ρ − 1. By Lemma 1, the parity-check matrix of C , denoted by H , can be

obtained from the following matrix

HC =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 βs β2s · · · β(n−1)s

1 βs+(q+1) β2[s+(q+1)] · · · β(n−1)[s+(q+1)]
...

...
...

...
...

1 βs+(δ−1)(q+1) β2[s+(δ−1)(q+1)] · · · β(n−1)[s+(δ−1)(q+1)]
1 βs+δ(q+1) β2[s+δ(q+1)] · · · β(n−1)[s+δ(q+1)]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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by expanding each entry as a column vector which contains 2 rows with respect to certain
Fq2 -basis of Fq4 and then removing any linearly dependent rows. Hence, H has rank 2δ + 1.
Note that C is an MDS code with parameters [n, n− 2δ − 1, 2δ + 2]. Moreover, C⊥H is also
an MDS code with parameters [n, 2δ + 1, n − 2δ].

Suppose that C0 is an η-constacyclic code of length n over Fq2 with defining set Z0 =
⋃δ−1

j=0 Cs−(q+1) j , where 2 ≤ δ ≤ (2a+1)q+1
2ρ − 1. Then C0 is an MDS code with parameters

[n, n − 2δ + 1, 2δ], and its Hermitian dual code C⊥H
0 is also an MDS code with parameters

[n, 2δ − 1, n − 2δ + 2]. Furthermore, the parity-check matrix of C0, denoted by H0, can be
obtained from the following matrix

HC 0 =

⎛

⎜
⎜
⎜
⎝

1 βs β2s · · · β(n−1)s

1 βs+(q+1) β2[s+(q+1)] · · · β(n−1)[s+(q+1)]
...

...
...

...
...

1 βs+(δ−1)(q+1) β2[s+(δ−1)(q+1)] · · · β(n−1)[s+(δ−1)(q+1)]

⎞

⎟
⎟
⎟
⎠

,

by expanding each entry as a column vector which contains 2 rows with respect to certain
Fq2 -basis of Fq4 and then removing any linearly dependent rows. In fact, HC 0 is a submatrix
of HC , so H0 can be directly derived from the parity-check matrix H . Particularly, the rank
of H0 is 2δ − 1.

Suppose that C1 is an η-constacyclic code of length n over Fq2 with defining set Z1 =
Cs−(q+1)δ , where 2 ≤ δ ≤ (2a+1)q+1

2ρ − 1. Then C1 is an [n, n − 2] code with minimum
Hamming distance ≥ 2. The parity-check matrix of C1, denoted by H1, can be obtained by
expanding the following matrix

HC 1 = (
1, βs+δ(q+1), β2[s+δ(q+1)], · · · , β(n−1)[s+δ(q+1)]) ,

which also can be directly derived from the parity-check matrix H .
Due to the above construction, one can see that H has been partitioned into two submatrices

H0 and H1 such that

H =
(
H0

H1

)

.

Assume that G(D) = H̃0 + H̃1D, where H̃0 = H0 and H̃1 is obtained from H1 by
adding zero-rows at its bottom such that H̃1 has the same number of rows as H0. Due to
Theorem 2(i), G(D) is a reduced basic generator matrix, and the convolutional code V
generated by such matrix has dimension 2δ − 1 and degree 2. It follows from Lemma 2
that the Hermitian dual code V ⊥H has dimension n − 2δ + 1 and degree 2. According to
Theorem 2(iii), the free distance d⊥H

f of V ⊥H satisfies that min{d0 + d1, d} ≤ d⊥H
f ≤ d ,

where d0, d1 and d are the minimum Hamming distances of the constacyclic codes C0,C1

and C , respectively. Then we can get d⊥H
f = 2δ + 2. Hence, the convolutional code V ⊥H

has parameters (n, n − 2δ + 1, 2; 1, 2δ + 2)q2 . Finally, it follows from Theorem 2(ii) that V
is Hermitian self-orthogonal due to the fact that C⊥H ⊆ C .

