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Abstract
Entanglement-assisted quantum error-correcting (EAQEC) codes are a significant extension
of quantum error-correcting codes. It has been found that an EAQEC code can be constructed
by an arbitrary classical linear code if the encoder and the decoder share the entangled state c
in advance. In this paper, we construct two families of q-ary entanglement-assisted quantum
maximum-distance-separable (EAQMDS) codes. This construction produces newEAQMDS
codes with variable parameters with respect to the minimum distance d and the number c of
maximally entangled states.Moreover, the resultingEAQMDScodes haveminimumdistance
not less than q .

Keywords EAQMDS codes · Cyclic codes · Maximally entangled states ·
Skew symmetric cosets

1 Introduction

The class of quantum error-correcting codes provides an effective coding framework for
guarding quantum information just as classical error-correcting codes guard classical infor-
mation. After the discovery by Shor and Steane [29, 30], quantum error-correcting codes have
undergone tremendous development. Many well-parameterized quantum error-correcting
codes have been constructed by the aid of classical error-correcting codes. Among the
known construction methods, the most common construction method is through using clas-
sical linear codes and satisfying certain dual-containing requirement. However, it is difficult
to find the class of dual-containing codes. The dual-containing constraint has become a
serious obstacle to the evolution of quantum coding theory. In 2006, Brun et al. made a
great breakthrough in quantum error-correction by proposing entanglement-assisted quantum
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error-correcting (EAQEC) codes [2]. They found that classical linear binary codes, which are
not self-orthogonal, can be applied to construct quantum codes if the sender and receiver share
the entanglement bits beforehand. This discovery has inspired researchers to concentrate on
the construction of EAQEC codes.

Let q be a prime power. An [[n, k, d; c]]q code C is a q-ary EAQEC code of length n,
which encodes k logical qudits into n physical qudits and corrects quantum errors up to
� d−1

2 � by utilizing c pairs of maximally entangled states. Here, d is the minimum distance
of the code. If c = 0, then an EAQEC code is a standard [[n, k, d]]q quantum code. The
parameters of an [[n, k, d; c]]q EAQEC code are mutually restricted and meet the following
entanglement-assisted quantum Singleton bound.

Lemma 1 [2, 11, 14] For an [[n, k, d; c]]q EAQEC code, if d ≤ n+2
2 , then

n + c + 2 − k ≥ 2d,

where 1 ≤ c ≤ n − 1.

An [[n, k, d; c]]q EAQEC code that attains the entanglement-assisted quantum Singleton
bound is called an entanglement-assisted quantummaximum-distance-separable (EAQMDS)
code. Since entanglement can improve the error-correcting performance of quantum codes
[15], it is more desirable that we can construct EAQMDS codes for large distance. Recently,
many researchers found an amount of EAQMDS codes from constacyclic codes, generalized
Reed-Solomon (GRS) codes and linear complement dual (LCD) codes, see Refs. [4, 6–
10, 25]. Since cyclic codes have a good algebraic structure, they are the preferred objects
for constructing EAQMDS codes. However, it is a hard problem to fix on the number of
maximally entangled states. In [21], the concept of the decomposition of defining set of
a cyclic BCH code was introduced to solve the problem of computing the number c and
construct some good EAQEC codes. After that, more and more scholars have extended this
approach to general constacyclic codes, so as to result in the construction of many new
EAQMDS codes. In particular, EAQMDS codes with length dividing q2 + 1 or q2 − 1 were
massively obtained [3, 5, 6, 17–19, 25, 28, 31, 33].

Generally, as entanglement bits are more used, it would be more difficult to find the
parameters of EAQEC codes. Recently, in [7, 27, 28, 33], several families of EAQMDS codes
with variable parameters were derived from constacyclic codes, GRS codes, and extended
GRS codes. In these works, the formula of the relation between the minimum distance d and
the number c of maximally entangled states was explicitly described and the change rules of
the parameters of EAQMDS codes were revealed.Motivated by the above ideas, we construct
two new families of q-ary EAQMDS codes from cyclic codes with minimum distance not
less than q . Specific parameters are as follows.

• Length n = q2−1
3 with 3 | (q + 1) and 1 ≤ t ≤ � q−8

6 �.
(i) [[n, n − 2d + 3t2 + 2, d; 3t2]]q , where tq ≤ d ≤ t(q − 1) + q+1

3 .

(ii) [[n, n − 2d + 3t2 + 2t + 2, d; 3t2 + 2t]]q , tq + q+1
3 ≤ d ≤ t(q − 1) + 2q−1

3 .

(iii) [[n, n − 2d + 3t2 + 4t + 4, d; 3t2 + 4t + 2]]q , where tq + 2(q+1)
3 ≤ d ≤ (t + 1)(q − 1).

• Length n = q2−1
5 with 5 | (q + 1) and 1 ≤ t ≤ � q−14

10 �.
(i) [[n, n − 2d + 5t2 + 2, d; 5t2]]q , where tq ≤ d ≤ t(q − 1) + q+1

5 .

(ii) [[n, n − 2d + 5t2 + 2t + 2, d; 5t2 + 2t]]q , where tq + q+1
5 ≤ d ≤ t(q − 1) + 2q+2

5 .

(iii) [[n, n − 2d + 5t2 + 4t + 2, d; 5t2 + 4t]]q , where tq + 2q+2
5 ≤ d ≤ t(q − 1) + 3q−2

5 .
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(iv) [[n, n− 2d + 5t2 + 6t + 4, d; 5t2 + 6t + 2]]q , where tq + 3q+3
5 ≤ d ≤ t(q − 1)+ 4q−1

5 .

(v) [[n, n − 2d + 5t2 + 8t + 6, d; 5t2 + 8t + 4]]q , where tq + 4q+4
5 ≤ d ≤ (t + 1)(q − 1).

Compared with the known constructions in Refs. [16, 18, 22, 27], our constructions pro-
duce EAQMDS codes processing minimum distance not less than the size q of the finite
field, which indicates our codes can correct more quantum errors. Meanwhile, we describe
the exact relation between the minimum distance d and the maximally entangled state c by
introducing the variable t . In addition, our constructions place the size q on a general case,
not only take an odd prime power.

The material is organized as below. In Section2, we review some basic concepts on cyclic
codes, cyclotomic cosets, and EAQMDS codes. In Section3, two classes of EAQMDS codes
are gained from cyclic codes. In Section4, detailed comparison and discussion are made.

