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Abstract

The generalized modified Equal-Width (GM E W) equation is often used to show how a one-
dimensional wave moves through a medium that is not linear and has dispersion processes.
In this article, we’ll use two very precise, cutting-edge analytical and numerical methods to
find the exact traveling wave solutions for the model we’re looking at. These discoveries are
really new, and they could immediately change how people train in engineering and physics.
Now that a numerical approach has been described, we can roughly evaluate the replies’
accuracy. Analytical and quantitative data were shown using contour plots and two- and
three-dimensional graphs. Our method of symbolic computing shows that it has the potential
to be a powerful mathematical tool. It can be used to solve a wide range of nonlinear wave
problems. Our findings are the outcome of our topic investigation.

Keywords Dispersion processes - Nonlinear media - Bright—dark soliton wave -
Approximate solution - Stability

1 Introduction

Nonlinear optics studies how light behaves in materials with nonlinear optical properties. It
looks at how a one—dimensional wave moves through a nonlinear medium with dispersion
[1]. When discussing electromagnetic waves in a waveguide or acoustic waves in a pipe, the
phrase “one—dimensional wave” indicates the waves’ restricted capacity to move in more
than one dimension [2].

Nonlinear media have optical properties that depend on how strongly the electromagnetic
field goes into the material. In other words, the behavior of the wave is no longer propor-
tional to the incoming information, and nonlinear impacts may become significant [3]. Still,
dispersion processes explain why the refractive index of a material changes when an electromagnetic
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wave passes through it. This suggests the wave disperses because its different frequencies
move at varying speeds [4].

When modeling how a one—dimensional wave moves through a nonlinear medium with
dispersion, it is essential to consider how these two things work together. In particular,
nonlinearities can make the wave grow as it moves, leading to soliton propagation when it
keeps its original shape and intensity over long distances [5]. Pulse widening happens when
the wave’s temporal profile gets longer because of dispersion, which occurs when the wave’s
frequency spreads out [6].

These effects may be examined using mathematical models such as the nonlinear
Schrodinger equation and GM EW equation, which describes the evolution of the wave enve-
lope during propagation [7]. The behavior of the wave may be anticipated by numerically
solving this equation, which accounts for dispersion and nonlinearities. One—dimensional
wave propagation in nonlinear media with dispersion processes could be helpful in a number
of fields, such as laser physics, photonics, and telecommunications [8]. In order to build
devices and systems that exploit nonlinearities and dispersion to achieve specific goals, such
as long—distance information transmission or the creation of ultrashort laser pulses, it is
necessary to comprehend the interplay between these two phenomena [9].

In this context, this paper studies the GM E'W equation that is a flexible and cutting—edge
method for evaluating and classifying data [10]. This new method is based on Equal-Width
(EW) discretization, often used to prepare data and design features [11]. When discretizing
continuous data, the GM E'W equation is more flexible and easy to use than the EW method.
It was created in part to remedy deficiencies in the EW method. This article is an introduction
to the GM EW equation [12]. Its purpose is to teach the reader about its history, key ideas,
and possible uses. The GM EW equation is given by [13-15]

e IE  0E

T el %y, 1
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where £ = £(x, t) describes wave propagation in a nonlinear medium with dispersion pro-
cesses in one dimension. While ¢y, ¢y, o are arbitrary constants. There are a variety of
computational methods that may be utilized to solve the GM EW equation numerically.
Some examples are as follows [16—-18]:

e Bulet Finite difference methods are often used to solve partial differential equations
quantitatively. Using grid discretization and finite difference approximation, the GM EW
equation derivatives are estimated.

e Bulet Fourier spectral approaches add the sine and cosine functions as a scalar. The
GM EW equation is Fourierized with this method. Runge—Kutta and split-step Fourier
techniques may be helpful.

e Bulet Adomian decomposition solves nonlinear differential equations by series exten-
sion. The linear differential equations of the GM EW equation are amenable to iterative
numerical solutions. The answer is determined using series expansion.