The construction of quantum MDS convolutional codes can be given by using the above
lemma.

Theorem 5 Let n = q2+1
ρ

and q be an odd prime power with the form q = 2ρm + 2a + 1,

where ρ = a2 + (a + 1)2, and a,m are positive integers. Then there exists a quantum
MDS convolutional code with parameters [(n, n − 4δ + 2, 1; 2, 2δ + 2)]q , where 2 ≤ δ ≤
(2a+1)q+1

2ρ − 1.
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Proof Due to Lemma 5, a convolutional code V with parameters (n, 2δ − 1, 2; 1, d f )q2 can

be obtained, which also satisfies V ⊆ V ⊥H for any 2 ≤ δ ≤ (2a+1)q+1
2ρ − 1. According to

Theorem 2(iii), d f ≥ n − 2δ. It is easy to see that d⊥H
f = 2δ + 2 < n − 2δ. Therefore, a

quantum convolutional code with parameters [(n, n − 4δ + 2, 1; 2, 2δ + 2)]q can be derived
fromV due toTheorem4. Such quantumconvolutional code is a quantumMDSconvolutional
code due to the following fact:

n − k

2

(⌊
2γ

n + k

⌋

+ 1

)

+ γ + 1 = (2δ − 1)(0 + 1) + 2 + 1 = 2δ + 2 = d f .

Now we consider the case q = 2ρm − 2a − 1, where ρ = a2 + (a + 1)2, and a,m are
positive integers. Similar to Lemma 4, we also have the following result from [13] and [27].

Lemma 6 Let q be an odd prime power with the form q = 2ρm − 2a − 1, where ρ =
a2 + (a + 1)2, and a,m are positive integers. Let n = q2+1

ρ
, s = q2+1

2 . If C is an η-

constacyclic code of length n over Fq2 with defining set Z = ⋃δ
j=0 Cs−(q+1) j , where

0 ≤ δ ≤ (2a+1)q−1
2ρ − 1, then C⊥H ⊆ C .

Similar to the discussion of Lemma 5 and Theorem 5, we have the following results.

Lemma 7 Let n = q2+1
ρ

and q be an odd prime power with the form q = 2ρm−2a−1, where

ρ = a2+(a+1)2, and a,m are positive integers. Then there exists an (n, n−2δ+1, 2; 1, 2δ+
2)q2 convolutional code which contains its Hermitian dual, where 2 ≤ δ ≤ (2a+1)q−1

2ρ − 1.

Theorem 6 Let n = q2+1
ρ

and q be an odd prime power with the form q = 2ρm − 2a − 1,

where ρ = a2 + (a + 1)2, and a,m are positive integers. Then there exists a quantum
MDS convolutional code with parameters [(n, n − 4δ + 2, 1; 2, 2δ + 2)]q , where 2 ≤ δ ≤
(2a+1)q−1

2ρ − 1.

Remark 1 Let a = 1, then n = q2+1
5 . Quantum MDS convolutional codes of length q2+1

5
with q being an odd prime power had already been constructed in [28]. Comparing their
results with ours, one can easily see from Table 1 that our codes have larger free distances.
What’s more, our construction is more general.

Remark 2 Let a = 2, then n = q2+1
13 . Actually, quantumMDS convolutional codes of length

q2+1
13 with q being an odd prime power had already been studied in [20]. Comparing their

results with ours, one can easily see from Table 2 that our results coincide with theirs within
such length. Hence, our results can be seen as a generalization of theirs.