2 Preliminaries

We recall some basic results on cyclic code, defining set of cyclic code and EAQECCs. For
more details, please refer to Refs. [1, 12, 13, 23]. Let q be any prime power and Fq2 be the
finite field with q2 elements. For any element β ∈ Fq2 , β̄ = βq is the conjugation of β.
Given two vectors u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) ∈ F

n
q2
, define their

Hermitian inner product by

〈u, v〉h = u0v̄0 + u1v̄1 + · · · + un−1v̄n−1.

An [n, k, d] linear codeC overFq2 is a subspace ofF
n
q2
with dimension k.Define theHermitian

dual code of C as
C⊥h = {u ∈ F

n
q2 | 〈u, v〉h = 0, ∀ v ∈ C}.

If C is contained in C⊥h , then C is said to be Hermitian self-orthogonal. Particularly, if
C = C⊥h , then C is said to be Hermitian self-dual. A subspace C ⊆ F

n
q2

is a cyclic code if
(c0, c1, . . . , cn−1) ∈ C, then (cn−1, c0, . . . , cn−2) ∈ C. Any codeword (c0, c1, . . . , cn−1) ∈ C
can be written as a polynomial c(x) = c0 + c1x + · · · + cn−1xn−1 in the quotient ring
Fq2 [x]/〈xn − 1〉. This means that C is a cyclic code is equivalent to the set of polynomial
representations of the codewords of C forms an ideal of Fq2 [x]/〈xn − 1〉. Because every
ideal of Fq2 [x]/〈xn − 1〉 is a principal ideal, C can be generated by a monic polynomial
g(x) | (xn − 1) with the least degree. That is, C = 〈g(x)〉 ⊆ Fq2 [x]/〈xn − 1〉, where g(x) is
referred to as the generator polynomial of C and h(x) = (xn − 1)/g(x) is referred to as the
check polynomial of C. Assume that gcd(n, q) = 1. Let α be a primitive n-th root of unity
in some extension field of Fq2 . Denote Zn = {0, 1, . . . , n − 1}. Define the defining set of
C = 〈g(x)〉 by

T = {i ∈ Zn | g(αi ) = 0}.
It is well known that there is a close connection between cyclic codes and cyclotomic cosets.
Define the q2-cyclotomic coset modulo n containing the integer i by

Ci = {i, iq2, iq4, . . . , iq2(m−1)}(mod n),

wherem is the smallest positive integer such that iq2m ≡ i(mod n). Notice that the defining
set T forms the union of some q2-cyclotomic cosets. It follows that C has dimension k =
n− | T |. The following lemma is a known fact on the minimum distance of cyclic codes.
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Lemma 2 (The BCH bound for cyclic codes) [2, 11, 32] Suppose that C is a cyclic code of
length n with defining set T , which contains δ consecutive elements, where 1 ≤ δ ≤ n − 1.
Then d(C) ≥ δ + 1.

To explore the characters of cyclotomic cosets, we follow some notations from the litera-
ture [21]. A q2-cyclotomic coset Ci modulo n is said to be skew asymmetric if Ci �= C−qi ;
otherwise it is said to be skew symmetric. If Ci is a skew asymmetric coset, then (Ci ,C−qi )

forms a skew asymmetric pair. By using any linear code C over Fq2 , we can construct an
EAQEC code. However, there exists a barrier to calculate the parameter c. In [21], the idea
of the decomposition of defining set of a cyclic code was proposed. For any cyclic code over
Fq2 of length n with defining set T , T

⋂−qT contains all the skew symmetric cosets and
skew asymmetric pairs [22]. Moreover, the cyclotomic cosets T \ (T

⋂ −qT ) are all skew
asymmetric.

Definition 1 [21] Suppose that C is a cyclic code over Fq2 of length n with defining set T .
Write T1 = T

⋂ −qT and T2 = T \ T1, where −qT = {−qx(mod n) | x ∈ T }. The
intersection T = T1

⋃
T2 is called the decomposition of T .

The following lemma provides an effective method for determining the number c of
maximally entangled states.

Lemma 3 [22] Let C be a [n, k, d]q2 cyclic code overFq2 with defining set T . If T = T1
⋃

T2,
then there exists an EAQEC code with parameters [[n, n − 2 | T | + | T1 |, d; | T1 |]]q .

Let q be arbitrary prime power. Let n = q2−1
r with r | (q + 1). In the next two sections, we

will construct some EAQMDS codes from cyclic codes with length n = q2−1
r , for r = 3, 5.

In order to calculate | T1 |, we need to find skew symmetric cosets Ci and skew asymmetric
pairs (Ci ,C j ). From C j = −qCi , we can obtain Ci = −qC j since q2 ≡ 1(mod n). Thus,
we only consider the case when j ≤ i .

Lemma 4 Assume that n = q2−1
r , where r is odd with r | (q + 1) and r ′ = q+1

r . Then Ci is

skew symmetric if and only if i = �(q−1)
2 , where � is even and 2 ≤ � ≤ 2(r ′ − 1).

Proof Suppose that C j = −qCi , for i, j ∈ Zn . Then,

iq + j ≡ 0(mod n). (1)

Notice that (q − 1) | n. By operating both sides of (1) modulo q − 1, we get i + j ≡
0(mod q − 1). Hence, i + j = �(q − 1), for some positive integer �. We consider two cases.

(i) q is even. Ci is skew symmetric if and only if i = j = �(q−1)
2 , where 2 ≤ � ≤ 2(r ′ − 1)

is even.
(ii) q is odd. We first prove that Ci is a skew asymmetric coset if i = 2s + 1 ∈ Zn .

Assume that C2s+1 = −qC2s+1. Then (2s + 1)(q + 1) ≡ 0(mod n), equivalently,
(2s+1)r ≡ 0(mod q−1). It follows that (q−1) | (2s+1)r . Observe that q−1 is even
and (2s + 1)r is odd. This produces a contradiction. So, C2s+1 is skew asymmetric. It
remains to find all skew symmetric cosets in C2s . Clearly, C2s is skew symmetric if and
only if C2s = −qC2s . That is, 2s(q + 1) ≡ 0(mod n). Hence, 2sr ≡ 0(mod q − 1),
equivalently, (q − 1) | 2sr . Since gcd(q − 1, r) = 1, it must be (q − 1) | 2s. Therefore,
i = 2s = h(q − 1), where 1 ≤ h ≤ r ′ − 1. This means that i = �(q−1)

2 , where � = 2h is
even and 2 ≤ � ≤ 2(r ′ − 1).

