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Abstract
We first present a generalization of the Robertson-Heisenberg uncertainty principle. This
generalization applies to mixed states and contains a covariance term. For faithful states, we
characterize when the uncertainty inequality is an equality. We next present an uncertainty
principle version for real-valued observables. Sharp versions and conjugates of real-valued
observables are considered. The theory is illustrated with examples of dichotomic observ-
ables. We close with a discussion of real-valued coarse graining.
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1 Introduction

One of the basic principles of quantum theory is the Robertson-Heisenberg uncertainty
inequality [4, 7]

A B
1

4
A B 2 (1.1)

where A B are self-adjoint operators and is a vector state on a Hilbert space. The
inequality (1.1) is usually applied to position and momentum operators A B in which case

A B 2 2 where is Planck’s constant. In this situation, A and B are unbounded
operators, but for mathematical rigor we shall only deal with bounded operators. However,
our results can be extended to the unbounded case by considering a dense subspace common
to the domains of A and B. In this paper, we derive a generalization of (1.1). This general-
ization applies to mixed states and contains an additional covariance term that results in a
stronger inequality.

The main result in Section 2 is an uncertainty principle for observable operators. This
principle contains four parts: a commutator term, a covariance term, a correlation term and
a product of variances term. This last term is sometimes called a product of uncertainties.
In Section 2 we also characterize, for faithful states, when the uncertainty inequality is an
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equality. Section 3 introduces the concept of a real-valued observable. If is a state and A
is a real-valued observable, we define the -average, -deviation and -variance of A. If
B is another real-valued observable, we define the -correlation and -covariance of A B.
An uncertainty principle for real-valued observables is given in terms of these concepts. An
important role is played by the stochastic operator A for A. In Section 3 we also define the
sharp version of a real-valued observable and characterize when two real-valued observables
have the same sharp version

Section 4 illustrates the theory presented in Section 3with two examples. The first example
considers two dichotomic arbitrary real-valued observables. The second example considers
the special case of two noisy spin observables. In this case, the uncertainty inequality becomes
very simple. Section 5 discusses real-values coarse graining of observables.

2 QuantumUncertainty Principle

For a complex Hilbert space H , we denote the set of bounded linear operators by H
and the set of bounded self-adjoint operators by S H . A positive trace-class operator with
trace one is a state and the set of states on H is denoted by H . A state is faithful if
tr C C 0 for C H implies that C 0. For H and C D H we
define the sesquilinear form C D tr C D .

Lemma 2.1 (i) If C H , H , then tr C tr C . (ii) The form is a
positive semi-definite inner product. (iii) A state is faithful if and only if is an inner
product

Proof (i) If D is a trace-class operator and i is an orthonormal basis for H , we have

tr D
i

i D i

i

D i i

i

i D i tr D

Hence,
tr C tr C tr C tr C

(ii) Applying (i), we have

C D tr C D tr C D tr D C D C

Moreover, since C C 0 we have C C tr C C 0. Hence, is a positive
semi-definite inner product. (iii) If is an inner product, then

C C tr C C 0

implies C 0 so is faithful. Conversely, if is faithful, then

tr C C C C 0

implies C 0 so is an inner product

For A S H and H , the -average (or -expectation) of A is A tr A
and -deviation of A is D A A A I where I is the identity map on H . If A B
S H , the -correlation of A B is

Cor A B tr D A D B
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Although Cor A B need not be a real number, it is easy to check that Cor A B
Cor B A . We say that A and B are uncorrelated if Cor A B 0. The -covariance
of A B is A B ReCor A B and the -variance of A is

A A A Cor A A tr D A 2

It is straightforward to show that

Cor A B tr AB A B (2.1)

A B Re tr AB A B (2.2)

A A2 A 2 (2.3)

We see from (2.1) that A and B are -uncorrelated if and only if tr AB A B . We
say that A and B commute if their commutant A B AB BA 0.