Table 1 Quantum MDS convolutional codes of length q2+1
5

Parameters [(n, k, υ; γ, d f )]q q Our δ δ in [28]

[( q2+1
5 ,

q2+1
5 − 4δ + 2, 1; 2, 2δ + 2)]q 20m + 3 2 ≤ δ ≤ 6m 2 ≤ δ ≤ 5m + 1

20m + 7 2 ≤ δ ≤ 6m + 1 2 ≤ δ ≤ 5m + 2

20m − 3 2 ≤ δ ≤ 6m − 2 2 ≤ δ ≤ 5m − 1

20m − 7 2 ≤ δ ≤ 6m − 3 2 ≤ δ ≤ 5m − 2
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Table 2 Quantum MDS convolutional codes of length q2+1
13

Parameters [(n, k, υ; γ, d f )]q q Our δ δ in [20]

[( q2+1
13 ,

q2+1
13 − 4δ + 2, 1; 2, 2δ + 2)]q 26m + 5 2 ≤ δ ≤ 5m 2 ≤ δ ≤ 5m

26m − 5 2 ≤ δ ≤ 5m − 2 2 ≤ δ ≤ 5m − 2

Example 1 Let a = 3, then n = q2+1
25 . Quantum MDS convolutional codes of length

n = q2+1
25 are constructed. Some new quantum MDS convolutional codes obtained from

Theorems 5 and 6 are listed in Table 3.

5 QuantumMDS Convolutional Codes of Length q2−1
�

In this section, we will construct some classes of quantum MDS convolutional codes via

classical negacyclic codes of length n = q2−1
μ

with μ = �2 − 1 and μ = �2−1
2 , respectively.

Since q2 ≡ 1(mod2n), the q2-cyclotomic coset Cx modulo 2n is Cx = {x} for each odd x
in the range 1 ≤ x ≤ 2n − 1.

5.1 QuantumMDS Convolutional Codes of Length q2−1
� with� = �2 − 1

In this subsection, we will construct some new classes of quantumMDS convolutional codes

of length n = q2−1
μ

from negacyclic codes, where q = μm ± �, μ = �2 − 1 and � > 1 is a
positive odd integer. We first consider the case q = μm + � and recall a useful lemma in the
following, which will play an important role in our construction.

Table 3 New quantum MDS convolutional codes

n q Parameters [(n, k, υ; γ, d f )]q δ

q2+1
25 43 [(74, 76 − 4δ, 1; 2, 2δ + 2)]43 2 ≤ δ ≤ 5

57 [(130, 132 − 4δ, 1; 2, 2δ + 2)]57 2 ≤ δ ≤ 7

107 [(458, 460 − 4δ, 1; 2, 2δ + 2)]107 2 ≤ δ ≤ 14

157 [(986, 988 − 4δ, 1; 2, 2δ + 2)]157 2 ≤ δ ≤ 21

193 [(1490, 1492 − 4δ, 1; 2, 2δ + 2)]193 2 ≤ δ ≤ 26

257 [(2642, 2644 − 4δ, 1; 2, 2δ + 2)]257 2 ≤ δ ≤ 35

293 [(3434, 3436 − 4δ, 1; 2, 2δ + 2)]293 2 ≤ δ ≤ 40

307 [(3770, 3772 − 4δ, 1; 2, 2δ + 2)]307 2 ≤ δ ≤ 42

q2+1
41 73 [(130, 132 − 4δ, 1; 2, 2δ + 2)]73 2 ≤ δ ≤ 7

173 [(730, 732 − 4δ, 1; 2, 2δ + 2)]173 2 ≤ δ ≤ 18

337 [(2770, 2772 − 4δ, 1; 2, 2δ + 2)]337 2 ≤ δ ≤ 36

401 [(3922, 3924 − 4δ, 1; 2, 2δ + 2)]401 2 ≤ δ ≤ 43
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Lemma 8 [23] Let n = q2−1
μ

, where q is an odd prime power of the form q = μm + �,

μ = �2 −1, m is a positive integer, and � is a positive odd integer. If C is a q2-ary negacyclic
code of length n with defining set

Z =
s1⋃

j= 3�+3
2 m+2

C1+2 j ,

where 3�+3
2 m + 2 ≤ s1 ≤ 5�+3

2 m + 1. Then C⊥H ⊆ C .

Lemma 9 Let n = q2−1
μ

, where q is an odd prime power of the form q = μm+�,μ = �2−1,
m is a positive integer, and � is a positive odd integer. Then there exists an (n, n− δ, 1; 1, δ +
2)q2 convolutional code which contains its Hermitian dual, where 2 ≤ δ ≤ �m − 1.