This completes the proof. ��
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3 Construction of EAQMDS Codes of Length q2−1
3

In this section, we assume that q ≥ 11 is a power of any prime. Let n = q2−1
3 , where

3 | (q + 1). We are going to seek EAQMDS codes with length n based on the structure
of cyclic codes. We present the explicit expressions of the relation between the number c
of entangled states and minimum distance d . Some properties about cyclotomic cosets are
described as below.

Lemma 5 Assume that n = q2−1
3 , where q ≥ 11 and 3 | (q + 1). Let t be an integer with

1 ≤ t ≤ � q−8
6 �.

(i) If tq − 1 ≤ δ ≤ t(q − 1) + q−2
3 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew

asymmetric pair if and only if i = mq+m−3�
3 and j = 3�q−mq−m

3 , where 1 ≤ � ≤ 2t
and 3�

2 < m ≤ min{3t, 3� − 1}.
(ii) If tq + q−2

3 ≤ δ ≤ t(q − 1) + 2q−4
3 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew

asymmetric pair if and only if i = mq+m−3�
3 and j = 3�q−mq−m

3 , where 1 ≤ � ≤ 2t + 1
and 3�

2 < m ≤ min{3t + 1, 3� − 1}.
(iii) If tq + 2q−1

3 ≤ δ ≤ t(q − 1) + q − 2 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew

asymmetric pair if and only if i = mq+m−3�
3 and j = 3�q−mq−m

3 , where 1 ≤ � ≤ 2t + 1
and 3�

2 < m ≤ min{3t + 2, 3� − 1}.
Proof We only show the result (i). The proofs of (ii) and (iii) are similar. We first consider
the case when δ = t(q − 1) + q−2

3 .

Let i and j be integers with 1 ≤ j < i ≤ t(q − 1) + q−2
3 . If C j = −qCi , then

iq + j ≡ 0(mod n). (2)

Notice that (q − 1) is a divisor of n. Operating both sides of (2) modulo q − 1 gets i + j ≡
0(mod q−1). Since 2 < i + j < 2δ ≤ 2t(q−1)+ 2(q−2)

3 , we have i + j = �(q−1), where

1 ≤ � ≤ 2t . Then j = �(q−1)−i . Putting it into (2) we obtain i+� ≡ 0(mod q+1
3 ). Hence,

i = mq+m−3�
3 and j = 3�q−mq−m

3 , for some positive integer m. We now determine the range

of m. Since 1 ≤ j < i and i + j = �(q − 1), it follows that �(q−1)
2 < i ≤ �(q − 1) − 1.

From i >
�(q−1)

2 , we obtain m > 3�
2 . From 2 ≤ i ≤ (3t+1)q−3t−2

3 and 1 ≤ � ≤ 2t , we obtain
m(q +1)−6t ≤ m(q +1)−3� ≤ 3t(q +1)+q −6t −2 andm ≤ 3t . Hence, 3�2 < m ≤ 3t .
From i ≤ �(q − 1) − 1, if m ≥ 3�, then i ≥ �q , which is a contradiction. So, it must be
m ≤ 3� − 1, implying that i ≤ �q − q+1

3 . Notice that � ≤ 2t ≤ � q−8
3 � and q ≥ 11. This

means that the condition i ≤ �(q − 1) − 1 is met. Hence, 3�
2 < m ≤ min{3t, 3� − 1}.

Conversely, suppose i = mq+m−3�
3 and j = 3�q−mq−m

3 , where 1 ≤ � ≤ 2t and 3�
2 < m ≤

min{3t, 3� − 1}. It easy to compute that 1 ≤ j < i and iq + j = m(q2−1)
3 ≡ 0(mod n).

Hence, C j = −qCi , i.e., (Ci ,C j ) is a skew asymmetric pair.
Hence, we already show that the result (i) holds true for δ = t(q − 1) + q−2

3 . For a given

integer t with 1 ≤ t ≤ � q−8
6 �, notice that when � = t + 1 and m = 3t , the integer i ∈ Zn

such that (Ci ,C j ) is a skew asymmetric pair has the largest value tq − 1. Thus, the result (i)
holds true for tq − 1 ≤ δ ≤ t(q − 1) + q−2

3 . ��
Lemma 6 Assume that n = q2−1

3 , where q ≥ 11 and 3 | (q + 1). Then Ci is skew symmetric

if and only if i = mq+m−3�
3 and m = 3�

2 , where � is even and 2 ≤ � ≤ 2(q−2)
3 .
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Proof The result can be easily obtained from Lemma 4. ��
Let T = ⋃δ

i=1 Ci , where δ is in one of the three ranges:

• (R1) tq − 1 ≤ δ ≤ t(q − 1) + q−2
3 .

• (R2) tq + q−2
3 ≤ δ ≤ t(q − 1) + 2q−4

3 .

• (R3) tq + 2q−1
3 ≤ δ ≤ t(q − 1) + q − 2.

Next, we compute the cardinality of T1 in the above three ranges, respectively. We first
consider the range (R1). To facilitate our calculation, we introduce the following notations.
For a given integer � with 1 ≤ � ≤ 2t , let

L(�)
m =

{

m | 3�

2
< m ≤ min{3t, 3� − 1}

}

,

S(�)
i =

{

i | i = mq + m − 3�

3
, for

3�

2
< m ≤ min{3t, 3� − 1}

}

,

T (�)
j =

{

j | j = 3�q − mq − m

3
, for

3�

2
< m ≤ min{3t, 3� − 1}

}

.

Write N (�) =| S(�)
i ∪ T (�)

j |.

Lemma 7 Assume that n = q2−1
3 , where q ≥ 11 and 3 | (q + 1). Let t be an integer with

1 ≤ t ≤ � q−8
6 �. If T = ⋃δ

i=1 Ci , where tq − 1 ≤ δ ≤ t(q − 1) + q−2
3 , then | T1 |= 3t2.

Proof For a given integer t with 1 ≤ t ≤ � q−8
6 �, set λ = t(q − 1)+ q−2

3 and Tλ = ⋃λ
i=1 Ci .

