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Abstract

We first present a generalization of the Robertson-Heisenberg uncertainty principle. This
generalization applies to mixed states and contains a covariance term. For faithful states, we
characterize when the uncertainty inequality is an equality. We next present an uncertainty
principle version for real-valued observables. Sharp versions and conjugates of real-valued
observables are considered. The theory is illustrated with examples of dichotomic observ-
ables. We close with a discussion of real-valued coarse graining.
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1 Introduction

One of the basic principles of quantum theory is the Robertson-Heisenberg uncertainty
inequality [4, 7]

1
Ay(A)Ay(B) = 110, [4, Bly)|? (1.1)

where A, B are self-adjoint operators and  is a vector state on a Hilbert space. The
inequality (1.1) is usually applied to position and momentum operators A, B in which case
(¢, [A, Bly) |2 = h? where % is Planck’s constant. In this situation, A and B are unbounded
operators, but for mathematical rigor we shall only deal with bounded operators. However,
our results can be extended to the unbounded case by considering a dense subspace common
to the domains of A and B. In this paper, we derive a generalization of (1.1). This general-
ization applies to mixed states and contains an additional covariance term that results in a
stronger inequality.

The main result in Section 2 is an uncertainty principle for observable operators. This
principle contains four parts: a commutator term, a covariance term, a correlation term and
a product of variances term. This last term is sometimes called a product of uncertainties.
In Section 2 we also characterize, for faithful states, when the uncertainty inequality is an
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equality. Section 3 introduces the concept of a real-valued observable. If p is a state and A
is a real-valued observable, we define the p-average, p-deviation and p-variance of A. If
B is another real-valued observable, we define the p-correlation and p-covariance of A, B.
An uncertainty principle for real-valued observables is given in terms of these concepts. An
important role is played by the stochastic operator A for A. In Section 3 we also define the
sharp version of a real-valued observable and characterize when two real-valued observables
have the same sharp version

Section 4 illustrates the theory presented in Section 3 with two examples. The first example
considers two dichotomic arbitrary real-valued observables. The second example considers
the special case of two noisy spin observables. In this case, the uncertainty inequality becomes
very simple. Section 5 discusses real-values coarse graining of observables.

2 Quantum Uncertainty Principle

For a complex Hilbert space H, we denote the set of bounded linear operators by L(H)
and the set of bounded self-adjoint operators by Ls(H). A positive trace-class operator with
trace one is a state and the set of states on H is denoted by S(H). A state p is faithful if
tr (0C*C) = 0 for C € L(H) implies that C = 0. For p € S(H) and C, D € L(H) we
define the sesquilinear form (C, D), = tr (0C*D).

Lemma21 () If C € L(H), p € S(H), then tr (pC*) = tr (pC). (ii) The form (e, @), is a
positive semi-definite inner product. (iii) A state p is faithful if and only if (e, e) , is an inner
product

Proof (i) If D is a trace-class operator and {¢; } is an orthonormal basis for H, we have

wr(D¥) =) (¢, D*¢i) = Y _(D*¢i, ¢i) = »_ (i D§i) = tr (D)

1 1 1

Hence,

tr (pC*) =1t [(Cp)*] =1 (Cp) = tr (pC)

(ii) Applying (i), we have

(C.D), =tr (pC*D) =tr [p(C*D)*] =tr (pD*C) = (D, C),

Moreover, since C*C > 0 we have (C, C), = tr (0C*C) > 0. Hence, (e, o), is a positive
semi-definite inner product. (iii) If (e, e), is an inner product, then

(C,C), =tr (pC*C) =0
implies C = 0 so p is faithful. Conversely, if p is faithful, then
tr (0C*C) =(C,C), =0
implies C = 0 s0 (e, @), is an inner product O

For A € Lg(H) and p € S(H), the p-average (or p-expectation) of Ais (A), = tr (pA)
and p-deviation of A'is D,(A) = A — (A),I where I is the identity map on H.If A, B €
Ls(H), the p-correlation of A, B is

Cor,(A, B) =tr [pD,(A)D,(B)]
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Although Cor, (A, B) need not be a real number, it is easy to check that Cor,(A, B) =
Cor, (B, A). We say that A and B are uncorrelated if Cor,(A, B) = 0. The p-covariance
of A, Bis A,(A, B) =ReCor,(A, B) and the p-variance of A is

Ap(A) = Ap(A, A) = Corp(A, A) = tr [pD,(A)?]