Proof Aswe know, the order of q2 modulo 2n is equal to 1. Hence, the q2-cyclotomic cosetCi

modulo 2n contains only one element i . Assume that b = 3�+3
2 m + 2. Let C be a negacyclic

code of length n over Fq2 with defining set Z = ⋃b+δ
j=b C1+2 j , where 2 ≤ δ ≤ �m − 1. By

Lemma 1, the parity-check matrix H of C can be denoted as

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 α2b+1 α2(2b+1) · · · α(n−1)(2b+1)

1 α2b+3 α2(2b+3) · · · α(n−1)(2b+3)

...
...

...
...

...

1 α2b+2δ−1 α2(2b+2δ−1) · · · α(n−1)(2b+2δ−1)

1 α2b+2δ+1 α2(2b+2δ+1) · · · α(n−1)(2b+2δ+1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where α is a primitive 2n-th root of unity. Hence, H has rank δ + 1, and C is an MDS code
with parameters [n, n − δ − 1, δ + 2]. Moreover, C⊥H is also an MDS code with parameters
[n, δ + 1, n − δ].

Suppose that C0 is a negacyclic code of length n over Fq2 with defining set Z =
⋃b+δ−1

j=b C1+2 j , where 2 ≤ δ ≤ �m − 1. Then C0 is an MDS code with parameters

[n, n − δ, δ + 1], and its Hermitian dual code C
⊥H
0 is also an MDS code with parameters

[n, δ, n − δ + 1]. Furthermore, the parity-check matrix H0 of C0 is the following matrix

H0 =

⎛

⎜
⎜
⎜
⎝

1 α2b+1 α2(2b+1) · · · α(n−1)(2b+1)

1 α2b+3 α2(2b+3) · · · α(n−1)(2b+3)

...
...

...
...

...

1 α2b+2δ−1 α2(2b+2δ−1) · · · α(n−1)(2b+2δ−1)

⎞

⎟
⎟
⎟
⎠

.

Particularly, the rank of H0 is δ.
Suppose thatC1 is a negacyclic code of length n overFq2 with defining setZ1 = C2b+2δ+1,

where 2 ≤ δ ≤ �m − 1. Then C1 is an MDS code with parameters [n, n − 1, 2]. The parity-
check matrix H1 of C1 is the following matrix

H1 = (
1, α2b+2δ+1, α2(2b+2δ+1), · · · , α(n−1)(2b+2δ+1)

)
.

According to the above construction, one can see that H has been partitioned into two
submatrices H0 and H1 such that

H =
(
H0

H1

)

.
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Suppose that G(D) = H̃0 + H̃1D, where H̃0 = H0 and H̃1 is obtained from H1 by
adding zero-rows at its bottom such that H̃1 has the same number of rows as H0. Due to
Theorem 2(i), G(D) is a reduced basic generator matrix, and the convolutional code V
generated by such matrix has dimension δ and degree 1. It follows from Lemma 2 that
the Hermitian dual code V ⊥H has dimension n − δ and degree 1. According to Theorem
2(iii), the free distance d⊥H

f of V ⊥H satisfies that min{d0 + d1, d} ≤ d⊥H
f ≤ d , where

d0, d1 and d are the minimum Hamming distances of the negacyclic codes C0,C1 and C ,
respectively. Then we can get d⊥H

f = δ + 2. Hence, the convolutional code V ⊥H has param-
eters (n, n − δ, 1; 1, δ + 2)q2 . Finally, it follows from Theorem 2(ii) that V is Hermitian
self-orthogonal due to the fact that C⊥H ⊆ C . ��

The construction of quantum MDS convolutional codes can be given by using the above
lemma.

Theorem 7 Let n = q2−1
μ

, where q is an odd prime power of the formq = μm+�,μ = �2−1,
m is a positive integer, and � is a positive odd integer. Then there exists a quantum MDS
convolutional code with parameters [(n, n − 2δ, 1; 1, δ + 2)]q , where 2 ≤ δ ≤ �m − 1.