By Lemma 5 (i), we only need to compute | Tλ ∩ −qTλ |.
Let i and j be integers with 1 ≤ j ≤ i ≤ λ. From Lemmas 5 (i) and 6, i = mq+m−3�

3 ,
where 1 ≤ � ≤ 2t and

3�

2
≤ m ≤ min{3t, 3� − 1}. (3)

When 1 ≤ � ≤ t , min{3t, 3� − 1} = 3� − 1; when t + 1 ≤ � ≤ 2t , min{3t, 3� − 1} = 3t .
Note that 1 ≤ � ≤ 2t . Denote T (o)

� = {1, 3, . . . , 2t − 1} and T (e)
� = {2, 4, . . . , 2t}. Let

T (o)
i =

{

i | i = mq + m − 3�

3
, for � ∈ T (o)

�

}

,

T (e)
i =

{

i | i = mq + m − 3�

3
, for � ∈ T (e)

�

}

,

T (o)
j =

{

j | j = 3�q − mq − m

3
, for � ∈ T (o)

�

}

,

T (e)
j =

{

j | j = 3�q − mq − m

3
, for � ∈ T (e)

�

}

.

Hence,
| T1 |=| Tλ ∩ −qTλ |=| T (o)

i ∪ T (o)
j | + | T (e)

i ∪ T (e)
j | .

We now deal with the two cases where t is odd and even.

• Case 1: t is odd.
When � takes an odd integer with 1 ≤ � ≤ 2t , then 3�+1

2 ≤ m ≤ min{3t, 3� − 1}. From
Lemma 6, we have j < i . If 1 ≤ � ≤ t , then | L(�)

m |= 3� − 1 − 3�+1
2 + 1 = 3�−1

2 and
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N (�) = 2 | L(�)
m |= 3�−1. If t +1 ≤ � ≤ 2t , then | L(�)

m |= 3t − 3�+1
2 +1 = 3t − 3�

2 + 1
2

and N (�) = 2 | L(�)
m |= 6t − 3� + 1. We have

N (1) + N (3) + · · · + N (t) =
(
N (1) + N (t)

) · t+1
2

2
= 3t2 + 4t + 1

4

and

N (t+2) + N (t+4) + · · · + N (2t−1) =
(
N (t+2) + N (2t−1)

) · t−1
2

2
= 3t2 − 4t + 1

4
.

Hence,

| T (o)
i ∪ T (o)

j |= 3t2 + 4t + 1

4
+ 3t2 − 4t + 1

4
= 3t2 + 1

2
.

When � takes an even integer with 1 ≤ � ≤ 2t , then 3�+1
2 ≤ m ≤ min{3t, 3� − 1}. From

Lemma 6, Ci is skew symmetric if and only if i = j ; if and only ifm = 3�
2 . When j < i ,

3�+1
2 ≤ m ≤ min{3t, 3�−1}. If 1 ≤ � ≤ t , then | L(�)

m |= 3�−1− 3�+2
2 +1 = 3�−2

2 and

N (�) = 2 | L(�)
m | +1 = 3�−1. If t+1 ≤ � ≤ 2t , then | L(�)

m |= 3t− 3�+2
2 +1 = 3t− 3�

2

and N (�) = 2 | L(�)
m | +1 = 6t − 3� + 1. We have

N (2) + N (4) + · · · + N (t−1) =
(
N (2) + N (t−1)

) · t−1
2

2
= 3t2 − 2t − 1

4

and

N (t+1) + N (t+3) + · · · + N (2t) =
(
N (t+1) + N (2t)

) · t+1
2

2
= 3t2 + 2t − 1

4
.

Hence, | T (e)
i ∪T (e)

j |= 3t2−2t−1
4 + 3t2+2t−1

4 = 3t2−1
2 .Thus, | T1 |= 3t2+1

2 + 3t2−1
2 = 3t2.

• Case 2: t is even.
When � takes an odd integer with 1 ≤ � ≤ 2t , in the same way, we get

N (1) + N (3) + · · · + N (t−1) =
(
N (1) + N (t−1)

) · t
2

2
= 3t2 − 2t

4

and

N (t+1) + N (t+4) + · · · + N (2t−1) =
(
N (t+1) + N (2t−1)

) · t
2

2
= 3t2 + 2t

4
.

Hence,

| T (o)
i ∪ T (o)

j |= 3t2 − 2t

4
+ 3t2 + 2t

4
= 3t2

2
.

When � takes an even integer with 1 ≤ � ≤ 2t , in the same way, we have

N (2) + N (4) + · · · + N (t) =
(
N (2) + N (t)

) · t
2

2
= 3t2 + 4t

4

and

N (t+2) + N (t+4) + · · · + N (2t) =
(
N (t+2) + N (2t)

) · t
2

2
= 3t2 − 4t

4
.

Hence, | T (e)
i ∪ T (e)

j |= 3t2+4t
4 + 3t2−4t

4 = 3t2
2 . Thus, | T1 |= 3t2

2 + 3t2
2 = 3t2.
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This completes the proof. ��
For the ranges (R2) and (R3), we can compute the exact values of | T1 | by using an

analogues technique as in the range (R1). The proofs are omitted here.

Lemma 8 Assume that n = q2−1
3 , where q ≥ 11 and 3 | (q + 1). Let t be an integer with

1 ≤ t ≤ � q−8
6 �.

(i) If tq + q−2
3 ≤ δ ≤ t(q − 1) + 2q−4

3 , then | T1 |= 3t2 + 2t .

(ii) If tq + 2q−1
3 ≤ δ ≤ t(q − 1) + q − 2, then | T1 |= 3t2 + 4t + 2.

Let C be a cyclic code in Fq2 [x]/〈xn − 1〉 and have defining set T = ⋃δ
i=1 Ci . Now, we

can find EAQMDS codes with length n = q2−1
3 stemmed from the cyclic code C.

Theorem 1 Let q ≥ 11 be a power of any prime. Let n = q2−1
3 with 3 | (q + 1). For any

integer t with 1 ≤ t ≤ � q−8
6 �, q-ary EAQMDS codes with the following parameters can be

constructed from C

(i) [[n, n − 2d + 3t2 + 2, d; 3t2]]q , where tq ≤ d ≤ t(q − 1) + q+1
3 .

(ii) [[n, n − 2d + 3t2 + 2t + 2, d; 3t2 + 2t]]q , where tq + q+1
3 ≤ d ≤ t(q − 1) + 2q−1

3 .

(iii) [[n, n−2d +3t2 +4t +4, d; 3t2 +4t +2]]q , where tq + 2(q+1)
3 ≤ d ≤ (t +1)(q −1).