Example 1 In the tensor product H1 H2 let 1 2 H1 H2 be a product state
and let A1 S H1 , A2 S H2 . Then A A1 I2, B I1 A2 S H1 H2 are
-uncorrelated because

tr AB tr [ 1 2 A1 I2 I2 A2 ] tr [ 1 2 A1 A2 ]

tr 1A1 2A2 tr 1A1 tr 2A2

tr 1 2A1 I2 tr 1 2 I1 A2 A B

This shows that A B are -uncorrelated for any product state . Of course, A B 0 in
this case. However, there are examples of noncommuting operators that are uncorrelated. For

instance, on H 2 let
1
0

,
0
1

, 1
2

1
1

. With , A ,

B we have
tr AB A B 0

Hence, A B are -uncorrelated. However,

AB 1
2

BA 1
2

so A B 0.

We now present our main result.

Theorem 2.2 If A B S H and H , then (i) 1
4 tr A B 2 A B

2

Cor A B 2

(ii) 1
4 tr A B 2 A B

2
A B

Proof (i) Applying Lemma 2.1 we have

tr A B tr AB tr BA tr AB tr [ BA ]

tr AB tr A B tr AB tr AB

2i Im [tr AB ] (2.4)
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From (2.2) and (2.4) we obtain

1

4
tr A B 2 A B

2
[Im AB ]2 Re tr AB A B

2

Re tr AB A B i Im tr AB 2

tr AB A B 2 Cor A B 2

(ii) Applying Lemma 2.1(ii), the form C D tr C D is a positive semi-definite inner
product. Hence, Schwarz’s inequality holds and we have

Cor A B 2 tr D A D B 2 D A D B 2

D A D A D B D B tr D A 2 tr D B 2

A B

We call Theorem 2.2(i) the uncertainty equation and Theorem 2.2(ii) the uncertainty
inequality. Together, they are called the uncertainty principle. Notice that Theorem 2.2(ii)
is a considerable strengthening of the usual Robertson-Heisenberg inequality (1.1) since it
contains the term A B

2 and it applies to arbitrary states. Thus, even when A B 0
we still have an uncertainty relation

A B
2 tr D A D B 2 A B

Lemma 2.3 A state is faithful if and only if the eigenvalues of are positive.

Proof Suppose the eigenvalues i of are positive with corresponding normalized eigen-
vectors i . Then we can write i i i for the orthonormal basis i . For any
A H we obtain

tr A A i tr i i A A i A i A i i A i
2

Hence, tr A A 0 implies A i 0 for all i . It follows that A 0. Conversely, if 0 is an
eigenvalue of and is a corresponding unit eigenvector, then setting P we have

tr P P tr P 0

But P 0 so is not faithful.

Theorem 2.4 If is faithful. then the following statements are equivalent. (i) The uncertainty
inequality of Theorem 2.2(ii) is an equality. (ii) D B D A for . (iii) B
A I for . If one of the conditions holds, then

A B
2 Cor A B 2 A B (2.5)

Proof (i) (ii) If the uncertainty inequality is an equality, then

tr D A D B 2 A B (2.6)

We can rewrite (2.6) as

D A D B 2 D A D A D B D B

123

94 Page 4 of 15 International Journal of Theoretical Physics (2023) 62:94



Since we have equality in Schwarz’s inequality and is an inner product, it follows
that D B D A for some . Since D B D B and D A D A
we conclude that . (ii) (iii) If D B D A for , we have

B B I A A I

Hence, letting B A we have B A I . Since A B S H and ,
we have that . (iii) (i) If (iii) holds, then

B tr B tr A A

Hence, B A so that

D B B B I A I B I

A B I A I B I D A

Thus, (ii) holds and it follows that (2.6) holds and this implies (i). Equation (2.5) holds
because (2.6) holds.