It is straightforward to show that

Cor,(A, B) = tr (pAB) — (A),(B), 2.1
A,(A, B) = Retr (pAB) — (A),(B), (2.2)
Ap(A) = (A%), — (A)] (2.3)

We see from (2.1) that A and B are p-uncorrelated if and only if tr (0 AB) = (A),(B),. We
say that A and B commute if their commutant [A, B] = AB — BA = 0.

Example 1 In the tensor product Hy @ Hy let p = p1 @ p» € S(H| ® Hy) be a product state
andlet Ay € Ls(Hy), Ay € Ls(H). Then A=A, Q, B=11® Ay € Ls(H| ® Hy) are
p-uncorrelated because

tr (pAB) =tr [p1 @ 02(A1 @ )L ® A =1r [p1 @ p2(A1 ® A2)]
=tr(p1A1 ® p2A2) = tr (o1 ADtr (02A2)
=1tr (o ® mA| @ D)tr (p1 ® p2I1 ® Ay) = (A),(B),

This shows that A, B are p-uncorrelated for any product state p. Of course, [A, B] = 0 in
this case. However, there are examples of noncommuting operators that are uncorrelated. For

1 1
instance, on H = C? let o = [0] ¢ = |:(1)] W= \%2 |:1:| With p = |a){x|, A = |¢){(¢],

B = |y ){(¥| we have
tr (pAB) = (A),(B), =0

Hence, A, B are p-uncorrelated. However,

AB = (¢, Vo)W | = F1o) (Y|
BA = (. 9)l¥)(d] = 5 1)

so[A, B] #0. O

We now present our main result.

Theorem2.2 If A, B € Ls(H) and p € S(H), then (i) %|tr (p[A, BD|> + [AP(A, B)]2 =
|Cor, (A, B)[?
(i) Lt (o[ A, BDI> + [Ap(A, B)]* < Ap(A)A,(B)

Proof (i) Applying Lemma 2.1 we have

tr ([A, B]) = tr (0pAB) —tr (pBA) = tr (pAB) —tr [p(BA)*]
=tr(pAB) —tr (pA*B*) =tr (0AB) —tr (0AB)
= 2iIm [tr (pAB)] (2.4)
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From (2.2) and (2.4) we obtain

1
21 (plA, BDI> + [A,(A, B)] = [Im (pAB)) + [Retr (0AB) — (A),(B),]’

= |Retr (pAB) — (A),,(B)p +ilmtr (,oAB)|2
= |tr (pAB) — (A)),(B),|* = |Cor, (A, B)|?

(ii) Applying Lemma 2.1(ii), the form (C, D), = tr (pC* D) is a positive semi-definite inner
product. Hence, Schwarz’s inequality holds and we have
|Cor, (A, B)* = |tr [pDp(A)D,(B)]1> = (Dy(A), Dy(B)), I

(D (A), Dp(A))p(Dp(B), Dp(B)), = tr [pDy(A)?*]tr [pD,y(B)?]
= Ap (A)Ap (B)

IA

[m}

We call Theorem 2.2(i) the uncertainty equation and Theorem 2.2(ii) the uncertainty
inequality. Together, they are called the uncertainty principle. Notice that Theorem 2.2(ii)
is a considerable strengthening of the usual Robertson-Heisenberg inequality (1.1) since it

contains the term [A o(A, B)]2 and it applies to arbitrary states. Thus, even when [A, B] =0
we still have an uncertainty relation

2
[Ax(A, B)]” = [tr [pDp(A)Dp(B)]I* < Ayp(A)A,(B)
Lemma 2.3 A state p is faithful if and only if the eigenvalues of p are positive.