These are some computer—based approaches to solving the GM EW equation [19, 20]. The
problem, the available computing power, and how quickly and accurately you need to solve
it all influence your chosen strategy [21-37]. Now, we are going to use the extended Khater
method to find some novel solitary wave solutions of (1). Employing the next wave transfor-
mation £ = £(x, 1) = v(n), n =it + x,to Eq. (1), gets

—c 2 v® 4V v+ a0 =0. 2)
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Balancing the nonlinear term and highest order derivative term in (2) along with the
extended Khater method’s auxiliary equation () = log% (—a2 K2/ g g K= 4
By K/ +y2K2/M) where o, B, y are arbitrary constants, yields necessary of using

another transformation that is given by v = (p(n)z/ €. The new transformation converts (2)
into the following ODE

4 n3 o
ad'e o, Ral-2e-1) (@)  ¢Bae-2) ¢y
— @ + 3)

e > +oty =0
0 0

Using the homogeneous balance principles to (3) and along with the extended Khater
method’s headlines, gets the

n .
oo = a; (K/) =ar K/ +a, @
i=0
where ag, aj are arbitrary constants.
In our paper, we investigate some new solitary wave solutions of the model under study,
and in Sect. 2, we talk about how accurate they are. A graphical representation of the solutions
can be found in Sect. 3. The comprehensive study’s conclusion is presented in Sect. 4.

2 Stable Solitary Wave and Approximate Solutions

In this section, we examine the computational solutions of the GM EW equation with the
extended Khater method [38, 39] as well as the variational iteration (VZ.M) method [40, 41].

2.1 Stable Soliton Wave Solution

Employing the extended Khater method to (3) along with Eq. (4), gets the following values
of the above—mentioned parameters

Set I
R e - S
a ,C , C s —
’ 2 ' E (B day) T B ey
Set I1
2
A 1
aoeﬂ,clé— by ,C — ,0— 1.
2y a? (B2 — day) 8oy — 2p2
Set ITT
12y
ap — @,clﬁ—%,czﬁ—ﬁ,g—)2
2y at (B* — day) B? — day

Backing these values into Eq. (4) along with the solution of the extended Khater method’s
auxiliary equation’ s solutions, leads to the following solitary wave solutions of the investi-
gated model.

For 2 —4ay <0, we get
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Eri(x, 1) 2
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ay/ p% — 4ay coth (%M(At +x+ U))
fa(x, 1) = Y . (16)

2.1.1 Solution’s Stability
Now, we are using the Hamiltonian system’s characterizations to figure out the stability
property of the above—constructed solutions [42]. Firstly, we construct the momentum of Eq.

(13)

1 5
M:f/ EX(m)dn
2)-s

= 3 (lSk(tanhf1 (tanh (M)> + tanh ™! (tanh (é _ 2‘)))
3L 2 2 2

a7
S(v+1 1 S(r+1
+ranh? (23 DY nn? —(5-51) ) +4log( 1 — tanh? ¢+
2 2 2
1
—4log (1 — tanh? (5(5 - 5x)>) )
Thus, the stability condition is given by
oM
—_— = 6.52032243 > 0. (18)
IA =2

Consequently, (13) is table solution on the following interval x € [—5, 5], t € [-5, 5]. Using
same technique, checks the stability property of the other solutions Fig. 1.
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Fig. 1 Representation for the momentum of (13) in two-dimensional graph

@ Springer



151 Page 6 of 17 International Journal of Theoretical Physics (2023) 62:151

2.2 Numerical solutions

Applying the VZM to (1) with some specific values for the above—mentioned parameters in
(13), yields

Eo(x, 1) = tanh? (%) , (19)
£1(x, 1) = tanh? (%) — 481 sinh® (%) csch’ (x), (20)

X

1
Er(x,1) :; tanh (2

5 ) sech® (%) (— 5041 <+ 61 cosh(x) (1174 — 6t sinh® (x) + 62) = 31(4 (181> +7)

x cosh(2x) + (28 — 61%) cosh(3x) — 727 sinh® (x) + cosh(4x)) + 3751 + 42 sinh(x) + 48 21

x sinh(2x) 4 27 sinh(3x) + 8 sinh(4x) + sinh(Sx)).

3 Solutions’ Graphical Representation

The GM EW equation is an extension of the conventional EW method that contains a mod-
ification factor to produce bins of variable lengths. The distribution of the data may reveal
areas with varying densities, which is the typical method for determining this variable. The
modification factor modifies the widths of the produced bins to better match the data’s local
attributes.

