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Abstract
We introduce a two-mode hybrid entangled state (NAAN) which is constructed by two 
n-photon Fock states and two coherent states with an arbitrary relative phase. We show that 
the NAAN can be considered as the superpositions of NOON states when � ≠ 0 . In the 
special case, when � = 0 , the NAAN degenerates to the general NOON. The most interest-
ing nonclassical properties of this state are its strong violations of the CHSH inequality. 
In addition, we show explicitly some typical nonclassical properties of the NAAN state, 
such as entanglement, sub-Poissonian distribution, phase fluctuation and squeezing. These 
findings suggest that the even NAAN states exhibit a high degree of entanglement, while 
the odd NAAN states have a distinct sub-Poissonian distribution and the optimal phase 
sensitivity.

Keywords  Hybrid entangled state · Phase estimation · Squeezing · CHSH inequality · Sub-
Poissonian distribution

1  Introduction

In recent years, the generation of various nonclassical states and the study of their nonclas-
sical characteristic have become the most fascinating aspects of quantum optics and quan-
tum information [1–5]. The concepts of entangled states are related to interference of two 
different quantum states [6–8]. Entangled states have many applications for quantum infor-
mation processing, such as quantum teleportation, quantum-key distribution, and dense 
coding [9–12]. Quantum technologies based on two photons entangled states can exhibit 
some interesting non-classical properties, such as nonlocality, entanglement, squeezing, 
the standard quantum limit of phase estimation [13–16].

Using several non-Gaussian operations, various types of entangled states have been pro-
duced, such as photon-added coherent states, photon-subtraction state [17, 18]. In addition, 
nonclassical states can also be generated by linear superposition of two standard coherent 
states with opposite phase, i.e., Schrödinger cat states [19, 20]. It has been reported that 
the even cat state exhibits the squeezing effect but has no antibunching effect, while the 
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odd cat state owns an antibunching effect but has no squeezing effect [21, 22]. It is worth 
noting that these non-classical quantum states are related to coherent states and belong to 
continuous-variable (CV) quantum states [23–25].

CV and discrete-variable (DV) quantum state are two major issues of quantum science. 
A typical DV entangled state is the NOON state ��⟩NooN =

���N1⟩��02⟩ + ��01⟩��N2⟩
�
 , where N 

is the photon number and the subscript denotes the corresponding mode. Such states can 
be considered as macroscopic quantum superposition like cat states [26–30]. In quantum 
optics, the NOON states are considered as the heart of many quantum-enhanced measure-
ment schemes, such as quantum lithography, quantum metrology [31, 32]. To date, five-
photon NOON states have been prepared experimentally [33].

Recently, a type of hybrid entangled states (HES) in the combination of DV (a single 
photon number state) and CV (a coherent state) resources has been prepared in a free-
travelling field [34–36]. Moreover, Kreis and van Loock have studied various kinds of HES 
between CV and DV. Many schemes for the generation of HES have been proposed by 
using hybrid quantum devices in atomic and molecular physics and quantum optics [37].

The aim of this paper is to construct a new hybrid quantum and to explore its several 
novel nonclassical properties. We begin by introducing the new state and deriving its nor-
malization constant in Section  2. It will then go on to investigate its entanglement wit-
nesses via degree of entanglement and Einstein–Podolsky–Rosen(EPR)criterion in Sec-
tion 3. Section 4 will consider both the quantum statistical distribution and nonlocality by 
Mandel parameter, Wigner function and CHSH inequality. The purpose of the Section 5 
is to analyze the phase sensitivity using parity detection and classical Fisher information. 
Section 6 seeks to find the squeezing properties with sum squeezing and difference squeez-
ing. The final section gives a summary and main conclusion of the findings.

2 � NAAN and its Normalization Constant

Let us start with a definition of bipartite NAAN as

where � is a relative phase between ��N1⟩���2⟩ and ���1⟩��N2⟩,Nc is the normalization constant. 
The subscripts 1 and 2 will be used in this paper to refer to distinguish variables from dif-
ferent quantum light field modes. For the convenience of analysis, in the following discus-
sion, we take

where n1, n2 denote the average photon number in the mode1 and 2.
According to the properties of quantum states Tr� = 1 and

the normalization constant is obtained as

(1)��⟩ = N−1∕2
c

���N1⟩���2⟩ + ei����1⟩��N2⟩
�
,

(2)n ≡ n
1
= n

2
, � ≡ �

1
= �

2
,

(3)⟨N1
���1⟩ = ⟨N2

���2⟩ = �
n

√
n!
e
−

1

2
���2 ,

(4)Nc = 2
(
1

n!
|�|2ne−|�|2 cos� + 1

)
.
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In particular, when � = � = 0 , Eq.  (1) reduces to the NOON state ��⟩NooN . However, 
when N = 0, � = 1,

where we have used

Thus, it is easy to see that when � = 0,� , the quantum states in Eq.  (5) are different 
from the Bell states in Fock state[38, 39]