Proof Suppose the eigenvalues A; of p are positive with corresponding normalized eigen-
vectors ¢;. Then we can write p = Y_ A;|¢;)(¢;| for the orthonormal basis {¢;}. For any
A € L(H) we obtain

tr(pA*A) =) atr (1) (il ATA) = Y hi(Agi, Agi) = > hill A

Hence, tr (0A*A) = 0 implies A¢; = O for all i. It follows that A = 0. Conversely, if 0 is an
eigenvalue of p and ¢ is a corresponding unit eigenvector, then setting Py = |¢)(¢| we have

tr (pPyPy) = tr (o Py) = (¢, pp) =0
But Py # 050 p is not faithful. O

Theorem 2.4 If p is faithful. then the following statements are equivalent. (i) The uncertainty
inequality of Theorem 2.2(ii) is an equality. (ii) D,(B) = aD,(A) for a € R. (iii) B =
aA + BI fora, B € R. If one of the conditions holds, then

[Ap(A, B)]2 = [Cor, (A, B)|> = A,(A)A,(B) (2.5)
Proof (i)=(ii) If the uncertainty inequality is an equality, then
lr [0D,(A)D,(B)]1> = Ap(A)A,(B) 2.6)
We can rewrite (2.6) as

(D (A), Dy(B))|* = (D,(A), Dp(A)),(D,(B), Dy(B)),
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Since we have equality in Schwarz’s inequality and (e, e), is an inner product, it follows
that D,(B) = aD,(A) for some a € C. Since D,(B)* = D,(B) and D,(A)* = D,(A)
we conclude that « € R. (ii)=(iii) If D,(B) = aD,(A) for a € R, we have

B— (B),l =a(A—(A),D)

Hence, letting 8 = (B), —a(A), wehave B =aA+ f1.Since A, B € Lg(H) anda € R,
we have that 8 € R. (iii)=(i) If (iii) holds, then

(B)p =tr(pB) =atr (pA) + p = a(A), + B
Hence, 8 = (B), — a(A), so that
D,(B) = B— (B),I =aA+ Bl — (B),I
= aA+ (B),] —a(A),I — (B),] = aD,(A)

Thus, (ii) holds and it follows that (2.6) holds and this implies (i). Equation (2.5) holds
because (2.6) holds. ]

Example 2 The simplest faithful state when diim H = n < oo is p = I /n. Then (A, B), =
% tr (A* B) which is essentially the Hilbert-Schmidt inner product (A, B)gs = tr (A*B). In
this case for A, B € Ls(H) we have (A), = L tr (A), D,(A) = A — L tr (A)I. The other
statistical concepts become:

Cor,(A, B) = tr [pD,(A)D,(B)] = %tr (AB) — niz tr (A)tr (B)

Ay(A, B) = %Retr (AB) — niz tr (A)tr (B)
1 1 2
2
Ap(A) = —tr (A7) — |:ftr (A):|
n n

tr (p[A, B]) = %Im tr (AB)

The uncertainty principle is given by:

2
[Im tr (AB)]2 + |:Re tr (AB) — % tr (A)tr (B)] = |tr (AB) — % tr (A)tr (B)|2

< [tr (A%) — e (A)z} |:tr (B%) — e (3)2] O
n n

3 Real-Valued Observables

An effect is an operator C € Lg(H) that satisfies 0 < C < [ [1, 4-6]. Effects are thought
of as two outcomes yes-no measurements. When the result of measuring C is yes , we say
that C occurs and when the result is no , then C does not occur. A real-valued observable is

a finite set of effects A = {Ay : x € Q) where Y Ay = I and Q4 C R is the outcome
xeQy
space for A. The effect A, occurs when the result of measuring A is the outcome x. The

condition ) A, = [ specifies that one of the possible outcomes of A must occur. An
xeQy
observable is also called a positive operator-valued measure (POVM). We say A is sharp if