Proof Fix an integer t with 1 ≤ t ≤ � q−8
6 �. Let C be the cyclic code over Fq2 of length

n = q2−1
3 having defining set T = ⋃δ

i=1 Ci , where tq−1 ≤ δ ≤ t(q−1)+ q−2
3 . Notice that

every cyclotomic coset Ci has only one element. So, | T |= δ and dim(C) = n− δ. Since the
defining set of C contains δ consecutive integers, by Lemma 2, d(C) ≥ δ + 1. Hence, C is an
[n, n− δ, δ +1]MDS cyclic code over Fq2 . From Lemma 7, | T1 |= 3t2. By Lemma 3, there

exists an [[n, n − 2d + 3t2 + 2, d; 3t2]]q EAQEC code, where tq ≤ d ≤ t(q − 1) + q+1
3 . It

is easy to check that its parameters attain the bound 2d = n− k+ c+2, moreover, d ≤ n+2
2 .

Thus, the resulting code is an EAQMDS code. This proves the result (i). Apply Lemma 8 to
the cyclic codes C with the ranges (R2) and (R3), respectively. Then we can get the latter two
classes of EAQMDS codes in a similar way. ��

4 Construction of EAQMDS Codes of Length q2−1
5

We are now ready to construct EAQMDS codes with n = q2−1
5 . Assume that q ≥ 19 is a

power of any prime power with 5 | (q + 1).

Lemma 9 Assume that n = q2−1
5 , where q ≥ 19 and 5 | (q + 1). Let t be a positive integer

with 1 ≤ t ≤ � q−14
10 �.

(i) If tq − 1 ≤ δ ≤ t(q − 1)+ q−4
5 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew asymmetric

pair with 1 ≤ j < i ≤ δ if and only if i = mq+m−5�
5 and j = 5�q−mq−m

5 , where

1 ≤ � ≤ 2t and 5�
2 < m ≤ min{5t, 5� − 1}.

(ii) If tq + q−4
5 ≤ δ ≤ t(q − 1) + 2q−3

5 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew

asymmetric pair with 1 ≤ j < i ≤ δ if and only if i = mq+m−5�
5 and j = 5�q−mq−m

5 ,

where 1 ≤ � ≤ 2t and 5�
2 < m ≤ min{5t + 1, 5� − 1}.
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(iii) If tq + 2q−3
5 ≤ δ ≤ t(q − 1) + 3q−7

5 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew

asymmetric pair with 1 ≤ j < i ≤ δ if and only if i = mq+m−5�
5 and j = 5�q−mq−m

5 ,

where 1 ≤ � ≤ 2t + 1 and 5�
2 < m ≤ min{5t + 2, 5� − 1}.

(iv) If tq + 3q−2
5 ≤ δ ≤ t(q − 1) + 4q−6

5 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew

asymmetric pair with 1 ≤ j < i ≤ δ if and only if i = mq+m−5�
5 and j = 5�q−mq−m

5 ,

where 1 ≤ � ≤ 2t + 1 and 5�
2 < m ≤ min{5t + 3, 5� − 1}.

(v) If tq + 4q−1
5 ≤ δ ≤ t(q − 1) + q − 2 and 1 ≤ j < i ≤ δ, then (Ci ,C j ) is a skew

asymmetric pair with 1 ≤ j < i ≤ δ if and only if i = mq+m−5�
5 and j = 5�q−mq−m

5 ,

where 1 ≤ � ≤ 2t + 1 and 5�
2 < m ≤ min{5t + 4, 5� − 1}.

Proof We only prove the part (iv). The others are similar. We first handle the case when
δ = t(q − 1) + 4q−6

5 .

Let i and j be integers with 1 ≤ j < i ≤ t(q − 1) + 4q−6
5 . If C j = −qCi , then

iq+ j ≡ 0(mod n). By carrying on two sides modulo q−1, we have i+ j ≡ 0(mod q−1).
Since 2 < i+ j < (2t+1)(q−1)+ 3q−7

5 , it follows that i+ j = �(q−1),where 1 ≤ � ≤ 2t+1.

Then j = �(q − 1) − i . Plugging it into iq + j ≡ 0(mod n), we have i + � ≡ 0(mod q+1
5 ).

So, i and j can be written in the form i = mq+m−5�
5 and j = 5�q−mq−m

5 , respectively. We
now work out the range of m and �.

Since 1 ≤ j < i and i + j = �(q − 1), it follows that �(q−1)
2 < i ≤ �(q − 1) − 1. From

i >
�(q−1)

2 , we have m > 5�
2 . From 2 ≤ i ≤ (5t+4)q−5t−6

5 and 1 ≤ t ≤ 2t + 1, we get
m(q + 1) − 5� ≤ (5t + 3)(q + 1) + q − 10t − 9, which implies that m ≤ 5t + 3. Suppose
m ≥ 5�, then i ≥ �q , which contradicts the condition i ≤ �(q − 1) − 1. So, it must be
m ≤ 5� − 1, which means i ≤ �q − q+1

5 . Since � ≤ 2t ≤ � q−14
5 � and q ≥ 19, the condition

i ≤ �(q − 1) − 1 is met. Thus, 5�
2 < m ≤ min{5t + 3, 5� − 1}.

Conversely, suppose that i = mq+m−5�
5 and j = 5�q−mq−m

5 , where 1 ≤ � ≤ 2t + 1 and
5�
2 < m ≤ min{5t + 3, 5� − 1}. It can be checked that 1 ≤ j < i and iq + j = m(q2−1)

5 ≡
0(mod n). Hence, C j = −qCi , i.e., (Ci ,C j ) is a skew asymmetric pair.

So far, we already show that the result (iv) holds true for δ = t(q − 1) + 4q−6
5 . For a

given integer t with 1 ≤ t ≤ � q−14
10 �, notice that when � = t + 1 and m = 5t + 3, the integer

i ∈ Zn such that (Ci ,C j ) is a skew asymmetric pair has the largest value tq + 3q−2
5 . Thus,

the result (iv) works for tq + 3q−2
5 ≤ δ ≤ t(q − 1) + 4q−6

5 . ��

The following result is necessary to compute the number c of maximally entangled states,
which can be directly derived from Lemma 4.

Lemma 10 Assume that n = q2−1
5 , where q ≥ 19 and 5 | (q+1). Then Ci is skew symmetric

if and only if i = mq+m−5�
5 and m = 5�

2 , where � is even and 2 ≤ � ≤ 2(q−4)
5 .