Proof Due to Lemma 9, a convolutional code V with parameters (n, δ, 1; 1, d f )q2 can
be obtained, which also satisfies V ⊆ V ⊥H for any 2 ≤ δ ≤ �m − 1. According to
Theorem 2(iii), d f ≥ n − δ. It is easy to see that d⊥H

f = δ + 2 < n − δ. Therefore, a
quantum convolutional code with parameters [(n, n − 2δ, 1; 1, δ + 2)]q can be derived from
V due to Theorem 4. Replacing the parameters of the quantum convolutional code in the
quantum generalized Singleton bound (Theorem 3), one has the equality

n − k

2

(⌊
2γ

n + k

⌋

+ 1

)

+ γ + 1 = δ(0 + 1) + 1 + 1 = δ + 2 = d f ,

which implies that such quantum convolutional code is a quantumMDS convolutional code.��
Nowwe consider the case q = μm−� and we first recall a useful lemma in the following.

Lemma 10 [23] Let n = q2−1
μ

, where q is an odd prime power of the form q = μm − �,

μ = �2 −1, m is a positive integer, and � is a positive odd integer. If C is a q2-ary negacyclic
code of length n with defining set

Z =
s2⋃

j= �−1
2 m

C1+2 j ,

where �−1
2 m ≤ s2 ≤ 3�−3

2 m − 3. Then C⊥H ⊆ C .

Similar to the discussion of Lemma 9 and Theorem 7, we have the following results.

Lemma 11 Let n = q2−1
μ

, where q is an odd prime power of the form q = μm − �,

μ = �2 − 1, m is a positive integer, and � is a positive odd integer. Then there exists
an (n, n − δ, 1; 1, δ + 2)q2 convolutional code which contains its Hermitian dual, where
2 ≤ δ ≤ (� − 1)m − 3.

Theorem 8 Let n = q2−1
μ

, where q is an odd prime power of the formq = μm−�,μ = �2−1,
m is a positive integer, and � is a positive odd integer. Then there exists a quantum MDS
convolutional code with parameters [(n, n−2δ, 1; 1, δ +2)]q , where 2 ≤ δ ≤ (�−1)m−3.
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Table 4 New quantum MDS
convolutional codes of length

n = q2−1
μ with μ = �2 − 1

� m q Parameters [(n, k, υ; γ, d f )]q δ

3 2 19 [(45, 45 − δ, 1; 1, δ + 2)]19 2 ≤ δ ≤ 5

3 27 [(91, 91 − δ, 1; 1, δ + 2)]27 2 ≤ δ ≤ 8

4 29 [(105, 105 − δ, 1; 1, δ + 2)]29 2 ≤ δ ≤ 5

5 37 [(171, 171 − δ, 1; 1, δ + 2)]37 2 ≤ δ ≤ 7

7 53 [(351, 351 − δ, 1; 1, δ + 2)]53 2 ≤ δ ≤ 11

59 [(435, 435 − δ, 1; 1, δ + 2)]59 2 ≤ δ ≤ 20

5 1 29 [(35, 35 − δ, 1; 1, δ + 2)]29 2 ≤ δ ≤ 4

2 43 [(77, 77 − δ, 1; 1, δ + 2)]43 2 ≤ δ ≤ 5

53 [(117, 117 − δ, 1; 1, δ + 2)]53 2 ≤ δ ≤ 9

3 67 [(187, 187 − δ, 1; 1, δ + 2)]67 2 ≤ δ ≤ 9

4 101 [(425, 425 − δ, 1; 1, δ + 2)]101 2 ≤ δ ≤ 19

5 125 [(651, 651 − δ, 1; 1, δ + 2)]125 2 ≤ δ ≤ 24

6 139 [(805, 805 − δ, 1; 1, δ + 2)]139 2 ≤ δ ≤ 21

149 [(925, 925 − δ, 1; 1, δ + 2)]149 2 ≤ δ ≤ 29

Remark 3 Quantum MDS convolutional codes of length n being an odd divisor of q2 − 1
had been constructed by Aly et al. in [2], while quantumMDS convolutional codes of length
n being an even divisor of q2 − 1 had been constructed by Zhu et al. in [28]. Both of them
use the Piret’s construction, which is different from the method here. It is easy to see that our
results are not contained in theirs either.