A, is a projection for all x € Q4 and in this case, A is a projection-valued measure [4, T].
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Corresponding to A we have the stochastic operator A e L(H) given by A= > xAy.
xeQy

Notice that we need A to be real-valued in order for A to exist.
‘We now apply the theory presented in Section 2 to real-valued observables. For p € S(H),
the p-average (or p-expectation) of A is defined by

(A)y=(A), =tr(pA)= ) xtr(pAy) 3.1)
xeQy

We interpret tr (0A,) as the probability that a measurement of A results in the outcome x
when the system is in state p. Thus, (3.1) says that the p-average of A is the sum of its
outcomes times the probabilities these outcomes occur. We define the p-deviation of A by

D,(A)

Dy(A)=A—(A),] = Y xA,— Y xtr(pAy)l

xeQy xeQy

= D xlAc—u(pA)]]

xeQy

If A, B are real-valued observables, the p-corrslaiion of A, BisCor,(A, B) = Corp(X, B ),
p-covariance of A, B is Ay(A, B) = A,(A, B) and the p-variance of A is Ap(A) =
A,(A). Applying (2.1) we obtain

Cor,(A, B) = tr (pAB) — (A),(B), =tr (,0 nyAxBy> —(A),(B),

X,y
=Y xy[r(pAB)) — tr (pAV)r (pBy)] (3.2)
X,y
It follows that
Ap(A, B) = ny [Retr (pAyBy) —tr (pAy)tr (pBy)] (3.3)
X,y
and
Ap(A) = ny [tr (pALAy) —tr (pAr (pAy)] (34
X,y

We also have by (2.4) that

tr (0[A,B]) =2ilmtr (pAB) = 2i Imtr (,0 nyAxBy)>

X,y
=2i Yy xylmir (pA,B,) (3.5)

X,y

Substituting A, B for A, B in Theorem 2.2 gives an uncertainty principle for real-valued
observables.
Two observables A, B are compatible (or jointly measurable) if there exists a joint observ-
able C(x y), (x,y) € Q4 x Qp,suchthat Ay = Y C(x ), By =) Cy,y forallx € Qq,
y X

y e Qp. If [Ax, By] = O forall x, y, then A, B are compatible with C(, y) = A, B, for all
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(x,y) € Q4 x Qp. However, if A, B are compatible, they need not commute [4]. If A, B
are compatible real-valued observables, then

AV = ZxAx = ZXC(XJ)
x X,y

B = ZyBy = yCly)
y x,y

Using L3.%), (3.3), (3.4), (3.5) we can write Cor,(A, B), A,(A, B), Ay(A), Ay(B) and
tr (o [A, B]) interms of C(y, ). Hence, we can express the uncertainty principle in terms of

If A = {A, : x € Q4} is a real-valued observable, then A has spectral decomposition

A= Z Ai P; where A; € R are the distinct eigenvalues of A and P; are projections with

P = 1 Wecall A = {P;:i=1,2,...,n}thesharp versionof A. Then A 1sareal valued
observable with outcome space Q7 = {k i=1,2,...,n}and P, = P;.Since (A)

A and A have the same stochastic operator. It follows that (A)p = (A ) 0 Ap(A) =A p(A)
and 1f B is another real-valued observable, then Cor, (A, B) = Corp(A B Jand A, (A, B) =

A (A B ).

Lemma 3.1 The following statements are equivalent. (i) A = B. (ii) A = B. (iii) (A), =
(B), forall p € S(H).