Let T = ⋃δ
i=1 Ci , where δ is in one of the five ranges:

• (R1) tq − 1 ≤ δ ≤ t(q − 1) + q−4
5 .

• (R2) tq + q−4
5 ≤ δ ≤ t(q − 1) + 2q−3

5 .

• (R3) tq + 2q−3
5 ≤ δ ≤ t(q − 1) + 3q−7

5 .

• (R4) tq + 3q−2
5 ≤ δ ≤ t(q − 1) + 4q−6

5 .

• (R5) tq + 4q−1
5 ≤ δ ≤ t(q − 1) + q − 2.
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Next, we calculate the number of the elements in T1 in the above five ranges, respectively.
We first consider the range (R1). Similar to the case in Section3, we define the following
notations. For a fixed integer � with 1 ≤ � ≤ 2t , let

L(�)
m =

{

m | 5�

2
< m ≤ min{5t, 5� − 1}

}

,

S(�)
i =

{

i | i = mq + m − 5�

5
, for

5�

2
< m ≤ min{5t, 5� − 1}

}

,

T (�)
j =

{

j | j = 5�q − mq − m

5
, for

5�

2
< m ≤ min{5t, 5� − 1}

}

.

Write N (�) =| S(�)
i ∪ T (�)

j |.
Lemma 11 Let n = q2−1

5 , where q ≥ 19 and 5 | (q + 1). Assume that 1 ≤ t ≤ � q−14
10 �. If

T = ⋃δ
i=1 Ci , where tq − 1 ≤ δ ≤ t(q − 1) + q−4

5 , then | T1 |= 5t2.

Proof For a given integer t with 1 ≤ t ≤ � q−14
10 �, set λ = t(q−1)+ q−4

5 and Tλ = ⋃λ
i=1 Ci .

By Lemma 9 (i), we only need to compute | Tλ ∩ −qTλ |.
Let i and j be integers with 1 ≤ j ≤ i ≤ λ. From Lemmas 9 (i) and 10, i = mq+m−5�

5 ,
where 1 ≤ � ≤ 2t and

5�

2
≤ m ≤ min{5t, 5� − 1}. (4)

When 1 ≤ � ≤ t , min{5t, 5� − 1} = 5� − 1; when t + 1 ≤ � ≤ 2t , min{5t, 5� − 1} = 5t .
Note that 1 ≤ � ≤ 2t . Denote T (o)

� = {1, 3, . . . , 2t − 1} and T (e)
� = {2, 4, . . . , 2t}. Let

T (o)
i =

{

i | i = mq + m − 5�

5
, for � ∈ T (o)

�

}

,

T (e)
i =

{

i | i = mq + m − 5�

5
, for � ∈ T (e)

�

}

,

T (o)
j =

{

j | j = 5�q − mq − m

5
, for � ∈ T (o)

�

}

,

T (e)
j =

{

j | j = 5�q − mq − m

5
, for � ∈ T (e)

�

}

.

Hence,
| T1 |=| Tλ ∩ −qTλ |=| T (o)

i ∪ T (o)
j | + | T (e)

i ∪ T (e)
j | .

We now deal with the two cases where t is odd and even.

• Case 1: t is odd.
When � takes an odd integer with 1 ≤ � ≤ 2t , then 5�+1

2 ≤ m ≤ min{5t, 5� − 1}. From
Lemma 10, we have j < i . If 1 ≤ � ≤ t , then | L(�)

m |= 5� − 1 − 5�+1
2 + 1 = 5�−1

2 and

N (�) = 2 | L(�)
m |= 5�−1. If t +1 ≤ � ≤ 2t , then | L(�)

m |= 5t − 5�+1
2 +1 = 5t − 5�

2 + 1
2

and N (�) = 2 | L(�)
m |= 10t − 5� + 1. Moreover,

N (1) + N (3) + · · · + N (t) =
(
N (1) + N (t)

) · t+1
2

2
= 5t2 + 8t + 3

4
and

N (t+2) + N (t+4) + · · · + N (2t−1) =
(
N (t+2) + N (2t−1)

) · t−1
2

2
= 5t2 − 8t + 3

4
.
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Hence,

| T (o)
i ∪ T (o)

j |= 5t2 + 8t + 3

4
+ 5t2 − 8t + 3

4
= 5t2 + 3

2
.

When � takes an even integer with 1 ≤ � ≤ 2t , then 5�+1
2 ≤ m ≤ min{5t, 5� − 1}. From

Lemma 10, Ci is skew symmetric, which is equivalent to i = j or m = 5�
2 . When j < i ,

5�+1
2 ≤ m ≤ min{5t, 5�−1}. If 1 ≤ � ≤ t , then | L(�)

m |= 3�−1− 3�+2
2 +1 = 3�−2

2 and

N (�) = 2 | L(�)
m | +1 = 5�−1. If t+1 ≤ � ≤ 2t , then | L(�)

m |= 5t− 5�+2
2 +1 = 5t− 5�

2

and N (�) = 2 | L(�)
m | +1 = 10t − 5� + 1. Moreover,

N (2) + N (4) + · · · + N (t−1) =
(
N (2) + N (t−1)

) · t−1
2

2
= 5t2 − 2t − 3

4

and

N (t+1) + N (t+3) + · · · + N (2t) =
(
N (t+1) + N (2t)

) · t+1
2

2
= 5t2 + 2t − 3

4
.

Hence, | T (e)
i ∪T (e)

j |= 5t2−2t−3
4 + 5t2+2t−3

4 = 5t2−3
2 .Thus, | T1 |= 5t2+3

2 + 5t2−3
2 = 5t2.

• Case 2: t is even.
When � takes an odd integer with 1 ≤ � ≤ 2t , in the same way, we have

N (1) + N (3) + · · · + N (t−1) =
(
N (1) + N (t−1)

) · t
2

2
= 5t2 − 2t

4

and

N (t+1) + N (t+4) + · · · + N (2t−1) =
(
N (t+1) + N (2t−1)

) · t
2

2
= 5t2 + 2t

4
.

Hence,

| T (o)
i ∪ T (o)

j |= 5t2 − 2t

4
+ 5t2 + 2t

4
= 5t2

2
.