Example 2 Some new quantum MDS convolutional codes obtained from Theorems 7 and 8
are listed in Table 4.

5.2 QuantumMDS Convolutional Codes of Length q2−1
� with� = �2−1

2

In this subsection, we will construct some new classes of quantumMDS convolutional codes

of length n = q2−1
μ

, where q = μm ± �, μ = �2−1
2 , m is a positive integer, and � is an

odd positive integer. As μ = �2−1
2 should be an integer, one can easily get � ≡ 1(mod4) or

l ≡ 3(mod4).
In order to proceed further, we first recall some useful results shown in the literature.

Lemma 12 [23] Let n = q2−1
μ

, where q is an odd prime power of the form q = μm + �,

μ = �2−1
2 , � ≡ 1(mod4), m is a positive integer, and � is a positive odd integer. If C is a

q2-ary negacyclic code of length n with defining set

Z =
s3⋃

j= �+3
4 m+1

C1+2 j ,

where �+3
4 m + 1 ≤ s3 ≤ 5�+3

4 m + 1. Then C⊥H ⊆ C .
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Lemma 13 [23] Let n = q2−1
μ

, where q is an odd prime power of the form q = μm + �,

μ = �2−1
2 , � ≡ 3(mod4), m is a positive integer, and � is a positive odd integer. If C is a

q2-ary negacyclic code of length n with defining set

Z =
s4⋃

j= 3�+3
4 m+2

C1+2 j ,

where 3�+3
4 m + 2 ≤ s4 ≤ 5�+5

4 m + 1. Then C⊥H ⊆ C .

Lemma 14 [23] Let n = q2−1
μ

, where q is an odd prime power of the form q = μm − �,

μ = �2−1
2 , � ≡ 1(mod4), m is a positive integer, and � is a positive odd integer. If C is a

q2-ary negacyclic code of length n with defining set

Z =
s5⋃

j= �−1
4 m

C1+2 j ,

where �−1
4 m ≤ s5 ≤ 3�−3

4 m − 3. Then C⊥H ⊆ C .

Lemma 15 [23] Let n = q2−1
μ

, where q is an odd prime power of the form q = μm − �,

μ = �2−1
2 , � ≡ 3(mod4), m is a positive integer, and � is a positive odd integer. If C is a

q2-ary negacyclic code of length n with defining set

Z =
s6⋃

j= �−3
4 m

C1+2 j ,

where �−3
4 m ≤ s6 ≤ 5�−3

4 m − 4. Then C⊥H ⊆ C .

Lemma 16 Let n = q2−1
μ

, where q is an odd prime power of the form q = μm + �,

μ = �2−1
2 , � ≡ 1(mod4), m is a positive integer, and � is a positive odd integer. Then there

exists an (n, n−δ, 1; 1, δ+2)q2 convolutional code which contains its Hermitian dual, where
2 ≤ δ ≤ �m.

Proof Since the order of q2 modulo 2n is equal to 1. Hence, the q2-cyclotomic coset Ci

modulo 2n contains only one element i . Assume that t = �+3
4 m + 1. Let C be a negacyclic

code of length n over Fq2 with defining set Z = ⋃t+δ
j=t C1+2 j , where 2 ≤ δ ≤ �m. By

Lemma 1, the parity-check matrix H of C can be denoted as

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 α2t+1 α2(2t+1) · · · α(n−1)(2t+1)

1 α2t+3 α2(2t+3) · · · α(n−1)(2t+3)

...
...

...
...

...

