

Real-Valued Observables and Quantum Uncertainty

Stan Gudder1

Received: 3 January 2023 / Accepted: 24 March 2023 / Published online: 28 April 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

We first present a generalization of the Robertson-Heisenberg uncertainty principle. This generalization applies to mixed states and contains a covariance term. For faithful states, we characterize when the uncertainty inequality is an equality. We next present an uncertainty principle version for real-valued observables. Sharp versions and conjugates of real-valued observables are considered. The theory is illustrated with examples of dichotomic observables. We close with a discussion of real-valued coarse graining.

Keywords Uncertainty principle Real-valued observables Coarse-grain

1 Introduction

One of the basic principles of quantum theory is the Robertson-Heisenberg uncertainty inequality [\[4](#page-14-0), [7\]](#page-14-1)

$$
\Delta_{\psi}(A)\Delta_{\psi}(B) \ge \frac{1}{4}|\langle \psi, [A, B]\psi \rangle|^2 \tag{1.1}
$$

where A, B are self-adjoint operators and ψ is a vector state on a Hilbert space. The inequality [\(1.1\)](#page-0-0) is usually applied to position and momentum operators *A B* in which case $\ket{\psi}$, $[A, B]\psi$)² = \hbar^2 where \hbar is Planck's constant. In this situation, *A* and *B* are unbounded operators, but for mathematical rigor we shall only deal with bounded operators. However, our results can be extended to the unbounded case by considering a dense subspace common to the domains of A and B . In this paper, we derive a generalization of (1.1) . This generalization applies to mixed states and contains an additional covariance term that results in a stronger inequality.

The main result in Section [2](#page-1-0) is an uncertainty principle for observable operators. This principle contains four parts: a commutator term, a covariance term, a correlation term and a product of variances term. This last term is sometimes called a product of uncertainties. In Section [2](#page-1-0) we also characterize, for faithful states, when the uncertainty inequality is an

 \boxtimes Stan Gudder sgudder@du.edu

Dedicated to the memory of Richard Greechie (1941–2022). The author's cherished friend, long time colleague and collaborator.

¹ Department of Mathematics, University of Denver, Denver 80208, CO, USA

equality. Section [3](#page-4-0) introduces the concept of a real-valued observable. If ρ is a state and *A* is a real-valued observable, we define the ρ -average, ρ -deviation and ρ -variance of A. If *B* is another real-valued observable, we define the ρ -correlation and ρ -covariance of *A*, *B*. An uncertainty principle for real-valued observables is given in terms of these concepts. An important role is played by the stochastic operator *A* for *A*. In Section [3](#page-4-0) we also define the sharp version of a real-valued observable and characterize when two real-valued observables have the same sharp version

Section [4](#page-7-0) illustrates the theory presented in Section [3](#page-4-0) with two examples. The first example considers two dichotomic arbitrary real-valued observables. The second example considers the special case of two noisy spin observables. In this case, the uncertainty inequality becomes very simple. Section [5](#page-9-0) discusses real-values coarse graining of observables.

2 Quantum Uncertainty Principle

For a complex Hilbert space H, we denote the set of bounded linear operators by $\mathcal{L}(H)$ and the set of bounded self-adjoint operators by $\mathcal{L}_{S}(H)$. A positive trace-class operator with trace one is a *state* and the set of states on *H* is denoted by $S(H)$. A state ρ is *faithful* if $tr(\rho C^*C) = 0$ for $C \in \mathcal{L}(H)$ implies that $C = 0$. For $\rho \in \mathcal{S}(H)$ and $C, D \in \mathcal{L}(H)$ we define the sesquilinear form $\langle C, D \rangle_{\rho} = \text{tr} (\rho C^* D)$.

Lemma 2.1 (i) If $C \in \mathcal{L}(H)$, $\rho \in \mathcal{S}(H)$, then tr $(\rho C^*) = \overline{\text{tr}(\rho C)}$. (ii) The form $\langle \bullet, \bullet \rangle_{\rho}$ is a positive semi-definite inner product. (iii) A state ρ is faithful if and only if $\langle \bullet, \bullet \rangle$ is an inner product

Proof (i) If *D* is a trace-class operator and $\{\phi_i\}$ is an orthonormal basis for *H*, we have

$$
\operatorname{tr}(D^*) = \sum_i \langle \phi_i, D^* \phi_i \rangle = \sum_i \overline{\langle D^* \phi_i, \phi_i \rangle} = \sum_i \overline{\langle \phi_i, D\phi_i \rangle} = \overline{\operatorname{tr}(D)}
$$

Hence,

$$
\operatorname{tr}\left(\rho C^*\right) = \operatorname{tr}\left[\left(C\rho\right)^*\right] = \overline{\operatorname{tr}\left(C\rho\right)} = \overline{\operatorname{tr}\left(\rho C\right)}
$$

(ii) Applying (i), we have

$$
\overline{\langle C, D \rangle_{\rho}} = \overline{\text{tr}(\rho C^* D)} = \text{tr}\left[\rho (C^* D)^* \right] = \text{tr}(\rho D^* C) = \langle D, C \rangle_{\rho}
$$

Moreover, since $C^*C \ge 0$ we have $\langle C, C \rangle_{\rho} = \text{tr}(\rho C^*C) \ge 0$. Hence, $\langle \bullet, \bullet \rangle_{\rho}$ is a positive semi-definite inner product. (iii) If $\langle \bullet, \bullet \rangle_{\rho}$ is an inner product, then

$$
\langle C, C \rangle_{\rho} = \text{tr} \left(\rho C^* C \right) = 0
$$

implies $C = 0$ so ρ is faithful. Conversely, if ρ is faithful, then

$$
\operatorname{tr} (\rho C^* C) = \langle C, C \rangle_{\rho} = 0
$$

implies $C = 0$ so $\langle \bullet, \bullet \rangle$ _o is an inner product

For $A \in \mathcal{L}_{S}(H)$ and $\rho \in \mathcal{S}(H)$, the *ρ*-*average* (or *ρ*-*expectation*) of *A* is $\langle A \rangle_{\rho} = \text{tr}(\rho A)$ and ρ -deviation of A is $D_{\rho}(A) = A - \langle A \rangle_{\rho}I$ where I is the identity map on H. If A, B \in $\mathcal{L}_S(H)$, the *ρ*-*correlation* of *A*, *B* is

$$
Cor_{\rho}(A, B) = \text{tr} \left[\rho D_{\rho}(A) D_{\rho}(B) \right]
$$

 \Box

Although Cor_{*a*}(*A*, *B*) need not be a real number, it is easy to check that $\overline{\text{Cor}_{a}(A, B)}$ = $Cor_{\rho}(B, A)$. We say that A and B are *uncorrelated* if $Cor_{\rho}(A, B) = 0$. The ρ -*covariance* of *A*, *B* is $\Delta_{\rho}(A, B) = \text{Re Cor}_{\rho}(A, B)$ and the ρ -variance of *A* is

$$
\Delta_{\rho}(A) = \Delta_{\rho}(A, A) = \text{Cor}_{\rho}(A, A) = \text{tr}\left[\rho D_{\rho}(A)^{2}\right]
$$