To our knowledge, the NAAN state in Eq. (1) has not been previously studied and rep-
resents a novel symmetric HES which may be considered as a superposition of the NOON 
states..

3 � Entanglement Witnesses

This section will examine the entanglement of the NAAN state via the von Neumann 
entropy of entanglement and EPR criterion.

3.1 � Degree of Entanglement

Different methods have been used to measure the degree of entanglement via different 
kinds of entropies, such as entropy of entanglement and logarithmic negativity. For the 
two-mode entangled state, the von Neumann entropy of entanglement is defined as [40, 41]

where S[�] = −Tr
(
� log2 �

)
 is von Neumann entropy, cl and Tr2(�) denotes the partial trans-

pose of density operator � with respect to 2-mode. For a two-mode pure state, its Schmidt 
decomposition is

where ���k1⟩ and ���k2⟩ are orthogonal and normalized basis states and ck are the superposi-
tion coefficients of the basis states [42, 43].

Substituting Eq. (9) into Eq. (8), the von Neumann entropy is obtained as

Thus for the NAAN state shown in Eq. (1), in the number state basis one find that

(5)��⟩0110 = 1√
2(1 + e)

∞�
m=0

1

m!

�
a
†m

2
+ ei�a

†m

1

���01⟩��02⟩,

(6)��⟩�
�=1 = e

−
1

2
+a† �0⟩ = e

−
1

2

∞�
m=0

a†
m

m!
�0⟩.

(7)���±⟩ = 1√
2
(�01⟩ ± �10⟩).

(8)Ev(�) = S
[
Tr2(�)

]
,

(9)���12⟩ =
∞�
k=0

ck
���k1⟩���k2⟩,

(10)Ev(�) = −

∞∑
k=0

||ck||2 log2 ||ck||2.
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The von Neumann entropy for the NAAN can be obtained

where

Here we should point out that when n = 0, � = 1,� = 0,Ev(�) → 0.5, which is just the 
maximally entangled coherent states in Ref. [44]. When � = � and n ≠ 0 , Ev(�) = 0 , which 
implies that the odd NAAN state has the lowest degree of entanglement.

For evaluating the degree of entanglement of the NAAN state, we plot the von Neumann 
entropy of entanglement for the NAAN states as a function of both n and � via Eq. (12). 
One obvious conclusion is that the degree of entanglement decreases rapidly as the value 
of n increases. In addition, when n is fixed, the entanglement degree of NAAN states is 
distributed symmetrically about � = � . The even NAAN states ( � = 0, 2� ) have a high 
degree of entanglement (Fig. 1).

3.2 � EPR Criterion

EPR criterion is used to investigate an inseparability of the two-mode state via a pair of 
EPR-type operators [45, 46]

(11)��⟩ = N−1∕2
c

∞�
m1,m2=0

��m1⟩��m2⟩⟨m2
��⟨m1

��
���N1⟩���2⟩ + ei����1⟩��N2⟩

�
.

(12)Ev(�) = −|�|2 log2 |�|2,

(13)� = N−1∕2
c

1√
n!
�
ne

−
1

2
���2�1 + ei�

�
.

Fig. 1   The von Neumann entropy 
of entanglement for the NAAN 
states as a function of both n and 
� in the case of � = 1. The value 
of n ranges from 1 to 6 and that 
of � ranges from 0 to 2�.
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wher Xk =
�
ak + a

†

k

�
∕
√
2 and Pk =

�
ak − a

†

k

�
∕
√
2i(k = 1, 2).

Using Δ2O =
�
O2

�
− ⟨O⟩2 , we get

In principle, the EPR criterion of arbitrary inseparable two-mode states satisfies the 
condition of EPR < 2.To obtain EPR for the NAAN state, we need to calculate the aver-
age values of a†

1
a1, a1a2 and a1 as (see Appendix 1)

Thus, we have

It is shown that when n = 0,EPR is always less than 2. Using Eqs. (16) and (17), we 
plot the EPR as the function of � with n = 1, 2, 3 in Fig. 2. It is obvious that when the 
relative phase � is fixed, the value of EPR increases with the increase of photon number 
n , and finally exceeds EPR > 2.