The GM EW equation may be used for several data analysis applications, like:

e Discreteizing continuous data into more manageable intervals during the preprocessing
stage is one way for decreasing computer demands and facilitating subsequent analysis.

e GMEW equation may be used to generate new features depending on the distribution
of the underlying data, hence possibly enhancing the performance of machine learning
algorithms.

e The third use is clustering and classification, where discretized data may be utilized
as input for clustering algorithms and classification tasks, enabling the discovery of
previously unknown patterns and correlations.

In conclusion, the GM EW equation is a cutting-edge data discretization methodology that
gives more flexibility and adaptability than conventional equal-width techniques. By taking
into consideration the underlying data distribution and modifying bin widths appropriately,
the GM EW equation may improve the efficiency of data analysis and machine learning by
providing more accurate and relevant representations of continuous data.

Here, we decompose the discovered computational solutions into their component polar,
density, 3-D, and 2-D graphs. We expand on the built-in solutions described before ( (11),

(13), (15), (21)) when I:oe =2 a=-1,=3,y=1,A=40=5&a =3,a =

_2,}3:5,)/:2,)\:10,U:zo&(x:6,a1:37'3:57yzl’}\zz’U:_l].
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In these graphs, (11), (13) and (15) show bright—dark soliton waves, and (21) shows periodic
waves Figs. 2, 3, and 4. Also, the matching between analytical and numerical solutions
are illustrated by Fig. 5 and Table 1. Specifically, we have demonstrated the interaction
between the above-analytical and numerical solutions by displaying examples in Figs. 6,
and 7 examples concern wave propagation in nonlinear materials with dispersive processes
Fig. 8.
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Fig.2 Graphically displays of (11) in (a) 3D, (b) 2D, (c) contour and (d) polar plots
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Fig. 3 Graphically displays of (13) in (a) 3D, (b) 2D, (c) contour and (d) polar plots
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(a)

-1.2

Fig.4 Graphically displays of (15) in (a) 3D, (b) 2D, (c) contour and (d) polar plots
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56 58 60 62 64

X

Fig.5 Graphically displays of Eq. (21) in (a) 3D, (b) 2D, (c) contour and (d) polar plots

@ Springer



151

Page 11 of 17

International Journal of Theoretical Physics (2023) 62:151

pringer

11-d¥619¢L09€0CC
11-9680610CS11°C
1T-d2¥009€6£20°C
11-H0€0€8¢E161¢6°]
[1-HS8S61€168ER"]
TT-dC8LLOTOSEYL']
TT-dIeTe90v8LY9"|
11-92€86186905S°1
11-d80S890vvCS' |
TT-HCTPI6LETESE T
11-HCLE018S8CST |
[T-HSTTLOELOIST T
11-dSTr681¥S96v0°1
Cl-d¥8¥1809L89¥°6
CI-AIEYCLIOIYEY'S
CI-HOELLLSTEEOE L
C1-dTTC86SSILYE 9
CI-dS8¥819LE96T S
CIHILLYLOYLIVC Y
Cl-d8ev0er10¥8I°¢E
C1-d76568996¢£C1C
C1-d68£980LETI0’]

20-4690%78S0€00C' 1
20-H69C969117160"1
€0-HE6C9160LEEO'0
£0-d897665L60L6'8
£0-H0TCE6651950°8
€0-9r99¢S1ve061°L
€0-d88¥¥0C6LTLED
€0-H68L6TELO6E09'S
€0-H68CLILEOV88 Y
€0-90v6108CIEICTY
€0-H9166SLLETOS'E
£0-9S00€0016810°¢
€0-HS6££T6E8S6V'C
€0-45988€69CCC0C
€0-H98¢8876C86S" 1
€0-dSTI82000tCC 1
Y0-HCC98LT09Y66'8
YO-HEEEBLIOELYTO
Y0-H6VL65££6866°¢
Y0-HL8655T996¥C'C
SO-HTSE8YEEE666'6
S0-H9106£85666Y'C