It is straightforward to show that

$$
Cor_{\rho}(A, B) = tr(\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}
$$
 (2.1)

$$
\Delta_{\rho}(A, B) = \text{Re tr} \left(\rho A B \right) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}
$$
\n(2.2)

$$
\Delta_{\rho}(A) = \langle A^2 \rangle_{\rho} - \langle A \rangle_{\rho}^2 \tag{2.3}
$$

We see from [\(2.1\)](#page-2-0) that *A* and *B* are ρ -uncorrelated if and only if tr $(\rho AB) = \langle A \rangle_{\rho} \langle B \rangle_{\rho}$. We say that *A* and *B commute* if their commutant $[A, B] = AB - BA = 0$.

Example 1 In the tensor product $H_1 \otimes H_2$ let $\rho = \rho_1 \otimes \rho_2 \in S(H_1 \otimes H_2)$ be a product state *and let* $A_1 \in \mathcal{L}_S(H_1)$, $A_2 \in \mathcal{L}_S(H_2)$. Then $A = A_1 \otimes I_2$, $B = I_1 \otimes A_2 \in \mathcal{L}_S(H_1 \otimes H_2)$ are *-uncorrelated because*

$$
\begin{aligned} \text{tr}\left(\rho AB\right) &= \text{tr}\left[\rho_1 \otimes \rho_2 (A_1 \otimes I_2)(I_2 \otimes A_2)\right] = \text{tr}\left[\rho_1 \otimes \rho_2 (A_1 \otimes A_2)\right] \\ &= \text{tr}\left(\rho_1 A_1 \otimes \rho_2 A_2\right) = \text{tr}\left(\rho_1 A_1\right) \text{tr}\left(\rho_2 A_2\right) \\ &= \text{tr}\left(\rho_1 \otimes \rho_2 A_1 \otimes I_2\right) \text{tr}\left(\rho_1 \otimes \rho_2 I_1 \otimes A_2\right) = \langle A \rangle_\rho \langle B \rangle_\rho \end{aligned}
$$

This shows that A, B are ρ *-uncorrelated for any product state* ρ *. Of course,* $[A, B] = 0$ *in this case. However, there are examples of noncommuting operators that are uncorrelated. For instance, on H* = \mathbb{C}^2 *let* $\alpha = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\phi = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\psi = \frac{1}{\sqrt{2}}$ $\begin{aligned} \frac{1}{1} \Bigg| \cdot \text{With } \rho = |\alpha\rangle \langle \alpha|, A = |\phi\rangle \langle \phi|, \end{aligned}$ $B = |\psi\rangle \langle \psi|$ *we have*

$$
tr(\rho AB) = \langle A \rangle_{\rho} \langle B \rangle_{\rho} = 0
$$

Hence, A B are -uncorrelated. However,

$$
AB = \langle \phi, \psi \rangle |\phi \rangle \langle \psi| = \frac{1}{\sqrt{2}} |\phi \rangle \langle \psi|
$$

$$
BA = \langle \psi, \phi \rangle |\psi \rangle \langle \phi| = \frac{1}{\sqrt{2}} |\psi \rangle \langle \phi|
$$

 $so [A, B] \neq 0$.

We now present our main result.

Theorem 2.2 *If* $A, B \in \mathcal{L}_S(H)$ and $\rho \in \mathcal{S}(H)$, then (i) $\frac{1}{4}$ |tr $(\rho[A, B])|^2 + [\Delta_\rho(A, B)]^2$ $|Cor₀(A, B)|²$

$$
(ii) \frac{1}{4} |\text{tr } (\rho[A, B])|^2 + \left[\Delta_{\rho}(A, B) \right]^2 \leq \Delta_{\rho}(A) \Delta_{\rho}(B)
$$

Proof (i) Applying Lemma 2.1 we have

$$
\text{tr } ([A, B]) = \text{tr } (\rho AB) - \text{tr } (\rho BA) = \text{tr } (\rho AB) - \text{tr } [\rho (BA)^*]
$$
\n
$$
= \text{tr } (\rho AB) - \text{tr } (\rho A^* B^*) = \text{tr } (\rho AB) - \text{tr } (\rho AB)
$$
\n
$$
= 2i \text{ Im } [\text{tr } (\rho AB)] \tag{2.4}
$$

 $\circled{2}$ Springer

 \Box

 \Box

 \Box

From (2.2) and (2.4) we obtain

$$
\frac{1}{4}|\text{tr } (\rho[A, B])|^2 + [\Delta_{\rho}(A, B)]^2 = [\text{Im } (\rho AB)]^2 + [\text{Re tr } (\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}]^2
$$

$$
= |\text{Re tr } (\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho} + i \text{ Im tr } (\rho AB)|^2
$$

$$
= |\text{tr } (\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}|^2 = |\text{Cor}_{\rho}(A, B)|^2
$$

(ii) Applying Lemma 2.1(ii), the form $\langle C, D \rangle_{\rho} = \text{tr} (\rho C^* D)$ is a positive semi-definite inner product. Hence, Schwarz's inequality holds and we have

$$
|\text{Cor}_{\rho}(A, B)|^2 = |\text{tr} [\rho D_{\rho}(A) D_{\rho}(B)]|^2 = |\langle D_{\rho}(A), D_{\rho}(B) \rangle_{\rho}|^2
$$