Proof (i)=>(ii) If A = B then

)
I
=)
)
I
=)
)
I
™

(ii)=(iii) If A = B then _ ~
(A)p=(A)p=(B)y )o

(iii):i(i) I/f\(A)p (B), for all p € S(H), then (Z) (E) for all p € S(H). It follows

that A = B. O

= (B

Let A=Y xA, =Y. 4;PisoA={P :i=1,2,...,n}is a sharp version of A. Let
n
= {By : x € Q4} be the real-valued observable given by By = > P; A, P;. We conclude

i=1
that A and B have the same sharp version because

B=Y) xB.=) Py xAPi=) PAP =) P Y PP,
X i x i i J
=) MPPP=)Y MP=A
i

i,j
~

so by Lemma 3.1, A= B.We say that B is a conjugate of A. Letting C;, = P; A, P;, we
have that
{Cir:i=1,2,...,n,x € Q4}

is an observable and Y _ Ciy = By, Y_ Cixy = P;. It follows that B and A are compatible

1 X
with joint observable {C;,}. We say that an observable A = {A, : x € Q4} is commutative if
[Ax, Ay] =0forall x, y € Q4. Notice that if A is sharp, then A is commutative. However,
there are many unsharp observables that are commutative.
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Theorem 3.2 If A is commutative, then B is conjugate to A if and only if B = A.

Proof If A is commutative, we show that A is conjugate to A. Since

X: ZXAX :Z)»ipi

we have that [X A,] =0forall x € Q4. By the spectral theorem, [Ay, P;] = 0 for all x, i

so Ay = > P; A, P;. Therefore, A is conjugate to A. Conversely, suppose A is commutative

and B is conjugate to A. Then By = Y PiA,P; for all x € Q4. As before, we have that
i

[Ay, A] = Oforall x € Q4 50 [Ay, P;] =0 forall x, i. Hence,
BXZZPiAxPi :AXZPi = Ay
i i

forallx € Qp = Q24 s0 B = A. ]

Thus, nontrivial conjugates only occur in the nonclassical case where A is noncommutative.

4 More Examples

This section illustrates the theory in Sections 2 and 3 with two examples.

Example 3 A two outcome observable is called a dichotomic observable. Of course, a
dichotomic observable is commutative but it need not be sharp. Let A = {A, I — Ay}
be a dichotomic observable with Qs = {1, —1}. Then

A=A —(U—A) =24, -1
(A), = tr(pA) = tr [p(2A, — )] = 2tr (pA}) — |
Dp(A) = A — (A),1 =2A; — I —2tr (pA)] + 1 =2[A; — tr (pA)]]
If B ={By, I — By} is another dichotomic observable with Qp = {1, —1}, then
Cor,(A, B) = tr (pAB) — (A),(B),
=tr [p2A1 — D2B1 — D] —[2tr (pA; — D][2tr (pB1 — 1)]
=tr [p(4A1B; —2A1 —2B1 + )] —4tr (pAtr (pBy)
+2tr (pAy1) +2tr (pBy) — 1
=4[tr (pA1B1) — tr (pADtr (pB1)] 4.1)

Hence,
Ap(A, B) = 4[Retr (pA1By) — tr (pApDtr (pBy)]
and
Ap(A) = Ap(A, A) =4[t (pA]) — (tr (pA)?]
We also have
[A,B] =24, —1,2B) — 1= 2A; — DB — 1) — 2B; — DA — I)
= 4[Ay, B1]
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We conclude that [Z, E] = 0 ifand only if [A1, B1] = 0 and this does not hold in general
so A, B need not commute. The uncertainty principle becomes

[Imtr (pA; B)]* + [Retr (0A; By) — tr (pAptr (pAr)]?
= |tr (pA1B1) — tr (pA))tr (pBy)|?
< [w (pAD) = (r (0AD)*] [t (pBY) — (tr (0B1))?] 4.2)

[m}

Example 4 We now consider a special case of Example 3. For H € C? we define the Pauli

matrices
|01 | 0 (10
1o T -0 FT 01

Let v € [0, 1] and define the dichotomic observable A = {A1, I — A1}, where

1 IT1p
A1—5(1+M0x)—5|:’u1i|

and Q4 = {1, —1}. Similarly, let B = {B1, I — By}, where
1 1 1 in

and Qp = {1, —1}. We call A and B noisy spin observables along the x and y directions,
respectively, with noise parameter 1 — p [7].