Example 2 The simplest faithful state when dim H n is I n. Then A B
1
n tr A B which is essentially the Hilbert-Schmidt inner product A B HS tr A B . In

this case for A B S H we have A 1
n tr A , D A A 1

n tr A I . The other
statistical concepts become:

Cor A B tr D A D B
1

n
tr AB

1

n2
tr A tr B

A B
1

n
Re tr AB

1

n2
tr A tr B

A
1

n
tr A2 1

n
tr A

2

tr [A B]
2i

n
Im tr AB

The uncertainty principle is given by:

[Im tr AB ]2 Re tr AB
1

n
tr A tr B

2

tr AB
1

n
tr A tr B 2

tr A2 1

n
tr A 2 tr B2 1

n
tr B 2

3 Real-Valued Observables

An effect is an operator C S H that satisfies 0 C I [1, 4–6]. Effects are thought
of as two outcomes yes-no measurements. When the result of measuring C is yes , we say
that C occurs and when the result is no , then C does not occur. A real-valued observable is
a finite set of effects A Ax x A where

x A

Ax I and A is the outcome

space for A. The effect Ax occurs when the result of measuring A is the outcome x . The
condition

x A

Ax I specifies that one of the possible outcomes of A must occur. An

observable is also called a positive operator-valued measure (POVM). We say A is sharp if
Ax is a projection for all x A and in this case, A is a projection-valued measure [4, 7].
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Corresponding to A we have the stochastic operator A H given by A
x A

x Ax .

Notice that we need A to be real-valued in order for A to exist.
We now apply the theory presented in Section 2 to real-valued observables. For H ,

the -average (or -expectation) of A is defined by

A A tr A
x A

x tr Ax (3.1)

We interpret tr Ax as the probability that a measurement of A results in the outcome x
when the system is in state . Thus, (3.1) says that the -average of A is the sum of its
outcomes times the probabilities these outcomes occur. We define the -deviation of A by

D A D A A A I
x A

x Ax

x A

x tr Ax I

x A

x [Ax tr Ax I ]

If A B are real-valued observables, the -correlation of A B is Cor A B Cor A B ,
-covariance of A B is A B A B and the -variance of A is A

A . Applying (2.1) we obtain

Cor A B tr AB A B tr
x y

xyAx By A B

x y

xy tr Ax By tr Ax tr By (3.2)

It follows that

A B
x y

xy Re tr Ax By tr Ax tr By (3.3)

and

A
x y

xy tr Ax Ay tr Ax tr Ay (3.4)

We also have by (2.4) that

tr A B 2i Im tr AB 2i Im tr
x y

xyAx By

2i
x y

xy Im tr Ax By (3.5)

Substituting A B for A B in Theorem 2.2 gives an uncertainty principle for real-valued
observables.

Two observables A B are compatible (or jointly measurable) if there exists a joint observ-
able C x y , x y A B , such that Ax

y
C x y , By

x
C x y for all x A,

y B . If Ax By 0 for all x y, then A B are compatible with C x y Ax By for all
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x y A B . However, if A B are compatible, they need not commute [4]. If A B
are compatible real-valued observables, then

A
x

x Ax
x y

xC x y

B
y

yBy
x y

yC x y

Using (3.2), (3.3), (3.4), (3.5) we can write Cor A B A B A B and
tr A B in terms of C x y . Hence, we can express the uncertainty principle in terms of
C x y .

If A Ax x A is a real-valued observable, then A has spectral decomposition

A
n

i 1
i Pi where i are the distinct eigenvalues of A and Pi are projections with

Pi I .We call A Pi i 1 2 n the sharp version of A. Then A is a real-valued
observablewith outcome space A i i 1 2 n and P i Pi . Since A A,
A and A have the same stochastic operator. It follows that A A , A A
and if B is another real-valued observable, then Cor A B Cor A B and A B

A B .

Lemma 3.1 The following statements are equivalent. (i) A B. (ii) A B. (iii) A
B for all H .

Proof (i) (ii) If A B then

A A B B

(ii) (iii) If A B then
A A B B

(iii) (i) If A B for all H , then A B for all H . It follows
that A B.