\n
$$
\leq \langle D_{\rho}(A), D_{\rho}(A) \rangle_{\rho} \langle D_{\rho}(B), D_{\rho}(B) \rangle_{\rho} = \text{tr} [\rho D_{\rho}(A)^2] \text{tr} [\rho D_{\rho}(B)^2]
$$

\n
$$
= \Delta_{\rho}(A) \Delta_{\rho}(B)
$$

We call Theorem 2.2(i) the *uncertainty equation* and Theorem 2.2(ii) the *uncertainty inequality*. Together, they are called the *uncertainty principle*. Notice that Theorem 2.2(ii) is a considerable strengthening of the usual Robertson-Heisenberg inequality [\(1.1\)](#page-0-0) since it contains the term $\left[\Delta_{\rho}(A, B)\right]^2$ and it applies to arbitrary states. Thus, even when $[A, B] = 0$ we still have an uncertainty relation

$$
[\Delta_{\rho}(A, B)]^2 = |\text{tr} [\rho D_{\rho}(A) D_{\rho}(B)]|^2 \leq \Delta_{\rho}(A) \Delta_{\rho}(B)
$$

Lemma 2.3 A state ρ is faithful if and only if the eigenvalues of ρ are positive.

Proof Suppose the eigenvalues λ_i of ρ are positive with corresponding normalized eigenvectors ϕ_i . Then we can write $\rho = \sum_i \lambda_i |\phi_i\rangle \langle \phi_i|$ for the orthonormal basis $\{\phi_i\}$. For any $A \in \mathcal{L}(H)$ we obtain

tr
$$
(\rho A^* A) = \sum \lambda_i
$$
tr $(|\phi_i\rangle \langle \phi_i | A^* A) = \sum \lambda_i \langle A\phi_i, A\phi_i \rangle = \sum \lambda_i ||A\phi_i||^2$

Hence, tr $(\rho A^*A) = 0$ implies $A\phi_i = 0$ for all *i*. It follows that $A = 0$. Conversely, if 0 is an eigenvalue of ρ and ϕ is a corresponding unit eigenvector, then setting $P_{\phi} = |\phi\rangle\langle\phi|$ we have

$$
\text{tr}\left(\rho P_{\phi}^* P_{\phi}\right) = \text{tr}\left(\rho P_{\phi}\right) = \langle \phi, \rho \phi \rangle = 0
$$

But $P_{\phi} \neq 0$ so ρ is not faithful.

Theorem 2.4 *If is faithful. then the following statements are equivalent. (i) The uncertainty inequality of Theorem 2.2(ii) is an equality. (ii)* $D_{\rho}(B) = \alpha D_{\rho}(A)$ for $\alpha \in \mathbb{R}$. (iii) $B =$ $\alpha A + \beta I$ for $\alpha, \beta \in \mathbb{R}$. If one of the conditions holds, then

$$
[\Delta_{\rho}(A, B)]^2 = |\text{Cor}_{\rho}(A, B)|^2 = \Delta_{\rho}(A)\Delta_{\rho}(B)
$$
\n(2.5)

Proof (i) \Rightarrow (ii) If the uncertainty inequality is an equality, then

$$
|\text{tr}\left[\rho D_{\rho}(A)D_{\rho}(B)\right]|^2 = \Delta_{\rho}(A)\Delta_{\rho}(B) \tag{2.6}
$$

We can rewrite (2.6) as

$$
|\langle D_{\rho}(A), D_{\rho}(B)\rangle_{\rho}|^2 = \langle D_{\rho}(A), D_{\rho}(A)\rangle_{\rho} \langle D_{\rho}(B), D_{\rho}(B)\rangle_{\rho}
$$

 \circledcirc Springer

$$
B - \langle B \rangle_{\rho} I = \alpha \left(A - \langle A \rangle_{\rho} I \right)
$$

Hence, letting $\beta = \langle B \rangle_{\rho} - \alpha \langle A \rangle_{\rho}$ we have $B = \alpha A + \beta I$. Since $A, B \in \mathcal{L}_{S}(H)$ and $\alpha \in \mathbb{R}$, we have that $\beta \in \mathbb{R}$. (iii) \Rightarrow (i) If (iii) holds, then

$$
\langle B \rangle_{\rho} = \text{tr}(\rho B) = \alpha \text{tr}(\rho A) + \beta = \alpha \langle A \rangle_{\rho} + \beta
$$

Hence, $\beta = \langle B \rangle_0 - \alpha \langle A \rangle_0$ so that

$$
D_{\rho}(B) = B - \langle B \rangle_{\rho} I = \alpha A + \beta I - \langle B \rangle_{\rho} I
$$

= $\alpha A + \langle B \rangle_{\rho} I - \alpha \langle A \rangle_{\rho} I - \langle B \rangle_{\rho} I = \alpha D_{\rho}(A)$

Thus, (ii) holds and it follows that (2.6) holds and this implies (i). Equation (2.5) holds because [\(2.6\)](#page-3-0) holds. \Box

Example 2 *The simplest faithful state when* dim $H = n < \infty$ *is* $\rho = I/n$ *. Then* $\langle A, B \rangle_{\rho} =$ $\frac{1}{n}$ tr (A^*B) which is essentially the Hilbert-Schmidt inner product $\langle A, B \rangle_{HS} =$ tr (A^*B) . In *this case for* $A, B \in \mathcal{L}_S(H)$ we have $\langle A \rangle_\rho = \frac{1}{n} \text{tr}(A), D_\rho(A) = A - \frac{1}{n} \text{tr}(A)I$. The other *statistical concepts become:*

$$
Cor_{\rho}(A, B) = \text{tr} \left[\rho D_{\rho}(A) D_{\rho}(B) \right] = \frac{1}{n} \text{tr} (AB) - \frac{1}{n^2} \text{tr} (A) \text{tr} (B)
$$

$$
\Delta_{\rho}(A, B) = \frac{1}{n} \text{Re} \text{tr} (AB) - \frac{1}{n^2} \text{tr} (A) \text{tr} (B)
$$

$$
\Delta_{\rho}(A) = \frac{1}{n} \text{tr} (A^2) - \left[\frac{1}{n} \text{tr} (A) \right]^2
$$

$$
\text{tr} (\rho [A, B]) = \frac{2i}{n} \text{Im} \text{tr} (AB)
$$

The uncertainty principle is given by:

$$
[\text{Im } \text{tr}(AB)]^2 + \left[\text{Re } \text{tr}(AB) - \frac{1}{n} \text{tr}(A)\text{tr}(B)\right]^2 = |\text{tr}(AB) - \frac{1}{n} \text{tr}(A)\text{tr}(B)|^2
$$

$$
\leq \left[\text{tr}(A^2) - \frac{1}{n} \text{tr}(A)^2\right] \left[\text{tr}(B^2) - \frac{1}{n} \text{tr}(B)^2\right] \qquad \Box
$$