1 α2t+2δ−1 α2(2t+2δ−1) · · · α(n−1)(2t+2δ−1)

1 α2t+2δ+1 α2(2t+2δ+1) · · · α(n−1)(2t+2δ+1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where α is a primitive 2n-th root of unity. Hence, H has rank δ + 1, and C is an MDS code
with parameters [n, n − δ − 1, δ + 2]. Moreover, C⊥H is also an MDS code with parameters
[n, δ + 1, n − δ].
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Let C0 be a negacyclic code of length n over Fq2 with defining set Z = ⋃t+δ−1
j=t C1+2 j ,

where 2 ≤ δ ≤ �m. Then C0 is an MDS code with parameters [n, n − δ, δ + 1], and its
Hermitian dual codeC⊥H

0 is also anMDS codewith parameters [n, δ, n−δ+1]. Furthermore,
the parity-check matrix H0 of C0 is the following matrix

H0 =

⎛

⎜
⎜
⎜
⎝

1 α2t+1 α2(2t+1) · · · α(n−1)(2t+1)

1 α2t+3 α2(2t+3) · · · α(n−1)(2t+3)

...
...

...
...

...

1 α2t+2δ−1 α2(2t+2δ−1) · · · α(n−1)(2t+2δ−1)

⎞

⎟
⎟
⎟
⎠

.

Let C1 be a negacyclic code of length n over Fq2 with defining setZ1 = C2t+2δ+1, where
2 ≤ δ ≤ �m. Then C1 is anMDS code with parameters [n, n−1, 2]. The parity-check matrix
H1 of C1 is the following matrix

H1 = (
1, α2t+2δ+1, α2(2t+2δ+1), · · · , α(n−1)(2t+2δ+1)

)
.

According to the above discussion, one can see that H has been partitioned into two
submatrices H0 and H1 such that

H =
(
H0

H1

)

.

Let G(D) = H̃0 + H̃1D, where H̃0 = H0 and H̃1 is derived from H1 by adding zero-rows
at its bottom such that H̃1 has the same number of rows as H0. Due to Theorem 2(i), G(D)

is a reduced basic generator matrix, and the convolutional code V generated by such matrix
has dimension δ and degree 1. It follows from Lemma 2 that the Hermitian dual code V ⊥H

has dimension n − δ and degree 1. According to Theorem 2(iii), the free distance d⊥H
f of

V ⊥H satisfies that min{d0 + d1, d} ≤ d⊥H
f ≤ d , where d0, d1 and d are the minimum

Hamming distances of the negacyclic codes C0,C1 and C , respectively. Then we can get
d⊥H
f = δ + 2. Hence, the convolutional code V ⊥H has parameters (n, n − δ, 1; 1, δ + 2)q2 .

It follows from Theorem 2(ii) that V is also an Hermitian self-orthogonal code due to the
fact that C⊥H ⊆ C . ��

The construction of quantum MDS convolutional codes can be given by using the above
lemma.

Theorem 9 Let n = q2−1
μ

, where q is an odd prime power of the form q = μm + �,

μ = �2−1
2 , � ≡ 1(mod4), m is a positive integer, and � is a positive odd integer. Then there

exists a quantum MDS convolutional code with parameters [(n, n−2δ, 1; 1, δ +2)]q , where
2 ≤ δ ≤ �m.

Proof Due to Lemma 16, a convolutional code V with parameters (n, δ, 1; 1, d f )q2 can be
obtained, which also satisfies V ⊆ V ⊥H for any 2 ≤ δ ≤ �m. According to Theorem 2(iii),
d f ≥ n − δ. In addition, d⊥H

f = δ + 2 < n − δ. Hence, a quantum convolutional code with
parameters [(n, n − 2δ, 1; 1, δ + 2)]q can be obtained from V according to Theorem 4. It
follows from Theorem 3 that

n − k

2

(⌊
2γ

n + k

⌋

+ 1

)