Let A x Ax i Pi so A Pi i 1 2 n is a sharp version of A. Let

B Bx x A be the real-valued observable given by Bx

n

i 1
Pi Ax Pi . We conclude

that A and B have the same sharp version because

B
x

x Bx

i

Pi
x

x Ax Pi
i

Pi APi
i

Pi
j

j Pj Pi

i j

i Pi Pj Pi
i

i Pi A

so by Lemma 3.1, A B. We say that B is a conjugate of A. Letting Cix Pi Ax Pi , we
have that

Cix i 1 2 n x A

is an observable and
i
Cix Bx ,

x
Cix Pi . It follows that B and A are compatible

with joint observable Cix . We say that an observable A Ax x A is commutative if
Ax Ay 0 for all x y A. Notice that if A is sharp, then A is commutative. However,
there are many unsharp observables that are commutative.
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Theorem 3.2 If A is commutative, then B is conjugate to A if and only if B A.

Proof If A is commutative, we show that A is conjugate to A. Since

A x Ax i Pi

we have that A Ax 0 for all x A. By the spectral theorem, [Ax Pi ] 0 for all x i
so Ax Pi Ax Pi . Therefore, A is conjugate to A. Conversely, suppose A is commutative
and B is conjugate to A. Then Bx

i
Pi Ax Pi for all x A. As before, we have that

Ax Ax 0 for all x A so [Ax Pi ] 0 for all x i . Hence,

Bx

i

Pi Ax Pi Ax

i

Pi Ax

for all x B A so B A.

Thus, nontrivial conjugates only occur in the nonclassical case where A is noncommutative.

4 More Examples

This section illustrates the theory in Sections 2 and 3 with two examples.

Example 3 A two outcome observable is called a dichotomic observable. Of course, a
dichotomic observable is commutative but it need not be sharp. Let A A1 I A1

be a dichotomic observable with A 1 1 . Then

A A1 I A1 2A1 I

A tr A tr [ 2A1 I ] 2 tr A1 1

D A A A I 2A1 I 2 tr A1 I I 2 [A1 tr A1 I ]

If B B1 I B1 is another dichotomic observable with B 1 1 , then

Cor A B tr AB A B

tr [ 2A1 I 2B1 I ] [2 tr A1 1 ] [2 tr B1 1 ]

tr [ 4A1B1 2A1 2B1 I ] 4 tr A1 tr B1

2 tr A1 2tr B1 1

4 [tr A1B1 tr A1 tr B1 ] (4.1)

Hence,

A B 4 [Re tr A1B1 tr A1 tr B1 ]

and

A A A 4 tr A2
1 tr A1

2

We also have

A B [2A1 I 2B1 I ] 2A1 I 2B1 I 2B1 I 2A1 I

4 [A1 B1]
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We conclude that A B 0 if and only if [A1 B1] 0 and this does not hold in general
so A B need not commute. The uncertainty principle becomes

[Im tr A1B1 ]2 [Re tr A1B1 tr A1 tr A2 ]2

tr A1B1 tr A1 tr B1
2

tr A2
1 tr A1

2 tr B2
1 tr B1

2 (4.2)

Example 4 We now consider a special case of Example 3. For H 2 we define the Pauli
matrices

x
0 1
1 0 y

0 i
i 0 z

1 0
0 1

Let [0 1] and define the dichotomic observable A A1 I A1 , where

A1
1

2
I x

1

2
1

1

and A 1 1 . Similarly, let B B1 I B1 , where

B1
1

2
I y

1

2
1 i
i 1

and B 1 1 . We call A and B noisy spin observables along the x and y directions,
respectively, with noise parameter 1 [7].