3 Real-Valued Observables

An *effect* is an operator $C \in \mathcal{L}_S(H)$ that satisfies $0 \leq C \leq I$ [\[1](#page-14-2), [4](#page-14-0)[–6](#page-14-3)]. Effects are thought of as two outcomes *yes*-*no* measurements. When the result of measuring *C* is *yes* , we say that *C occurs* and when the result is *no* , then *C does not occur*. A *real-valued observable* is a finite set of effects $A = \{A_x : x \in \Omega_A\}$ where $x \in \Omega_A$ $A_x = I$ and $\Omega_A \subseteq \mathbb{R}$ is the *outcome space* for *A*. The effect A_x occurs when the result of measuring *A* is the outcome *x*. The condition $x \in \Omega_A$ $A_x = I$ specifies that one of the possible outcomes of *A* must occur. An observable is also called a *positive operator-valued measure* (POVM). We say *A* is *sharp* if A_x is a projection for all $x \in \Omega_A$ and in this case, *A* is a *projection-valued measure* [\[4,](#page-14-0) [7\]](#page-14-1).

Corresponding to *A* we have the *stochastic operator* $A \in \mathcal{L}(H)$ given by *A* $x \in \Omega_A$ xA_x .

Notice that we need *A* to be real-valued in order for *A* to exist.

We now apply the theory presented in Section [2](#page-1-0) to real-valued observables. For $\rho \in \mathcal{S}(H)$, the ρ -*average* (or ρ -*expectation*) of *A* is defined by

$$
\langle A \rangle_{\rho} = \langle \widetilde{A} \rangle_{\rho} = \text{tr} \left(\rho \widetilde{A} \right) = \sum_{x \in \Omega_A} x \text{tr} \left(\rho A_x \right) \tag{3.1}
$$

We interpret tr (ρA_r) as the probability that a measurement of A results in the outcome x when the system is in state ρ . Thus, [\(3.1\)](#page-5-0) says that the ρ -average of *A* is the sum of its outcomes times the probabilities these outcomes occur. We define the ρ -deviation of A by

$$
D_{\rho}(A) = D_{\rho}(\widetilde{A}) = \widetilde{A} - \langle A \rangle_{\rho} I = \sum_{x \in \Omega_A} x A_x - \sum_{x \in \Omega_A} x \text{tr} (\rho A_x) I
$$

$$
= \sum_{x \in \Omega_A} x [A_x - \text{tr} (\rho A_x) I]
$$

If *A*, *B* are real-valued observables, the ρ -*correlation* of *A*, *B* is Cor_{ρ}(*A*, *B*) = Cor_{ρ}(*A*, \widetilde{B}), ρ -*covariance* of *A*, *B* is $\Delta_{\rho}(A, B) = \Delta_{\rho}(\widetilde{A}, \widetilde{B})$ and the ρ -*variance* of *A* is $\Delta_{\rho}(A) =$ $\Delta_{\rho}(\widetilde{A})$. Applying [\(2.1\)](#page-2-0) we obtain

$$
Cor_{\rho}(A, B) = tr(\rho \widetilde{A} \widetilde{B}) - \langle \widetilde{A} \rangle_{\rho} \langle \widetilde{B} \rangle_{\rho} = tr\left(\rho \sum_{x,y} xy A_x B_y\right) - \langle \widetilde{A} \rangle_{\rho} \langle \widetilde{B} \rangle_{\rho}
$$

=
$$
\sum_{x,y} xy \left[tr(\rho A_x B_y) - tr(\rho A_x) tr(\rho B_y) \right]
$$
(3.2)

It follows that

$$
\Delta_{\rho}(A, B) = \sum_{x, y} xy \left[\text{Re tr} \left(\rho A_x B_y \right) - \text{tr} \left(\rho A_x \right) \text{tr} \left(\rho B_y \right) \right] \tag{3.3}
$$

and

$$
\Delta_{\rho}(A) = \sum_{x,y} xy \left[\text{tr} \left(\rho A_x A_y \right) - \text{tr} \left(\rho A_x \right) \text{tr} \left(\rho A_y \right) \right] \tag{3.4}
$$

We also have by (2.4) that

$$
\text{tr}\left(\rho\left[\widetilde{A},\widetilde{B}\right]\right) = 2i \text{ Im tr}\left(\rho \widetilde{A}\widetilde{B}\right) = 2i \text{ Im tr}\left(\rho \sum_{x,y} xy A_x B_y\right)
$$
\n
$$
= 2i \sum_{x,y} xy \text{ Im tr}\left(\rho A_x B_y\right) \tag{3.5}
$$

Substituting \widetilde{A} , \widetilde{B} for *A*, *B* in Theorem 2.2 gives an uncertainty principle for real-valued observables.

Two observables *A B* are *compatible* (or *jointly measurable*) if there exists a *joint observable C*_(*x,y*), (*x, y*) $\in \Omega_A \times \Omega_B$, such that $A_x = \sum_{y} C_{(x,y)}$, $B_y = \sum_{x} C_{(x,y)}$ for all $x \in \Omega_A$, $y \in \Omega_B$. If $[A_x, B_y] = 0$ for all *x*, *y*, then *A*, *B* are compatible with $C_{(x,y)} = A_x B_y$ for all $(x, y) \in \Omega_A \times \Omega_B$. However, if *A*, *B* are compatible, they need not commute [\[4\]](#page-14-0). If *A*, *B* are compatible real-valued observables, then

$$
\widetilde{A} = \sum_{x} x A_x = \sum_{x,y} x C_{(x,y)}
$$

$$
\widetilde{B} = \sum_{y} y B_y = \sum_{x,y} y C_{(x,y)}
$$

Using [\(3.2\)](#page-5-1), [\(3.3\)](#page-5-2), [\(3.4\)](#page-5-3), [\(3.5\)](#page-5-4) we can write $Cor_{\rho}(A, B), \Delta_{\rho}(A, B), \Delta_{\rho}(A), \Delta_{\rho}(B)$ and π (ρ $\left[\widetilde{A}, \widetilde{B} \right]$) in terms of $C_{(x,y)}$. Hence, we can express the uncertainty principle in terms of $C_{(x,y)}$.