When � takes an even integer with 1 ≤ � ≤ 2t , in the same way, we have

N (2) + N (4) + · · · + N (t) =
(
N (2) + N (t)

) · t
2

2
= 5t2 + 8t

4

and

N (t+2) + N (t+4) + · · · + N (2t) =
(
N (t+2) + N (2t)

) · t
2

2
= 5t2 − 8t

4
.

Hence, | T (e)
i ∪ T (e)

j |= 5t2+8t
4 + 5t2−8t

4 = 5t2
2 . Thus, | T1 |= 5t2

2 + 5t2
2 = 5t2.

This completes the proof. ��
For the ranges (R2) to (R5), we can similarly compute the exact values of | T1 |. The

proofs are omitted here.

Lemma 12 Let n = q2−1
5 , where q ≥ 19 and 5 | (q + 1). Assume that 1 ≤ t ≤ � q−14

10 �.
(i) If tq + q−4

5 ≤ δ ≤ t(q − 1) + 2q−3
5 , then | T1 |= 5t2 + 2t .

(ii) If tq + 2q−3
5 ≤ δ ≤ t(q − 1) + 3q−7

5 , then | T1 |= 5t2 + 4t .

(iii) If tq + 3q−2
5 ≤ δ ≤ t(q − 1) + 4q−6

5 , then | T1 |= 5t2 + 6t + 2.
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(iv) If tq + 4q−1
5 ≤ δ ≤ t(q − 1) + q − 2, then | T1 |= 5t2 + 8t + 4.

Let C be a cyclic code in Fq2 [x]/〈xn − 1〉 and have defining set T = ⋃δ
i=1 Ci . Now, we

construct EAQMDS codes with length n = q2−1
5 from the cyclic code C.

Theorem 2 Let q ≥ 19 be a power of any prime. Let n = q2−1
5 with 5 | (q + 1). For an

integer t with 1 ≤ t ≤ � q−14
10 �, q-ary EAQMDS codes with the following parameters can be

constructed from C.

(i) [[n, n − 2d + 5t2 + 2, d; 5t2]]q , where tq ≤ d ≤ t(q − 1) + q+1
5 .

(ii) [[n, n − 2d + 5t2 + 2t + 2, d; 5t2 + 2t]]q , where tq + q+1
5 ≤ d ≤ t(q − 1) + 2q+2

5 .

(iii) [[n, n − 2d + 5t2 + 4t + 2, d; 5t2 + 4t]]q , where tq + 2q+2
5 ≤ d ≤ t(q − 1) + 3q−2

5 .

(iv) [[n, n−2d +5t2 +6t +4, d; 5t2 +6t +2]]q , where tq + 3q+3
5 ≤ d ≤ t(q −1)+ 4q−1

5 .

(v) [[n, n − 2d + 5t2 + 8t + 6, d; 5t2 + 8t + 4]]q , where tq + 4q+4
5 ≤ d ≤ (t + 1)(q − 1).

Proof For a fixed integer t with 1 ≤ t ≤ � q−14
10 �, suppose that C is the cyclic code in

Fq2 [x]/〈xn − 1〉 with defining set T = ⋃δ
i=1 Ci , where tq − 1 ≤ δ ≤ t(q − 1) + q−4

5 . Note
that Ci contains only one element. This gives that | T |= δ and dim(C) = n − δ. From the
BCH bound, d(C) ≥ δ +1. Therefore, C has parameters [n, n− δ, δ +1] and is a MDS code.
From Lemma 11, | T1 |= 5t2. By Lemma 3, an [[n, n − 2d + 5t2 + 2, d; 5t2]]q EAQEC
code can be obtained from C, where tq ≤ d ≤ t(q − 1) + q+1

5 . It can be verified that its
parameters meet the equality 2d = n − k + c + 2. Moreover, d ≤ n+2

2 . Thus, the resulting
EAQEC code is EAQMDS. This proves the result (i). By using Lemma 12 to the cyclic codes
with the ranges (R2)-(R5) respectively, we can gained the latter four classes of EAQMDS
codes in a similar way. ��

5 Comparison and Discussion

In this paper, by exploring cyclotomic cosets, we find new EAQMDS codes with length
q2−1
r in the cases when r = 3 and r = 5, where r | (q + 1). We introduce the parameter t

and describe the relation between the minimum distances d and the number c of maximally
entangled states, where the range of t is determined by the field size q . This enables us
to construct many EAQMDS codes with minimum distance not less than q and flexible
parameters for pre-shared entangled states. Most of the previously knownwork on EAQMDS

codes of length n = q2−1
r only considered the case that q is an odd prime power [3, 6, 16–19].

The constructions in this paper place on the general case that q is any prime power. We list
the resulting EAQMDS codes in Table 1. In the following, we compare our EAQMDS codes
with those in the known literature.

In [16], by using cyclic code, Lu et al. found EAQMDS codes with even length and
minimum distance greater than q + 1. We list and compare the parameters between the
EAQMDS codes in [16] and the EAQMDS codes here in Table 2. It is easy to find that the
parameters in [16] are a special case when t = 1. So, the EAQMDS codes here contain all
the EAQMDS codes in [16]. In addition, the finite size q can take any even prime power.
Thus, the EAQMDS codes here not only generalize the results in [16], but also resolve the
case when q is an even prime power.
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Table 1 Parameters of the EAQMDS codes constructed in this paper

n [[n, k, d; c]]q d

q2−1
3 [[n, n − 2d + 3t2 + 2, d; 3t2]]q tq ≤ d ≤ t(q − 1) + q+1

3

[[n, n − 2d + 3t2 + 2t + 2, d; 3t2 + 2t]]q tq + q+1
3 ≤ d ≤ t(q − 1) + 2q−1

3

[[n, n − 2d + 3t2 + 4t + 4, d; 3t2 + 4t + 2]]q tq + 2(q+1)
3 ≤ d ≤ t(q − 1) + q − 1

q2−1
5 [[n, n − 2d + 5t2 + 2, d; 5t2]]q tq ≤ d ≤ t(q − 1) + q+1

5

[[n, n − 2d + 5t2 + 2t + 2, d; 5t2 + 2t]]q tq + q+1
5 ≤ d ≤ t(q − 1) + 2q+2

5

[[n, n − 2d + 5t2 + 4t + 2, d; 5t2 + 4t]]q tq + 2q+2
5 ≤ d ≤ t(q − 1) + 3q−2

5

[[n, n − 2d + 5t2 + 6t + 4, d; 5t2 + 6t + 2]]q tq + 3q+3
5 ≤ d ≤ t(q − 1) + 4q−1

5

[[n, n − 2d + 5t2 + 8t + 6, d; 5t2 + 8t + 4]]q tq + 4q+4
5 ≤ d ≤ t(q − 1) + q − 1

In [27], Pang et al. gained EAQMDS codes with parameters [[ q2−1
r ,

q2−1
r − 2d +

2m + 1, d; 2m − 1]]q , where r | (q + 1), 1 ≤ m ≤ r−1
2 and (r+2m−1)(q+1)

2r ≤ d ≤
(q−1)r+(2m+1)(q+1)

2r . It is easy to see that the minimum distance of these codes is less than q .
We list some EAQMDS codes when q is an even prime power in Table 3 and compare them
with our parameters. It can be seen that the EAQMDS codes here have higher error-correcting
capability.