Any state H has the form I
2 I r where r 3 with r 1

[1, 2]. This is called the Block sphere representation of [4, 7]. The eigenvalues of are
1
2 1 r . Then 1, 0 if and only if r 1 and these are precisely

the pure states. Letting 1 x , 2 y , 3 z we obtain

1

2
1 r3 r1 ir2
r1 ir2 1 r3

and

A1
1

4
1 r3 r1 ir2
r1 ir2 1 r3

1
1

1 r3 r1 ir2 1 r3 r1 ir2
1 r3 r1 ir2 1 r3 r1 ir2

Hence, tr A1
1
2 1 r1 and as in Example 3, A r1 . Similarly, tr B1

1
2 1 r2 and B r2 . We also obtain

tr A1B1
1

4
1 r1 r2 ir2

2

and it follows from (4.1) that

Cor A B 4 [tr A1B1 tr A1 tr B1 ]

1 r1 r2 ir3
2 1 r1 1 r2 r1r2

2 ir3
2

123

International Journal of Theoretical Physics (2023) 62:94 Page 9 of 15 94



Therefore, A B r1r2 2. A straightforward calculation shows that

tr A2
1

1

4
1 2 1

2
r1

tr B2
1

1

4
1 2 1

2
r2

It follows that
A 4 tr A2

1 tr A1
2 2 1 r21

and similarly, B 2 1 r22 .
The commutator term in (4.2) becomes

[Im tr A1B1 ]2
1

16
r23

4

The covariance term in (4.2) is

[Re A1B1 tr A1 tr B1 ]2
1

16
r21r

2
2

4

and the correlation term in (4.2) is

tr A1B1 tr A1 tr B1
2 1

16
r23 r21r

2
2

4

Finally, the variance term in (4.2) is given by

A1 B1
1

16
1 r21 1 r22

4

The inequality in (4.2) reduces to

1

16
r23 r21 r22

4 1

16
1 r21 1 r22

4 (4.3)

If 0, (4.3) is equivalent to the inequality

r 2 r21 r22 r23 1

If the commutator term vanishes and 0, the uncertainty inequality becomes

r21r
2
2 1 r21 1 r22 (4.4)

which is equivalent to r21 r22 1. If A and B are -uncorrelated and 0, the uncertainty
inequality becomes r23 1 r21 1 r22 which is equivalent to r 2 1 r21r

2
2 . This

inequality and (4.4) are weaker than (4.3).

5 Real-Valued Coarse Graining

Let A Ax x A be an arbitrary observable. We assume that A is not necessarily
real-valued so the outcome space A is an arbitrary finite set. For f A with range

f we define the real-valued observable f A by f A f and for all z f A

f A z A f 1 z Ax f x z
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We call f A a real-valued coarse graining of A [2–4]. Then f A has stochastic operator

f A
z

z f A z
z

z A f 1 z
z x f 1 z

z Ax
x

f x Ax

It follows that f A
x

f x tr Ax for all H . If B is another observable and

g B we have

Cor [ f A g B ]
x y

f x g y tr Ax By f A g B

[ f A g B ]
x y

f x g y Re tr Ax By f A g B

[ f A ]
x y

f x f y tr Ax Ay f A 2

Moreover, we have the uncertainty inequality

Cor [ f A g B ] 2 [ f A ] [g B ]

We denote the set of trace-class operators on H by H . An operation on H is a completely
positive, trace reducing, linear map H H [1–4]. If preserves the trace, then

is called a channel. A (finite) instrument is a finite set of operators x x
such that x x is a channel [1–4]. We say that measures an observable
A if A and tr [ x ] tr Ax for all x . It can be shown that measures a
unique observable which we denote by J [2, 3]. Conversely, any observable is measured
by many instruments [1–4]. Corresponding to an operation we have its dual-operation

H H defined by tr C tr [ C] for all H [2, 3]. It can
be shown that J x x I for all x where I is the identity operator [2, 3].