Any state p € S(H) has the form p = %(l +T7 e 7) where 7 € R3 with ||7>|| <1
[1, 2]. This is called the Block sphere representation of p [4, 7). The eigenvalues of p are
Ay = % (1 + ||7>||). Then A4+ = 1, A_ = 0 if and only if||7) || = 1 and these are precisely
the pure states. Letting oy = oy, 03 = 0y, 03 = 0; we obtain

_1 l4+r3 rp —ir
p_Q, ri+irp 1—r3

and
_1 14+r ri—in 1
pAl_Z[rl—l—irz 1—r3 wl
|+t —ir)p A +r)p+r —irn
LA =t +in 1=r3+ (1 +inu

Hence, tr (pA1) = %(1 + rip) and as in Example 3, (A), = ripu. Similarly, tr (0B1) =
%(1 +rou) and (B), = roju. We also obtain

1 .
w(pA1B) = ¢ [1+ 01+ +inu’]
and it follows from (4.1) that

Cory(A, B) = 4[tr (0A1By) —tr (pAptr (pB1)]
=141 +r)pu+irsp® — (A +ry) A +rp) = —rirnp? +irsp?
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Therefore, Ay (A, B) = —r| rz,uz. A straightforward calculation shows that

1 1
w(pAD) = Z(1+ ) + Suri

4 2
2 1 2 1
tr (oBy) = 1(1 +u)+ FHU2

It follows that
Ap(A) = 4[tr (pA) — (tr (pA)?] = n* (1 =)

and similarly, A,(B) = uz(l — r22).
The commutator term in (4.2) becomes

1
(Im (pAi B = i’

The covariance term in (4.2) is

2 L 5oy
[Re (pA1B)) —tr (pADtr (pB1)]” = R”]”zﬂ
and the correlation term in (4.2) is

1
ltr (pA1B1) — tr (pAtr (0B))|* = e r3 +rirput

Finally, the variance term in (4.2) is given by

1 2 2y, 4
Ap(ADAL(BY) = 6 A=rpA =r)u

The inequality in (4.2) reduces to

1 1

— 3 +ri+rpt < —(1 - —rHut 43)

16 16
If n # 0, (4.3) is equivalent to the inequality

1712 =r+ri 403 <1
If the commutator term vanishes and . # 0, the uncertainty inequality becomes
riry < (1—rH(1 —r3) 4.4)

which is equivalent to rl2 —i—r22 < 1. If A and B are p-uncorrelated and ju # 0, the uncertainty

inequality becomes r32 <{1- rlz)(l — r22) which is equivalent to ||7>||2 <1+ r12r22. This
inequality and (4.4) are weaker than (4.3). ]

5 Real-Valued Coarse Graining

Let A = {Ay : x € Q4} be an arbitrary observable. We assume that A is not necessarily
real-valued so the outcome space €24 is an arbitrary finite set. For f : 24 — R with range
R(f) we define the real-valued observable f(A) by Q) = R(f) and for all z € Q(a)

fA):=Apigy =) {Ac: f(x) =1}

@ Springer



International Journal of Theoretical Physics (2023) 62:94 Page110f15 94

We call f(A) a real-valued coarse graining of A [2—4]. Then f(A) has stochastic operator
FA =) af(A=) zApig =2 Y A=) f0)A,
¢ ¢ ¢ xef~l@ x