If $A = \{A_x : x \in \Omega_A\}$ is a real-valued observable, then \widetilde{A} has spectral decomposition $\widetilde{A} = \sum_{i=1}^{n} \lambda_i P_i$ where $\lambda_i \in \mathbb{R}$ are the distinct eigenvalues of \widetilde{A} and P_i are projections with $i = 1$ $P_i = I$. We call $A = \{P_i : i = 1, 2, ..., n\}$ the *sharp version* of *A*. Then *A* is a real-valued observable with outcome space $\Omega_{\widehat{A}} = {\lambda_i : i = 1, 2, ..., n}$ and $P_{\lambda_i} = P_i$. Since $(\widehat{A})^{\sim} = \widetilde{A}$, *A* and \widehat{A} have the same stochastic operator. It follows that $\langle A \rangle_{\rho} = \langle \widehat{A} \rangle_{\rho}, \Delta_{\rho}(A) = \Delta_{\rho}(\widehat{A})$ and if *B* is another real-valued observable, then Cor $_{\rho}(A, B) = \text{Cor}_{\rho}(\widehat{A}, \widehat{B})$ and $\Delta_{\rho}(A, B) =$ $\Delta_{\rho}(\widehat{A}, \widehat{B})$.

Lemma 3.1 The following statements are equivalent. (i) $\hat{A} = \hat{B}$. (ii) $\tilde{A} = \tilde{B}$. (iii) $\langle A \rangle$ ₀ = $\langle B \rangle$ _o for all $\rho \in \mathcal{S}(H)$.

Proof (i) \Rightarrow (ii) If $\widehat{A} = \widehat{B}$ then

$$
\widetilde{A} = (\widehat{A})^{\sim} = (\widehat{B})^{\sim} = \widetilde{B}
$$

(ii) \Rightarrow (iii) If $\widetilde{A} = \widetilde{B}$ then

 $\langle A \rangle$ _{*B}* = $\langle \widetilde{A} \rangle$ _{*B*} = $\langle \widetilde{B} \rangle$ _{*B*} = $\langle B \rangle$ _{*B*}</sub>

(iii) \Rightarrow (i) If $\langle A \rangle_{\rho} = \langle B \rangle_{\rho}$ for all $\rho \in S(H)$, then $\langle A \rangle_{\rho} = \langle B \rangle_{\rho}$ for all $\rho \in S(H)$. It follows that $A = B$.

Let $\widetilde{A} = \sum x A_x = \sum \lambda_i P_i$ so $\widehat{A} = \{P_i : i = 1, 2, ..., n\}$ is a sharp version of A. Let $B = \{B_x : x \in \Omega_A\}$ be the real-valued observable given by $B_x = \sum_{n=1}^{n}$ $\sum_{i=1} P_i A_x P_i$. We conclude that *A* and *B* have the same sharp version because

$$
\widetilde{B} = \sum_{x} x B_x = \sum_{i} P_i \sum_{x} x A_x P_i = \sum_{i} P_i \widetilde{A} P_i = \sum_{i} P_i \sum_{j} \lambda_j P_j P_i
$$

$$
= \sum_{i,j} \lambda_i P_i P_j P_i = \sum_{i} \lambda_i P_i = \widetilde{A}
$$

so by Lemma 3.1, $\hat{A} = \hat{B}$. We say that *B* is a *conjugate* of *A*. Letting $C_{ix} = P_i A_x P_i$, we have that

$$
\{C_{ix}: i=1,2,\ldots,n, x \in \Omega_A\}
$$

is an observable and $\sum_{i} C_{ix} = B_x$, $\sum_{x} C_{ix} = P_i$. It follows that *B* and *A* are compatible with joint observable $\{C_{ix}\}\$. We say that an observable $A = \{A_x : x \in \Omega_A\}$ is *commutative* if $[A_x, A_y] = 0$ for all $x, y \in \Omega_A$. Notice that if *A* is sharp, then *A* is commutative. However, there are many unsharp observables that are commutative.

 \Box

Theorem 3.2 If A is commutative, then B is conjugate to A if and only if $B = A$.

Proof If *A* is commutative, we show that *A* is conjugate to *A*. Since

$$
\widehat{A} = \sum x A_x = \sum \lambda_i P_i
$$

we have that $\left[\widehat{A}, A_x\right] = 0$ for all $x \in \Omega_A$. By the spectral theorem, $[A_x, P_i] = 0$ for all x, i so $A_x = \sum P_i A_x P_i$. Therefore, *A* is conjugate to *A*. Conversely, suppose *A* is commutative and *B* is conjugate to *A*. Then $B_x = \sum P_i A_x P_i$ for all $x \in \Omega_A$. As before, we have that *i* A_x , A_x = 0 for all $x \in \Omega_A$ so $[A_x, P_i] = 0$ for all *x*, *i*. Hence,

$$
B_x = \sum_i P_i A_x P_i = A_x \sum_i P_i = A_x
$$

for all $x \in \Omega_B = \Omega_A$ so $B = A$.

Thus, nontrivial conjugates only occur in the nonclassical case where *A* is noncommutative.

4 More Examples

This section illustrates the theory in Sections [2](#page-1-0) and [3](#page-4-0) with two examples.