As with observables, if is an instrument, and f we define the real-valued
instrument f such that f f and

f z x f x z

If J A, then J [ f ] f A because

tr f z tr x f x z tr [ x ] f x z

tr Ax f x z tr Ax f x z

tr f A z

for all z f A f . If is real-valued, we define on H by C x x C
and tr . If J A, then

tr x x x tr [ x ] x tr Ax A

for all H . We also define A . It follows that f f A ,
[ f ] [ f A ] and f f x x .
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Let A Ax x A , B By y B be arbitrary observables and suppose is
an instrument with J A. Define the -product observable A B with A B A B

given by A B x y x By [2, 3]. Then A B is indeed an observable because

x y

A B x y
x y

x By
x

x
y

By
x

x I
x

Ax I

Although A B depends on ,we shall not indicate this for simplicity.We interpret A B as the
observable obtained byfirstmeasuring A using and thenmeasuring B. If f A B

we obtain the real-valued observable f A B f A B . We then have

f A B z A B f 1 z A B x y f x y z

x By f x y z

f A B
x y

f x y A B x y
x y

f x y x By

f A B
x y

f x y tr A B x y
x y

f x y tr x By

[ f A B ]
x y x y

f x y f x y tr A B x y A B x y f A B 2

tr
x y

f x y x By

2

f A B 2

If f is a product function f x y g x h y we obtain

f A B z
z

x By g x h y z

We then have the simplification

f A B
x y

g x h y x By
x

gx x
y

h y By

x

g x x h B

Hence,

f A B tr f A B tr
x

g x x h B

x

g x tr x h B
x

g x tr x h B

tr
x

g x x h B tr g h B
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In a similar way we obtain

[ f A B ] tr g h B
2

f A B 2

If A and B are arbitrary observables, we define the observable B conditioned by A to be

B A y A
By

x A

x By

where B A B [2, 3]. We interpret B A as the observable obtained by first measuring
A without taking the outcome into account and then measuring B. If B is real-valued we
have

B A
y

y B A y
x y

y x By A B

B A
y

ytr A By ytr By tr B B

[ B A ] B A A B tr A B
2

B
2

We now illustrate the theory of this section with some examples.

Example 5 The simplest example of an instrument is a trivial instrument x x
where is a probability measure on the finite set . It is clear that measures the trivial
observable Ax x I . Let B be an arbitrary observable and let f A B . We
then have

A B x y x By x By

f A B z f A B z x By f x y z

We conclude that

f A B
x y

f x y x By

f A B
x y

f x y x tr By

[ f A B ] tr
x y

f x y x By

2

f A B 2

Moreover, since
B A y

x
x By

x

x By By

we have that B A B.

Example 6 Let A Ax x A and B By y B be arbitrary observables and
let x tr Ax x , x H be a Holevo instrument [2, 3]. Then measure A
because

tr [ x ] tr [tr Ax x ] tr Ax

Since x a tr xa Ax for all x A [2, 3], we have

A B x y x By tr x By Ax
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If f A B , we obtain the real-valued observable

f A B z tr x By Ax f x y z

We conclude that

f A B z
x y

f x y x By
x y

f x y tr x By Ax

f A B
x y

f x y tr x By tr Ax

[ f A B ]
x y x y

f x y f x y tr tr x By Ax tr x By Ax

f A B 2

tr
x y

f x y tr x By Ax

2

f A B 2

Moreover, we have

B A y
x

x By
x

tr x By Ax

Example 7 Let A B be arbitrary observables and let be the Lüders instrument given by

x A1 2
x A1 2

x [2, 3, 6]. Then

tr [ x ] tr A1 2
x A1 2

x tr Ax

so measures A. Since x a A1 2
x aA1 2

x [2, 3] we have

A B x y A1 2
x By A

1 2
x

If f A B , we obtain the real-valued observable

f A B z A1 2
x By A

1 2
x f x y z

We conclude that

f A B
x y

f x y A1 2
x By A

1 2
x

f A B
x y

f x y tr A1 2
x By A

1 2
x

x y

f x y tr A1 2
x A1 2

x By

[ f A B ] tr
x y

f x y A1 2
x By A

1 2
x

2

f A B 2

Moreover, we have

B A y
x

x By
x

A1 2
x By A

1 2
x
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