It follows that (f(A)), = > f(x)tr (pAx) forall p € S(H). If B is another observable and
X

g : Qp — R we have

Cor, [f(A), g(B)] = Z J@)gtr (pAxBy) — (f(A))p(8(B))p

X,y
Ap[f(A), g(B)] =Y fx)g(nRetr (pA,By) — (£(A)),(s(B)),
X,y
ApLf (A=) F) O (pAAy) — (f(A)]
X,y

Moreover, we have the uncertainty inequality
|Cory [f(A), g(B)II* < Ay [f(A)] Ay [g(B)]

We denote the set of trace-class operators on H by 7 (H). An operation on H is a completely
positive, trace reducing, linear map O : 7 (H) — 7 (H) [1-4]. If O preserves the trace, then
O is called a channel. A (finite) instrument is a finite set of operators Z = {Z, : x € Qz}
such that 7 = > {Zy : x € Qz} is a channel [1-4]. We say that 7 measures an observable
Aif Q7 = Qq and tr [Z,(p)] = tr (pAy) for all x € Q7. It can be shown that 7 measures a
unique observable which we denote by J(Z) [2, 3]. Conversely, any observable is measured
by many instruments [1-4]. Corresponding to an operation @ we have its dual-operation
O* : L(H) — L(H) defined by tr [pO*(C)] = tr [O(p)C] for all p € S(H) [2, 3]. It can
be shown that J(Z), = Z;} (1) for all x € Q7 where [ is the identity operator [2, 3].

As with observables, if 7 is an instrument, and f : Q7 — R we define the real-valued
instrument f(Z) such that Q r(z) = R(f) and

f@e=) AZLo: f(x) =z}
IfJ(@) = A, then J [f(Z)] = f(A) because
w [f@p] = [ YT s f) =21] = Yt (L)) f00 =3

=Yt (pA) f) =zh =1 [p D (A f(0) = 3)]
=1 [Pf(A)z]

forall z € Qf(Al = Q7). If Z is real-valued, we define 7 on L(H) by f(C) =Y xZ,(C)
and (I), = tr [Z(p)]. If J(Z) = A, then

@)y =t [ Yo Tep)| = Yo a (Tl = Y xtr (040 = (A)

for all p € S(H). We also define A,(Z) = A,(A). It follows that (f(Z)), = (f(A)),,
AplfD]=Ap[f(A)]and f(D)™ =) f(X)Zy.
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Let A = {A, : x € Q4}, B={By : y € Qp} be arbitrary observables and suppose Z is
an instrument with J (Z) = A. Define the Z-product observable Ao B with Q4.5 = Q4 X Qp
given by (A o B)(y,y) = Zx(By) [2, 3]. Then A o B is indeed an observable because

D (Ao B)y =Y TiBy) =) It (Z By> =Y i)=Y Ac=1
X,y X,y X y X X

Although Ao B depends on Z, we shall not indicate this for simplicity. We interpret Ao B as the
observable obtained by first measuring A using Z and then measuring B.If f : Q4 xQp — R
we obtain the real-valued observable f(A, B) = f(A o B). We then have

fAB);=(AoB) ;1 =) {(AoB)uy : flx,y) =2z}
=Y {ZrBy) : f(x. ) =1}
f(A, B~ Zf(x (A0 By =Y fx, )Ii(By)
X,y

(f(A, B)), = Zf(x N [p(Ao B)y] =Y flx, y)tr [pZi(By)]
A, [f(A. B)] = Z FQ ) f& Y0 [p(A o B)xy) (Ao B)w.y] — (f(A, B));

x,y,x",y’

2
p [Z fix, y)I:(By)} —(f(A, B)

X,y

If f is a product function f(x, y) = g(x)h(y) we obtain

F(A, B), =Y {TX(B)) : g(0)h(y) =2}

Z

We then have the simplification

fA B =) ghWNTi(By) =Y 8T (Z h(y)By>
Xy X y

=Y g [h(B)]
Hence,

(f(A.B)), =tr [pf(A. B)] {ng(x)I* h(B)~ ]]