(14)EPR = Δ2
(
X1 − X2

)
+ Δ2

(
P1 + P2

)
,

(15)
EPR = 2

��
a
†

1
a1 + a

†

2
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− 2
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†

1
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†
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�

−
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��2
−
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�
.
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†

1
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2
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�
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�
∗n−1 cos�,

E3 ≡ ⟨a1⟩ = ⟨a2⟩
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c
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1
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e−i��∗−1 +

1
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ei��
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�
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EPR = 4E1 − 8ReE2 − 4Re

(
E2
3
− 2E2

)

−4Im
(
E2
3
+ 2E2

)
+ 1.

Fig. 2   The EPR for the NAAN 
state as a function � with � = 1 
and n = 1, 2, 3.
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4 � Quantum Statistical Distribution for the NAAN State

This section is subdivided into three subsections, i.e., Mandel Q-parameter, Wigner 
function and violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality.

4.1 � Mandel Q‑Parameter

Mandel parameter ordinarily is defined as follows [47]

where Nk = a
†

k
ak and k = 1, 2 indicates the 1 and 2 mode, respectively. Using (

a
†

k
ak

)2

= a
†2

k
a2
k
+ a

†

k
ak , we have

The average value of a†2
k
a2
k
 is

The negativity of Mandel parameter in Eq. (20) indicates that the quantum statistics 
is sub-Poissonian and shows the non-classicality of the state. Figure 3 shows that Qk

M
 

takes the minimum negative value at � = � . Thus, the odd NAAN state has sub-Pois-
sonian photon number distribution for n = 2, 3, 4. As � and n increase, we have QM > 0 
which imply the non-classical quantum statistical effects of the NAAN state gradually 
disappear.

(18)Qk
M
=

�
N2
k

�
− ⟨Nk⟩2

⟨Nk⟩ − 1,

(19)Qk
M
=

⟨
a
†2

k
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k

⟩
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⟨
a
†

k
ak

⟩2

⟨
a
†

k
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⟩ .

(20)
Q ≡
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a
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1
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1

⟩
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⟨
a
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2
a2
2

⟩

= N−1
c

[
2

(n − 2)!
|�|2ne−|�|2 cos� + |�|4 + n(n − 1)

]
.

Fig. 3   The Q
M

 for the NAAN 
state as a function of � with 
� = 1 and n = 2, 3, 4.
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4.2 � Wigner Function

The negativity values in the Wigner function are major criteria on non-classicality of the 
quantum state [48, 49]. For analyzing the non-classicality of the NAAN state, one can use 
the definition of two-mode Wigner function as

where in the phase space

Substituting Eq. (1) into Eq. (21), one can finally obtain (see Appendix 2)

where

Comparing with Figs.4(a)-(c), it is not difficult to see that the negative values of Wigner 
function show that the NAAN states are the non-Gaussian quantum states. In addition, 
the maximum positive values of even NAAN states are greater than the absolute value of 
the maximum negative values, while the opposite is true of odd NAAN states. Therefore, 
from the perspective of quantum statistical distribution, the non-classical properties of odd 
NAAN states are more obvious than those of even NAAN states. Comparing Fig. 4. (b) 
and (d), the Wigner function does not change significantly. Thus, it can be seen that when 
the amplitude of coherent states � is fixed, the statistical distribution of quantum states 
mainly depends on the size of particle number n , and has little relationship with the relative 
phase �.

4.3 � Violation of the CHSH Inequality

In this subsection, we study the quantum nonlocality test for the NAAN state. Bell has 
proposed a remarkable inequality imposed by a local hidden variable theory, which enables 
a quantitative test on nonlocality of quantum states. For the two-mode case, the CHSH 
inequality based on the Wigner function is expressed as [50]

(21)
W
�
�1, �2

�
=

2

�
2
e
2
���1�2+��2�2�

∫

d2z1d
2z2

�
2

⟨−z1,−z2�����z1, z2⟩e−2(z1�∗1−z∗1�1)−2(z2�∗2−z∗2�2),

�1 =
q1 + ip1√

2
, �2 =

q2 + ip2√
2

,

q± =
q1 ± q2√

2
, p± =

p1 ± p2√
2

.