+ γ + 1 = δ(0 + 1) + 1 + 1 = δ + 2 = d f ,

which means that it is a quantum MDS convolutional code. ��
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Table 5 New quantum MDS
convolutional codes of length

n = q2−1
μ with μ = �2−1

2

� m q Parameters [(n, k, υ; γ, d f )]q δ

3 2 11 [(30, 30 − δ, 1; 1, δ + 2)]11 2 ≤ δ ≤ 3

3 9 [(20, 20 − δ, 1; 1, δ + 2)]9 2 ≤ δ ≤ 5

4 13 [(42, 42 − δ, 1; 1, δ + 2)]13 2 ≤ δ ≤ 8

19 [(90, 90 − δ, 1; 1, δ + 2)]19 2 ≤ δ ≤ 7

5 17 [(72, 72 − δ, 1; 1, δ + 2)]17 2 ≤ δ ≤ 11

23 [(132, 132 − δ, 1; 1, δ + 2)]23 2 ≤ δ ≤ 9

7 25 [(156, 156 − δ, 1; 1, δ + 2)]25 2 ≤ δ ≤ 17

5 1 17 [(24, 24 − δ, 1; 1, δ + 2)]17 2 ≤ δ ≤ 5

2 29 [(70, 70 − δ, 1; 1, δ + 2)]29 2 ≤ δ ≤ 10

3 31 [(80, 80 − δ, 1; 1, δ + 2)]31 2 ≤ δ ≤ 3

41 [(140, 140 − δ, 1; 1, δ + 2)]41 2 ≤ δ ≤ 15

4 43 [(154, 154 − δ, 1; 1, δ + 2)]43 2 ≤ δ ≤ 5

53 [(234, 234 − δ, 1; 1, δ + 2)]53 2 ≤ δ ≤ 20

7 1 31 [(40, 40 − δ, 1; 1, δ + 2)]31 2 ≤ δ ≤ 2

2 41 [(70, 70 − δ, 1; 1, δ + 2)]41 2 ≤ δ ≤ 10

3 79 [(260, 260 − δ, 1; 1, δ + 2)]79 2 ≤ δ ≤ 8

4 89 [(330, 330 − δ, 1; 1, δ + 2)]89 2 ≤ δ ≤ 24

103 [(442, 442 − δ, 1; 1, δ + 2)]103 2 ≤ δ ≤ 15

Similar to the discussion of the case q = μm + �, μ = �2−1
2 , � ≡ 1(mod4), and � is a

positive odd integer. We have the following results for the remaining cases.

Theorem 10 Let n = q2−1
μ

, where q is an odd prime power of the form q = μm + �,

μ = �2−1
2 , � ≡ 3(mod4), m is a positive integer, and � is a positive odd integer. Then there

exists a quantum MDS convolutional code with parameters [(n, n−2δ, 1; 1, δ +2)]q , where
2 ≤ δ ≤ �+1

2 m − 1.

Theorem 11 Let n = q2−1
μ

, where q is an odd prime power of the form q = μm − �,

μ = �2−1
2 , � ≡ 1(mod4), m is a positive integer, and � is a positive odd integer. Then there

exists a quantum MDS convolutional code with parameters [(n, n−2δ, 1; 1, δ +2)]q , where
2 ≤ δ ≤ �−1

2 m − 3.

Theorem 12 Let n = q2−1
μ

, where q is an odd prime power of the form q = μm − �,

μ = �2−1
2 , � ≡ 3(mod4), m is a positive integer, and � is a positive odd integer. Then there

exists a quantum MDS convolutional code with parameters [(n, n−2δ, 1; 1, δ +2)]q , where
2 ≤ δ ≤ �m − 4.

Example 3 Some new quantumMDS convolutional codes obtained from Theorems 9, 10, 11
and 12 are listed in Table 5.
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6 Conclusion

In this paper, we have constructed eight classes of quantum MDS convolutional codes from
classical constacyclic codes by using algebraic methods. Compared with the codes available
in the literature, most of the obtained quantumMDS convolutional codes are new in the sense
that their parameters are not covered by the codes available in the literature. It is interesting
to construct more new quantum MDS convolutional codes via constacyclic codes.
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