Example 3 *A two outcome observable is called a dichotomic observable. Of course, a dichotomic observable is commutative but it need not be sharp. Let* $A = \{A_1, I - A_1\}$ *be a dichotomic observable with* $\Omega_A = \{1, -1\}$ *. Then*

$$
\begin{aligned}\n\overline{A} &= A_1 - (I - A_1) = 2A_1 - I \\
\langle A \rangle_\rho &= \text{tr}\left(\rho \widetilde{A}\right) = \text{tr}\left[\rho(2A_1 - I)\right] = 2 \text{tr}\left(\rho A_1\right) - 1 \\
D_\rho(A) &= \widetilde{A} - \langle A \rangle_\rho I = 2A_1 - I - 2 \text{tr}\left(\rho A_1\right)I + I = 2\left[A_1 - \text{tr}\left(\rho A_1\right)I\right]\n\end{aligned}
$$

If $B = \{B_1, I - B_1\}$ *is another dichotomic observable with* $\Omega_B = \{1, -1\}$ *, then*

$$
Cor_{\rho}(A, B) = tr (\rho \widetilde{AB}) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}
$$

= tr [\rho (2A₁ - I)(2B₁ - I)] - [2 tr (\rho A₁ - 1)][2 tr (\rho B₁ - 1)]
= tr [\rho (4A₁B₁ - 2A₁ - 2B₁ + I)] - 4 tr (\rho A₁)tr (\rho B₁)
+2 tr (\rho A₁) + 2tr (\rho B₁) - 1
= 4 [tr (\rho A₁B₁) - tr (\rho A₁)tr (\rho B₁)] (4.1)

Hence,

$$
\Delta_{\rho}(A, B) = 4 \left[\text{Re tr} \left(\rho A_1 B_1 \right) - \text{tr} \left(\rho A_1 \right) \text{tr} \left(\rho B_1 \right) \right]
$$

and

$$
\Delta_{\rho}(A) = \Delta_{\rho}(A, A) = 4 \left[\text{tr} \left(\rho A_1^2 \right) - \left(\text{tr} \left(\rho A_1 \right) \right)^2 \right]
$$

We also have

$$
[\widetilde{A}, \widetilde{B}] = [2A_1 - I, 2B_1 - I] = (2A_1 - I)(2B_1 - I) - (2B_1 - I)(2A_1 - I)
$$

= 4[A₁, B₁]

 \circledcirc Springer

$$
[\text{Im tr} (\rho A_1 B_1)]^2 + [\text{Re tr} (\rho A_1 B_1) - \text{tr} (\rho A_1) \text{tr} (\rho A_2)]^2
$$

=
$$
|\text{tr} (\rho A_1 B_1) - \text{tr} (\rho A_1) \text{tr} (\rho B_1)|^2
$$

$$
\leq [\text{tr} (\rho A_1^2) - (\text{tr} (\rho A_1))^2] [\text{tr} (\rho B_1^2) - (\text{tr} (\rho B_1))^2]
$$
(4.2)

Example 4 *We now consider a special case of Example 3. For* $H \in \mathbb{C}^2$ *we define the Pauli matrices*

$$
\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

Let $\mu \in [0, 1]$ *and define the dichotomic observable* $A = \{A_1, I - A_1\}$, where

$$
A_1 = \frac{1}{2}(I + \mu \sigma_x) = \frac{1}{2} \begin{bmatrix} 1 & \mu \\ \mu & 1 \end{bmatrix}
$$

and $\Omega_A = \{1, -1\}$ *. Similarly, let* $B = \{B_1, I - B_1\}$ *, where*

$$
B_1 = \frac{1}{2}(I + \mu \sigma_y) = \frac{1}{2} \begin{bmatrix} 1 & i\mu \\ -i\mu & 1 \end{bmatrix}
$$

and $\Omega_B = \{1, -1\}$. We call A and B noisy spin observables along the x and y directions, *respectively, with noise parameter* $1 - \mu$ [\[7\]](#page-14-1)*.*

Any state $\rho \in S(H)$ *has the form* $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$ *where* $\vec{r} \in \mathbb{R}^3$ *with* $\|\vec{r}\| \leq 1$ [\[1](#page-14-2), [2](#page-14-4)]. This is called the Block sphere representation of ρ [\[4](#page-14-0), [7](#page-14-1)]. The eigenvalues of ρ are $\lambda_{\pm} = \frac{1}{2} \left(1 \pm ||\overrightarrow{r}|| \right)$. Then $\lambda_{+} = 1$, $\lambda_{-} = 0$ if and only if $||\overrightarrow{r}|| = 1$ and these are precisely *the pure states. Letting* $\sigma_1 = \sigma_x$, $\sigma_2 = \sigma_y$, $\sigma_3 = \sigma_z$ *we obtain*

$$
\rho = \frac{1}{2} \begin{bmatrix} 1 + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & 1 - r_3 \end{bmatrix}
$$

and

$$
\rho A_1 = \frac{1}{4} \begin{bmatrix} 1+r_3 & r_1 - ir_2 \\ r_1 + ir_2 & 1-r_3 \end{bmatrix} \begin{bmatrix} 1 & \mu \\ \mu & 1 \end{bmatrix}
$$

=
$$
\begin{bmatrix} 1+r_3 + (r_1 - ir_2)\mu & (1+r_3)\mu + r_1 - ir_2 \\ (1-r_3)\mu + r_1 + ir_2 & 1-r_3 + (r_1 + ir_2)\mu \end{bmatrix}
$$

Hence, $tr(\rho A_1) = \frac{1}{2}(1 + r_1\mu)$ and as in Example 3, $\langle A \rangle_\rho = r_1\mu$. Similarly, $tr(\rho B_1)$ $\frac{1}{2}(1+r_2\mu)$ and $\langle B \rangle_\rho = r_2\mu$. We also obtain

$$
\text{tr}\left(\rho A_1 B_1\right) = \frac{1}{4} \left[1 + (r_1 + r_2)\mu + ir_2\mu^2 \right]
$$

and it follows from [\(4.1\)](#page-7-1) *that*

$$
Cor_{\rho}(A, B) = 4 \left[tr \left(\rho A_1 B_1 \right) - tr \left(\rho A_1 \right) tr \left(\rho B_1 \right) \right]
$$

= 1 + (r₁ + r₂)\mu + ir₃\mu² - (1 + r₁\mu)(1 + r₂\mu) = -r₁r₂\mu² + ir₃\mu²

 $\circled{2}$ Springer

Therefore, $\Delta_{\rho}(A, B) = -r_1 r_2 \mu^2$. A straightforward calculation shows that

tr
$$
(\rho A_1^2) = \frac{1}{4}(1 + \mu^2) + \frac{1}{2}\mu r_1
$$

tr $(\rho B_1^2) = \frac{1}{4}(1 + \mu^2) + \frac{1}{2}\mu r_2$

It follows that

$$
\Delta_{\rho}(A) = 4 \left[\text{tr} \left(\rho A_1^2 \right) - (\text{tr} \left(\rho A_1 \right))^2 \right] = \mu^2 (1 - r_1^2)
$$

and similarly, $\Delta_{\rho}(B) = \mu^2(1 - r_2^2)$.