20-d6¥8¢8S0€00C 1
0-d8509691171760°1
€0-H69TP160LEEO'6
€0-H9€SL6SL60L6°8
€0-HI8€166517950°8
€0-H0T61S1ve061°L
€0-HOv8C0TO6LTLE™S
€0-H8ET8TELOEN9'S
€0-HLESSILEOV88 T
€0-4985008CIEICY
€0-HE998SLLET6SE
€0-HES810016810°¢C
€0-HSPETCOoE8S6Y'C
€0-d816L£69CCC0C
€0-HEYSL8Y6T86S 1
€0-HS8€LC000tCT 1
YO-HSLTTLTO9Y66'8
Y0-H9€0ELI6ELYTO
P0-HLOSSSEE6866'¢C
70-HE08¢SC9967C'C
SO-HCITLTEEE666'6
CO-HE6E8T8S666Y'T

o
170

0
61°0
81°0
LT°0
910
SI'o
10
€10
cro
110

10
600
800
LO0
900
S00
700
€00
200
100

CI-HTE9IT11709L89Y°6
TT-dEE601TISS9610" T
T1-HC9T8Y0SELITST T
I1-3¥95¥0618S8CST'1
[T-HE008C6ELETESE ]
TT-HCO1LSOVIPYCST T
TT-HLLSOS8T8690SS T
T1-d869986V [¥8L19"1
11-H61869€6008¢YL’1
11-H0S899¢€CH168€8" [
IT-HOICSTrCI61€6']
[1-HS0¥9C105€6£C0°C
T1-49C€8LESOTSTITT
11-d2€LT081509€0CC
11-9S€8CT09¢€116CC
11-H6TC886S6V0LLET
I1-9201L60LY6C19Y'C
[ 1-9¥8CoVoT18EvSC
11-9¥60CS86095¥C9"C
11-4656166958¥€0LC
TT-H6LS9LOLTESO8L'T
TT-AI€ISL88T99EE8C

160698L£69CCC0C00°0
$6816CCC6£8561C00°0
L0696L10016810€00°0
SYTP098SLLETO6SE00'0
8665CS008CIEICH00°0
666177LLS9LE0¥881700°0
LOS9LIBTEL6E09S00°0
€C06LLTOTOLTLES000
1120981S1¥€061L00°0
G8SETET665Y950800°0
LOY18YL6SL60L6800°0
99881 160L£€6600°0
00S7€5096911776010°0
0erISP8E8S0E00CI00
09LE6CTYLITO0TET00
0TETTETIO6LBTITYTO0
0L9€TLE0699E9YSTO 0
0r8SY65800111L910°0
0€SYLELSTEBSO08T00
069¢rEY060L9YE610°0
00L99¥T9CLLEELOTO O
0r810€TCESLIOTTCO0

L965188£69CCC0C00°0
0SSTYEET6E856¥C00°0
08586¢0016810£00°0
€0TLS86SLLETO6SE00'0
SEI6L8108CIEITY00°0
O¥¥LTCLILEOY88Y00°0
90CLTL6TEL6E09S00°0
§989Tr0C6LTLEIV0 O
CI0Y09€STYE061L00°0
660C91£665¥950800°0
61€€11665L60L6800°0
108C¥C9160LE£€6600°0
0206¥97969117176010°0
0705590%850€00C10°0
06878SEYLITOOTET00
0L£669Y96L8T9CY10°0
09618190699¢9¥S10°0
099687880017 11L910°0
06066665 1€8S00810°0
0LT9%0L060L9YE610°0
0€CLYTYITLLEELOTOO
00SLSTSTESLIOTTCO0

Qs

600 —

10—
110 —
cro—
€r'o —
71°0 —
SI'o—
910 —
LT°0 —
810 —
610 —

0 —
170 —
o —
€00 —
Y20 —
§C0—
9C0 —
LTO —
8C0 —
600 —

€0~

JIOLIR AN[OSqY

[0S rewrxoiddy

[0S [eondeuy

X JO an[eA

JIOII2 AN[OSqY

[0S drewrxoiddy

[0S [eondreuy

X JO an[eA

W ZA BIA (€]) JOJ SIN[BA JOLIQ 9JN[OSQR PUE ‘[BONA[RUB-TWAS ‘[BONA[RUY | d|qel



International Journal of Theoretical Physics (2023) 62:151

Page 12 of 17

151

TT-d6LL6€999558°C
1T-d910€8¥ES08LC
11-d¥9€C6T8YE0LC
TT-HILLOTY9SYCOC
[T-HI1¥CS8SI8EYST
11-d0¥S61e6C19Y'C
11-d881SC6V0LLEC
IT-dI€ISSOEIT6C T