(22)W
(
�1, �2

)
=

2

�
2
(−1)ne

−2
(|�1|2+|�2|2)N−1

c

(
F1 + 2ReF2 + F3

)
,

(23)

F1 = Lm

(
−4||�1||2

)
exp

(
2��∗

2
+ 2�2�

∗ − |�|2),
F2 =

1

n!
ei�

(
2�2 − �

)n(
�
∗ − 2�∗

1

)n
exp

[
2
(
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∗
2

)]
,
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(
−4||�2||

)2
exp

(
2��∗
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+ 2�1�

∗ − |�|2).



	 International Journal of Theoretical Physics (2023) 62:81

1 3

81  Page 8 of 19

Here by letting

one has

where J > 0 is the magnitude of the displacement for the Bell test.
Using Eqs. (22) and (26), the numerical CHSH is obtained with the NAAN state, 

which are shown in Fig. 5. For � = � , we find much stronger violations of the CHSH in 
the regime 1 ≤ n ≤ 3. For � = 0, 2� , we find violations of the inequality only at n = 2. 
In other cases 0 < 𝜑 < 𝜋 and 𝜋 < 𝜑 < 2𝜋, the violations of the inequality obtained with 
the NAAN state occur over a range of photon numbers 1 ≤ n ≤ 3 . In addition, the vio-
lation of the CHSH inequality diminishes for increasing n . The most interesting result 
is with respect to the CHSH inequality which for the NOON states is violated only for 
case n = 1 , whereas for the NAAN state increasing violations at a wider range of photon 
numbers n > 1.

(24)|B| = �
2

4

|||W
(
�1, �2

)
+W

(
�1, �

�

2

)
+W

(
�

�

1
, �2

)
−W

(
�

�

1
, �

�

2

)||| ≤ 2.

(25)�1 = 0, �2 = 0, �
�

1
=
√
J, �

�

2
= −

√
J,

(26)��BJ
�� = �

2

4

����W(0, 0) +W
�√

J, 0
�
+W

�
0,−

√
J
�
−W

�√
J,−

√
J
�����,

Fig. 4   The Wigner function in q+ − p+ phase space with � = 1 where the values of (n,�) are respectively 
(a) (2, 0), (b)(3, 0), (c) (4, 0), (d) (3,�)
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5 � Phase Measurement via Parity Detection

Quantum phase measurement plays a very important role in quantum metrology, because 
it can help us determine how small the accuracy of the phase we can detect. It has been 
reported that quantum vacuum state can be estimated with an error Δ� ∼ 1∕

√
N, which is 

just the so-called standard quantum limit. Some nonclassical states and the entangled states, 
such as NOON states and two-mode squeezed vacuum state, can reach the Heisenberg limit 
Δ� ∼ 1∕N in a in a photon lossless environmental measurement. There are three types of 
detection schemes to measure the phase information of the quantum state, i.e., homodyne 
detection, intensity detection and parity detection. In section, we focus on the parity detection 
and the classical Fisher information.

5.1 � Parity Detection with the NAAN State

The purpose of parity detection is to obtain the average value of parity operators in the quan-
tum state, which has many applications in Wigner function and phase measurement [51–53]. 
Here, we take the parity operator of mode 1 as

where ���1⟩ is the normal coherent state.
Using the eigen-equation of parity operator Π1

��N1⟩ = (−1)n��N1⟩ and Π1
���1⟩ = ��−�1⟩ , the 

expectation value of the parity operator for the NAAN state is

(27)Π1 = (−1)a
†

1
a1 =

∫

d2�1

�

���1⟩⟨−�1��,

(28)⟨Π1⟩ = N−1
c

�
2

n!
(−1)n���2ne−���2 cos� + e−2���

2

+ (−1)n
�
.

Fig. 5   The CHSH quantity ||BJ

|| 
as a function of n and � with 
J = 0.1 and � = 1.5.
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It can be seen from the Fig.  6(a) that the average value of parity operator decreases 
continuously with the increase of �. The average values parity operator is ⟨Π1⟩ ≤ 0 when n 
is odd, but greater than zero when n is even in the case � = 0. Comparing Figs.6(b)-(c), it 
is clear to see that the trough or peak of the curve occurs in � = � . In addition, the central 
trough of n = 0 is narrower than that of n = 1, 2 under the same parameters. In the case of 
n = 0, 1, the phase sensitivity of parity measurement increases with the increase of � , but 
in the case of n = 2 , it is opposite. Therefore, to obtain the best phase measurement sensi-
tivity for the NAAN state, the measurement objects are the quantum states with the relative 
phase � = � and small n and � values, especially n = 0, � → 0.