The commutator term in
$$
(4.2)
$$
 becomes

$$
[\text{Im}\,\text{tr}\,(\rho A_1 B_1)]^2 = \frac{1}{16}r_3^2\mu^4
$$

The covariance term in [\(4.2\)](#page-8-0) *is*

[Re
$$
(\rho A_1 B_1)
$$
 – tr (ρA_1) tr (ρB_1)]² = $\frac{1}{16} r_1^2 r_2^2 \mu^4$

and the correlation term in [\(4.2\)](#page-8-0) *is*

$$
|\text{tr}\left(\rho A_1 B_1\right) - \text{tr}\left(\rho A_1\right)\text{tr}\left(\rho B_1\right)|^2 = \frac{1}{16}\left(r_3^2 + r_1^2 r_2^2\right)\mu^4
$$

Finally, the variance term in [\(4.2\)](#page-8-0) *is given by*

$$
\Delta_{\rho}(A_1)\Delta_{\rho}(B_1) = \frac{1}{16} (1 - r_1^2)(1 - r_2^2)\mu^4
$$

The inequality in [\(4.2\)](#page-8-0) *reduces to*

$$
\frac{1}{16}(r_3^2 + r_1^2 + r_2^2)\mu^4 \le \frac{1}{16}(1 - r_1^2)(1 - r_2^2)\mu^4
$$
\n(4.3)

If $\mu \neq 0$, [\(4.3\)](#page-9-1) *is equivalent to the inequality*

$$
\|\overrightarrow{r}\|^2 = r_1^2 + r_2^2 + r_3^2 \le 1
$$

If the commutator term vanishes and $\mu \neq 0$, the uncertainty inequality becomes

$$
r_1^2 r_2^2 \le (1 - r_1^2)(1 - r_2^2) \tag{4.4}
$$

which is equivalent to $r_1^2 + r_2^2 \leq 1$. If A and B are ρ -uncorrelated and $\mu \neq 0$, the uncertainty *inequality becomes* $r_3^2 \leq (1 - r_1^2)(1 - r_2^2)$ *which is equivalent to* $||\vec{r}||^2 \leq 1 + r_1^2 r_2^2$ *. This inequality and* [\(4.4\)](#page-9-2) *are weaker than* [\(4.3\)](#page-9-1)*.*

5 Real-Valued Coarse Graining

Let $A = \{A_x : x \in \Omega_A\}$ be an arbitrary observable. We assume that *A* is not necessarily real-valued so the outcome space Ω_A is an arbitrary finite set. For $f : \Omega_A \to \mathbb{R}$ with range $f(A)$ we define the real-valued observable $f(A)$ by $\Omega_{f(A)} = \mathcal{R}(f)$ and for all $z \in \Omega_{f(A)}$

$$
f(A)_z = A_{f^{-1}(z)} = \sum \{A_x : f(x) = z\}
$$

 \circledcirc Springer

We call $f(A)$ a *real-valued coarse graining* of A [\[2](#page-14-4)[–4](#page-14-0)]. Then $f(A)$ has stochastic operator

$$
f(A)^{\sim} = \sum_{z} z f(A)_{z} = \sum_{z} z A_{f^{-1}(z)} = \sum_{z} \sum_{x \in f^{-1}(z)} z A_{x} = \sum_{x} f(x) A_{x}
$$

It follows that $\langle f(A) \rangle_{\rho} = \sum_{x} f(x)$ tr (ρA_x) for all $\rho \in S(H)$. If *B* is another observable and $g : \Omega_B \to \mathbb{R}$ we have

$$
Cor_{\rho}[f(A), g(B)] = \sum_{x,y} f(x)g(y)tr(\rho A_x B_y) - \langle f(A) \rangle_{\rho} \langle g(B) \rangle_{\rho}
$$

$$
\Delta_{\rho}[f(A), g(B)] = \sum_{x,y} f(x)g(y)Retr(\rho A_x B_y) - \langle f(A) \rangle_{\rho} \langle g(B) \rangle_{\rho}
$$

$$
\Delta_{\rho}[f(A)] = \sum_{x,y} f(x)f(y)tr(\rho A_x A_y) - \langle f(A) \rangle_{\rho}^2
$$

Moreover, we have the uncertainty inequality

$$
|\text{Cor}_{\rho}[f(A), g(B)]|^{2} \leq \Delta_{\rho}[f(A)] \Delta_{\rho}[g(B)]
$$

We denote the set of trace-class operators on *H* by $\mathcal{T}(H)$. An *operation* on *H* is a completely positive, trace reducing, linear map $\mathcal{O}: \mathcal{T}(H) \to \mathcal{T}(H)$ [\[1](#page-14-2)[–4](#page-14-0)]. If $\mathcal O$ preserves the trace, then \mathcal{O} is called a *channel*. A (finite) *instrument* is a finite set of operators $\mathcal{I} = {\mathcal{I}_x : x \in \Omega_{\mathcal{I}}}$ such that $\overline{\mathcal{I}} = \sum {\{\mathcal{I}_x : x \in \Omega_{\mathcal{I}}\}}$ is a channel [\[1](#page-14-2)[–4](#page-14-0)]. We say that *I measures* an observable *A* if $\Omega_{\mathcal{I}} = \Omega_A$ and tr $[\mathcal{I}_x(\rho)] = \text{tr}(\rho A_x)$ for all $x \in \Omega_{\mathcal{I}}$. It can be shown that \mathcal{I} measures a unique observable which we denote by $J(\mathcal{I})$ [\[2](#page-14-4), [3\]](#page-14-5). Conversely, any observable is measured by many instruments $[1-4]$ $[1-4]$. Corresponding to an operation O we have its *dual-operation* $\mathcal{O}^* : \mathcal{L}(H) \to \mathcal{L}(H)$ defined by tr $\left[\rho \mathcal{O}^*(C)\right] = \text{tr} \left[\mathcal{O}(\rho)C\right]$ for all $\rho \in \mathcal{S}(H)$ [\[2](#page-14-4), [3\]](#page-14-5). It can be shown that $J(\mathcal{I})_x = \mathcal{I}_x^*(I)$ for all $x \in \Omega_{\mathcal{I}}$ where *I* is the identity operator [\[2,](#page-14-4) [3](#page-14-5)].