C0-HOISTESLIOITC
COHITYITLLEELOC
C0-HT0LO60LIYEG T
20-H66651€85008°1
C0-d6¥8800711L9°1
C0-H0T90699¢€9%S"1
CO-HTLY96L8TITY |
C0-HT9EVLITO0TIE T

C0-HSTCTESLI9ITC
COHEVIOTLLEELOT
CO-HTEY060L9YE6'T
C0-H9ELSTE8S008T
C0-HS6S800VI1L9°1
C0-°HYLE0699€9VS |
C0-HYEC96L8C9TY'|
C0-HECTYLITO0IE T

€0
6C°0
8C°0
LT0
920
S0
¥C0
€C0

C1-H9S90€180LETI0'T
CI-H6€LS9€6996£C1 T
CI-H8ELTIOSTYIOP8I'E
CI-H188C6E90VLIVTY
C1-H801CTCSOLLESOT S
CI-HSE8ECOLSSILYE O
CI-H9¥8IS6TLIEEOE L
C1-HE0€906CI01vEY'8

$89LLTBS666¥C0000°0
669857£££66660000°0
91819257996%¢C000°0
LTEITSSEE6866£000°0
SLSELTLIGELYTI000°0
L10T61L209¥668000°0
SCLYYELTO00¥CCI00°0
6S6L6VL8V6C86S100°0

TT6E8ELS66617¢0000°0
9601 L¥E£€£66660000°0
L1208557996%¢C000°0
10S0S65££6866£000°0
€12€08L96€LYC9000°0
TELITBLTO917668000°0
LS0¥78082000%7CC100°0
0LETYES8Y6T86S100°0

100 —
00—
€00 —
700 —
S0'0 —
900 —
L00 —
800 —

JIOII0 JN[0SqY

[0S arewrxorddy

[0S [eonffeuy

X JO onjeA

10119 JN[0SqQY

[0S arewrrxorddy

[0S [eonffeuy

X JO onjep

panunuod | 3jqel

pringer

as



International Journal of Theoretical Physics (2023) 62:151

Page 13 0of 17 151

-0-- i [ Analytical Sol.
0,025 - (a) ©--Analytical Sol. 0.025 (b) - Approximate Sol._ o ¢
. g ---=-Approximate Sol. -
w? o
S e 9
00204 g 0.0204 F0.020
£ 1
0.015 5 $ 5 Bloots
b i 00154 @ Y
° ) © T
° S £
0.010 ¢ = X oot
00104 8 1
Q|
< <
0.005 t0.005
0.005
0.000 -0.000
Value of x
T T T T T T T 0.000
03 02 01 0.0 0.1 02 03
Value of x
_ (c) — o- - Absolute error
3.00E-11-| g
2™ <
2501142 % z
2 % 4
< 3, !
2.00E-11 A K
Ay 7
s o
> s
1.50E-11 3, K
Y ®
Ay 4
1.00E-11 - ° rd
y 4
5.00E-12
S
v/
-00E+001 N Value of x
T T T T T T T
03 02 01 0.0 0.1 0.2 03

Fig. 6 Constructed solution (11)’s matching with the numerical solutions based of the VZM and shown

values in Table 1
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Fig. 7 In nonlinear media, these graphs (a, b, ¢, d, e, f, g, h, i) illustrate dispersion mechanisms and wave
propagation
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N

T \2\\\ Ny
o S W &Q‘\ ¥

Fig. 8 Dispersion mechanisms and wave propagation are illustrated in these graphs (j, k, 1, m, n, o) when
applied to nonlinear media

4 Conclusion

Throughout the course of this study, soliton wave solutions for the GM EW model were
generated utilizing a variety of equations. There were rational, hyperbolic, and trigonometric
equations among them. These connections give more information about how waves move
through nonlinear media. We could ensure success by using the mathematical VZM to
double-check our calculations. These lessons have been broken down and simplified using
various visual aids. We decided if the study was new and vital by comparing its results to
those of other studies that had found similar things. Each result was checked in Mathematica
13.1 before being re-implemented in the primary model.
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