=Y g {pZ; [(B)]} = > g)tr {Ze(p) [h(B)™]}

=t [Zg(x)zxm) [h(B)“]} = {2 (o) [n(B) ]}
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In a similar way we obtain

~ ~T\2
ApLf (A B =t (2@ () [0(B) ]} = (1 (A B}
If A and B are arbitrary observables, we define the observable B conditioned by A to be
(B| A)y =T4,(By) = Y Ti(By)
xeQy

where Qg4 = Qp [2, 3]. We interpret (B | A) as the observable obtained by first measuring
A without taking the outcome into account and then measuring B. If B is real-valued we
have

(BI A =Y y(B|A)y =Y yIi(By) =T5(B)

y X,y

(B 1A, =Y vt [pTh (By] = Y vir [Z(0)B)] =t [Z(0)B] = (B)z,,
y

~ ~ 12 2
A LB | A=A, [(B]A] =4, [I;g(A)(B)] —ur “I;;(A)(B)] } - [<B>f(p)]
We now illustrate the theory of this section with some examples.

Example 5 The simplest example of an instrument is a trivial instrument T, (p) = w(x)p
where w is a probability measure on the finite set Q. It is clear that T measures the trivial
observable Ay = w(x)I. Let B be an arbitrary observable and let f : Q24 x Qp — R. We
then have

(Ao B)x,y) =Z;(By) = w(x)By
f(A,B); = f(AoB), =) {w()B,: f(x,y) =2z}
We conclude that

f(A, B =) f(x,yw(x)B,

X,y

(f(A, B))y = Z Jx, y)o @)t (oBy)

X,y

2
ApLf(AB) =1t {p [Z fa. y)w(x)By} —(f(A. B))?

X,y

Moreover, since
(Bl A)y =) Ti(By) =Y w(x)(By) = By
X X
we have that (B | A) = B. ]

Example6 Let A = {A, :x € Qu}and B = {By 1y € QB} be arbitrary observables and
let Hy(p) = tr (0Ay)ay, ay € S(H) be a Holevo instrument [2, 3]. Then H measure A
because

tr [Hy(p)] =tr [tr (pAx)ax] = tr (pAy)

Since Hi(a) =tr (axa)Ax for all x € Q4 [2, 3], we have
(Ao B)(x.y) = Hi(By) = tr (ax By) Ay
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If f:Q4 x Qp — R, we obtain the real-valued observable

f(A,B), =) {tr(axB)As: f(x,y) =z}

We conclude that

FOABY, =) flx, WHEBY) =Y fx, ir (axB))A,
X,y Xy

(f(A,B)), = Y f(x, y)ir (e By)tr (pAy)
X,y
ApLF(A B = > fl, ) f&, 3t [ptr (o By) Astr (e By) Ay]
X,y,x/,y/
—(f(A, B));

2
P [Z [, )t (axBy)Ax] — (f(A, B),

X,y
Moreover, we have

(B| A)y =Y Hi(By) =Y tr(ayBy)As O

X
Example7 Let A, B be arbitrary observables and let L be the Liiders instrument given by
Lo(p) = ‘/sz”z [2, 3, 6]. Then

1/2 1/2

tr [Lx(p)] = tr (Ax ) =tr(pAyx)

A2, 1/2
)C

so L measures A. Since L7 (a) = [2, 3] we have

172 1/2

(Ao B)x,y) =AY " ByAx

If f:Q4 x Qp — R, we obtain the real-valued observable
125 4172
Fa B =Y A8, A  fy) =z
We conclude that

FAB)” =) fx. A ByAS?

x,y
(F(AB), =Y fla. i (pA/*ByA?) =3 fayyr (A% pAy By)
X,y X,y
2
Ap[f(A B)] =tr [Z f. A/ By ”2} — (f(A. B)
y
Moreover, we have
(BlA)y =) LiBy) =) ABA? O
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