5.2 � Classical Fisher Information

After investigating the expectation values of the parity operator, in this subsection, we fur-
ther consider the classical Fisher information (CFI) based on parity detection in Eq. (28). 
In general, the CFI can be estimated as [54, 55]

where we have used

Using Eq. (28), one obtain

(29)Fc =

���
�

��

⟨Π1⟩���
2

Δ2Π1

=

���
�

��

⟨Π1⟩���
2

1 − ⟨Π1⟩2
,

(30)Δ2Π1 ≡
�
Π2

1

�
− ⟨Π1⟩2 = 1 − ⟨Π1⟩2.

Fig. 6   a The average value of parity operator as a function of n with � = 0, 1, 1.5 and � = 0. ⟨Π
1
⟩ as func-

tion of � with � = 0.9, 1.0, 1.5 and b n = 0 , c n = 1, d n = 2.
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Substituting Eqs. (28) and (31) into (29), the CFI for the NAAN states is obtained

where

The phase sensitivity of the NAAN state can be estimated by the error propagation for-
mula as

From Fig. 7, it is easy to see that the phase fluctuation Δ� is the largest at � = 0,�, 2� . 
The minimum phase fluctuation is in the range of 5𝜋∕6 < 𝜑 < 𝜋 or 𝜋 < 𝜑 < 7𝜋∕6 . In addi-
tion, at the same phase � , the phase uncertainty Δ� increases with the increase of photon 
number n . Furthermore, when the amplitude of the coherent state � tends to zero, the quan-
tum phase fluctuation also tends to zero, even reaching the Heisenberg limit Δ� = 1∕N.

6 � Squeezing Properties

The investigation of the squeezing effects of the quantum states is of considerable interest 
since it plays an important role in the quantum theory [56, 57]. There are several different 
methods used to analyze the squeezing properties of two-mode quantum states, such as sum 

(31)�

��

⟨Π1⟩ = −

�
e���2 − 1

�
���4 sin�

�
2e���2 + ���4 cos��2

.

(32)Fc =

||||K
[
(−1)ne|�|2 − 1

]
|�|2nn! sin�||||

2

|||K
(
2(−1)n|�|2n cos� + n! + n!(−1)ne|�|2

)2||| − 4

(33)K =
1(|�|2n cos� + e|�|2n!

)2 .

(34)Δ� =
1√
Fc

.

Fig. 7   The phase uncertainty Δ� 
as a function of � with � = 1 and 
n = 1, 2, 3.
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squeezing, difference squeezing, quadrature squeezing, amplitude-squared squeezing. In 
principle, it has been studied that sum squeezing can be converted into normal single-mode 
squeezing using the sum-frequency generation. Therefore, in this section we focus on the 
sum squeezing and different squeezing properties of the NAAN states.

6.1 � Sum Squeezing

For two-mode quantum state, the sum squeezing is associated with a more general operator [58]

A state is said to be sum squeezed if

where 
��

ΔV
�

�2�
=
�
V2
�

�
− ⟨V

�
⟩2,N1 = a

†

1
a1 and N2 = a

†

2
a2

We define the squeezing factor to quantify the squeezing degree of sum squeezing as

which is bounded by −1 ≤ S < 0 for the case of sun squeezing occurs. It is clear to see that 
the closer S trends to −1, the higher the degree of sum squeezing.

Substituting Eq. (35) into Eq. (37), we can rewrite Eq. (37) as

where Re(z) is the real part of a complex number z.

Expectation values of 
⟨
a2
1
a2
2

⟩
 and 

⟨
a
†

1
a1a

†

2
a2

⟩
 are

and

Substituting Eqs. (16), (39) and (40) into (38), We plot in Fig.  8 the sum squeezing 
degree S as a function of the relative phase � with n = 1, 2, 3 and � = 0, � = 1.5. What 
stands out in Fig. 8 is that the NAAN state exhibits a maximum degree of sum squeez-
ing under n = 1 and � = � conditions. Visually, S becomes positive when n > 2 for any � , 
which means no sum squeezing arises at all. For n = 1 , when S is negative, � is in the range 
5𝜋∕6 < 𝜑 < 7𝜋∕6.