In [33], Wang et al. constructed EAQEC codes of length n = q−1
r (q + 1) with flexible

the number of maximally entanglement bits, where q is any prime power. However, the
construction was considered under the condition that r | (q − 1). As gcd(q − 1, q + 1) = 1
or 2, the code lengths are different from those of the EAQMDS codes here.

Table 2 Comparison with the EAQMDS codes constructed in Ref. [16]

q r t [[n, k, d; c]]q d Reference

17 3 1 [[96, 101 − 2d, d; 3]]17 17 ≤ d ≤ 22 [16]

17 3 1 [[96, 103 − 2d, d; 5]]17 23 ≤ d ≤ 27 [16]

17 3 1 [[96, 107 − 2d, d; 9]]17 29 ≤ d ≤ 32 [16]

17 3 2 [[96, 110 − 2d, d; 12]]17 34 ≤ d ≤ 38 [16]

17 3 2 [[96, 114 − 2d, d; 16]]17 40 ≤ d ≤ 43 [16]

17 3 2 [[96, 120 − 2d, d; 22]]17 46 ≤ d ≤ 48 New

29 5 1 [[175, 826 − 2d, d; 5]]29 29 ≤ d ≤ 34 [16]

29 5 1 [[177, 828 − 2d, d; 7]]29 35 ≤ d ≤ 40 [16]

29 5 1 [[179, 830 − 2d, d; 9]]29 41 ≤ d ≤ 45 [16]

29 5 1 [[183, 834 − 2d, d; 13]]29 47 ≤ d ≤ 51 [16]

29 5 1 [[187, 838 − 2d, d; 17]]29 53 ≤ d ≤ 56 New

29 5 2 [[190, 841 − 2d, d; 20]]29 58 ≤ d ≤ 62 New

29 5 2 [[194, 845 − 2d, d; 24]]29 64 ≤ d ≤ 68 New

29 5 2 [[198, 849 − 2d, d; 28]]29 70 ≤ d ≤ 73 New

29 5 2 [[204, 855 − 2d, d; 34]]29 76 ≤ d ≤ 79 New

29 5 2 [[210, 861 − 2d, d; 40]]29 82 ≤ d ≤ 84 New
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Table 3 Some new EAQMDS codes and comparisons

q r t Our parameters d Parameters in [27]

32 3 − − − [[341, 344 − 2d, d; 1]]32 22 ≤ d ≤ 33

32 3 1 [[341, 346 − 2d, d; 3]]32 32 ≤ d ≤ 42 New

32 3 1 [[341, 348 − 2d, d; 5]]32 43 ≤ d ≤ 52 New

32 3 1 [[341, 352 − 2d, d; 9]]32 54 ≤ d ≤ 62 New

32 3 2 [[341, 355 − 2d, d; 12]]32 64 ≤ d ≤ 73 New

32 3 2 [[341, 359 − 2d, d; 16]]32 75 ≤ d ≤ 83 New

32 3 2 [[341, 365 − 2d, d; 22]]32 86 ≤ d ≤ 93 New

· · ·
32 3 4 [[341, 391 − 2d, d; 48]]32 128 ≤ d ≤ 135 New

32 3 4 [[341, 399 − 2d, d; 56]]32 139 ≤ d ≤ 145 New

32 3 4 [[341, 409 − 2d, d; 66]]32 150 ≤ d ≤ 155 New

64 5 − − − [[819, 822 − 2d, d; 1]]64 39 ≤ d ≤ 51

64 5 − − − [[819, 824 − 2d, d; 3]]64 52 ≤ d ≤ 65

64 5 1 [[819, 826 − 2d, d; 5]]64 64 ≤ d ≤ 76 New

64 5 1 [[819, 828 − 2d, d; 7]]64 77 ≤ d ≤ 89 New

64 5 1 [[819, 830 − 2d, d; 9]]64 90 ≤ d ≤ 101 New

64 5 1 [[819, 834 − 2d, d; 13]]64 103 ≤ d ≤ 114 New

64 5 1 [[819, 838 − 2d, d; 17]]64 116 ≤ d ≤ 126 New

64 5 2 [[819, 841 − 2d, d; 20]]64 128 ≤ d ≤ 139 New

64 5 2 [[819, 845 − 2d, d; 24]]64 141 ≤ d ≤ 154 New

64 5 2 [[819, 849 − 2d, d; 28]]64 154 ≤ d ≤ 166 New

64 5 2 [[819, 855 − 2d, d; 34]]64 167 ≤ d ≤ 179 New

64 5 2 [[819, 861 − 2d, d; 40]]64 180 ≤ d ≤ 191 New

· · ·
64 5 5 [[819, 896 − 2d, d; 125]]64 320 ≤ d ≤ 328 New

64 5 5 [[819, 956 − 2d, d; 135]]64 333 ≤ d ≤ 341 New

64 5 5 [[819, 966 − 2d, d; 145]]64 346 ≤ d ≤ 353 New

64 5 5 [[819, 978 − 2d, d; 157]]64 359 ≤ d ≤ 366 New

64 5 5 [[819, 990 − 2d, d; 169]]64 372 ≤ d ≤ 378 New

The construction here is through determining the number of cyclotomic cosets in T1
associated with the defining set of a cyclic code over Fq2 . By introducing the variable t , the
parameter t and c are linked in an expression. In addition, the construction allows the finite
size q to take any prime power. Hence, our construction can produce many new EAQMDS
codes with large minimum distance and changeable parameters. However, we only establish
the connection among the minimum distance d , the number c of maximally entangled states
and the variable t . It would be interesting to find the relation among d , c and r so as to
construct more new EAQMDS codes.
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