(35)V
�
=

1
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6.2 � Difference Squeezing

For the two-mode state, difference squeezing is associated with the operator W
�
 [58]

A state is said to be difference squeezed along a direction � if

Noting 
��

ΔW
�

�2�
=
�
W2

�

�
− ⟨W

�
⟩2 and ⟨N1⟩ = ⟨N2⟩ for the NAAN state??we can 

rewrite Eq. (42) as

The expected values of operators a1a
†

2
 and a2

1
a
†2

2
 are

and

We can see from Fig. 9 that 
⟨(

ΔW
�

)2⟩ have the smallest value at � = � . In addition, ⟨(
ΔW

�

)2⟩ as a function of � kept positive when n = 1, 2. Thus, we find that the difference 
squeezing exists only with n = 0.
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Fig. 8   The sum squeezing 
degree S as a function of � with 
n = 1, 2, 3 and � = 0, � = 1.5.
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7 � Conclusion

We have proposed a new symmetric hybrid state which is composed by two discrete Fock 
number states �N⟩ and two continuous coherent states ��⟩ in two-mode state with an arbitrary 
phase angle � . We found that this state can be considered as the superpositions of NOON 
states. Therefore, in the case of � = 0,� and � = 1, it is different from the normal Bell state.

Evaluating the degree of entanglement of the NAAN states, our results suggest that 
the even NAAN state ( � = 0, 2� ) has a high degree of entanglement. To rigorously 
discuss entanglement, EPR criterion was used to analyze entanglement of the NAAN 
states. It is shown that when n = 0 , the NAAN states are always entangled which no 
dependence on the parameters � and � . Specifically, when n > 3, the NAAN states no 
longer exhibit entangled properties.

Entanglement, non-Gaussian distribution and non-locality are typical properties of non-
classical quantum states. Interestingly, through the analysis of Mandel parameter, we find that 
the odd NAAN states have sub-Poissonian photon number distribution for n = 2, 3, 4. Fur-
ther, the conclusion is confirmed by the analysis of Wigner function. Some strong violations 
of the CHSH inequality at a wider range of photon numbers n = 1, 2, 3 were also found.

The relative phase � of the NAAN states can be considered as a phase-shift parameter 
between two-arm in a linear Mach–Zehnder interferometer. Thus, through the numeri-
cal analysis of parity detection, we find that the best phase measurement sensitivity is 
obtained when � = � and small values of n and � , especially n = 0, � → 0 . Furthermore, 
when the amplitude of the coherent state � tends to zero, the quantum phase fluctuation 
also tends to zero, even reaching the Heisenberg limit Δ� = 1∕N.

The theoretical discussions on sum squeezing show that only when n = 1 and 
� = 0.56 , sum squeezing of the NAAN state arise in the range 5𝜋∕6 < 𝜑 < 7𝜋∕6 . 
However, the difference squeezing exists only with n = 0 and � = 0.5 in the range 
5𝜋∕6 < 𝜑 < 7𝜋∕6. In summary, the NAAN do not have the properties of sum squeezing 
and difference squeezing, when n > 1.

Hofmann and Ono have used the quantum interference between down-converted pho-
ton pairs and photons from coherent laser light to produce a path entangled multiphoton 
output state NOON [59]. Thus, the NAAN states may be realized in the same experi-
mental settings. This is an important issue for future work.

Fig. 9   The 
⟨(

ΔW
�

)2⟩ as a 
function of � with n = 0, 1, 2 and 
� = �, � = 0.5.
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Appendix 1. Derivation of expectation values in Eq. (16)

Using Eq. (1), the average value of the a†
1
a1 is

According a��⟩ = ���⟩, a†a�n⟩ = n�n⟩ and ⟨� �n⟩ = �
∗n√
n!
e
−

1

2
���2 , we have

In a similar way, one readily obtain the average values of a†
2
a2, a1a2, a1 and a2 as shown 

in Eq. (16).

Appendix 2. Derivation of Wigner function in Eq. (22)

We first calculate the inner product part of the Wigner function as

where the overlap between two coherent states ⟨���⟩ = exp
�
−

1

2

����2 + ���2� + �
∗
�

�
 has 

been used.
Using the definition of the Wigner function in Eq. (20), the first integral term is obtained as

where we have used the integral formula of complex function
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and

Similarly, using Eqs. (22) and (B1) and the integral formula

we have

and

Substituting Eqs.(B2),(B6) and (B7) into (20) and after some simplifications, Eq. (22) is 
obtained.
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