As with observables, if $\mathcal I$ is an instrument, and $f : \Omega_{\mathcal I} \to \mathbb R$ we define the real-valued instrument $f(\mathcal{I})$ such that $\Omega_{f(\mathcal{I})} = \mathcal{R}(f)$ and

$$
f(\mathcal{I})_z = \sum \{ \mathcal{I}_x : f(x) = z \}
$$

If $J(\mathcal{I}) = A$, then $J[f(\mathcal{I})] = f(A)$ because

$$
\text{tr}\left[f(\mathcal{I})_z(\rho)\right] = \text{tr}\left[\sum \{ \mathcal{I}_x(\rho) : f(x) = z \} \right] = \sum \{ \text{tr}\left[\mathcal{I}_x(\rho)\right] : f(x) = z \}
$$
\n
$$
= \sum \{ \text{tr}\left(\rho A_x\right) : f(x) = z \} = \text{tr}\left[\rho \sum \{ A_x : f(x) = z \} \right]
$$
\n
$$
= \text{tr}\left[\rho f(A)_z\right]
$$

for all $z \in \Omega_{f(A)} = \Omega_{f(\mathcal{I})}$. If \mathcal{I} is real-valued, we define $\widetilde{\mathcal{I}}$ on $\mathcal{L}(H)$ by $\widetilde{\mathcal{I}}(C) = \sum x \mathcal{I}_x(C)$ and $\langle \mathcal{I} \rangle_{\rho} = \text{tr} \left[\widetilde{\mathcal{I}}(\rho) \right]$. If $J(\mathcal{I}) = A$, then

$$
\langle \mathcal{I} \rangle_{\rho} = \text{tr}\left[\sum x \mathcal{I}_x(\rho)\right] = \sum x \text{tr}\left[\mathcal{I}_x(\rho)\right] = \sum x \text{tr}\left(\rho A_x\right) = \langle A \rangle_{\rho}
$$

for all $\rho \in S(H)$. We also define $\Delta_{\rho}(\mathcal{I}) = \Delta_{\rho}(A)$. It follows that $\langle f(\mathcal{I}) \rangle_{\rho} = \langle f(A) \rangle_{\rho}$, $\Delta_{\rho} [f(\mathcal{I})] = \Delta_{\rho} [f(A)]$ and $f(\mathcal{I})^{\sim} = \sum f(x) \mathcal{I}_{x}$.

Let $A = \{A_x : x \in \Omega_A\}, B = \{B_y : y \in \Omega_B\}$ be arbitrary observables and suppose $\mathcal I$ is an instrument with $J(\mathcal{I}) = A$. Define the *L*-product observable $A \circ B$ with $\Omega_{A \circ B} = \Omega_A \times \Omega_B$ given by $(A \circ B)_{(x,y)} = \mathcal{I}_x(B_y)$ [\[2,](#page-14-4) [3](#page-14-5)]. Then $A \circ B$ is indeed an observable because

$$
\sum_{x,y} (A \circ B)_{(x,y)} = \sum_{x,y} \mathcal{I}_x^*(B_y) = \sum_x \mathcal{I}_x^* \left(\sum_y B_y \right) = \sum_x \mathcal{I}_x^*(I) = \sum_x A_x = I
$$

Although $A \circ B$ depends on $\mathcal I$, we shall not indicate this for simplicity. We interpret $A \circ B$ as the observable obtained by first measuring *A* using *T* and then measuring *B*. If $f : \Omega_A \times \Omega_B \to \mathbb{R}$ we obtain the real-valued observable $f(A, B) = f(A \circ B)$. We then have

$$
f(A, B)_{z} = (A \circ B)_{f^{-1}(z)} = \sum \{(A \circ B)_{(x,y)} : f(x, y) = z\}
$$

\n
$$
= \sum \{T_x^*(B_y) : f(x, y) = z\}
$$

\n
$$
f(A, B)^{\sim} = \sum_{x,y} f(x, y)(A \circ B)_{(x,y)} = \sum_{x,y} f(x, y)T_x^*(B_y)
$$

\n
$$
\langle f(A, B) \rangle_{\rho} = \sum_{x,y} f(x, y) \text{tr} [\rho(A \circ B)_{(x,y)}] = \sum_{x,y} f(x, y) \text{tr} [\rho T_x^*(B_y)]
$$

\n
$$
\Delta_{\rho} [f(A, B)] = \sum_{x,y,x',y'} f(x, y) f(x', y') \text{tr} [\rho(A \circ B)_{(x,y)} (A \circ B)_{(x',y')}] - \langle f(A, B) \rangle_{\rho}^2
$$

\n
$$
= \text{tr} \left\{\rho \left[\sum_{x,y} f(x, y) T_x^*(B_y) \right]^2 \right\} - \langle f(A, B) \rangle_{\rho}^2
$$

If *f* is a product function $f(x, y) = g(x)h(y)$ we obtain

$$
f(A, B)_{z} = \sum_{z} \{ \mathcal{I}_{x}^{*}(B_{y}) : g(x)h(y) = z \}
$$

We then have the simplification

$$
f(A, B)^{\sim} = \sum_{x,y} g(x)h(y)\mathcal{I}_x^*(B_y) = \sum_x g_x \mathcal{I}_x^* \left(\sum_y h(y)B_y\right)
$$

=
$$
\sum_x g(x)\mathcal{I}_x^* [h(B)^{\sim}]
$$

Hence,

$$
\langle f(A, B) \rangle_{\rho} = \text{tr} \left[\rho f(A, B)^{\sim} \right] = \text{tr} \left\{ \rho \sum_{x} g(x) \mathcal{I}_{x}^{*} \left[h(B)^{\sim} \right] \right\}
$$

$$
= \sum_{x} g(x) \text{tr} \left\{ \rho \mathcal{I}_{x}^{*} \left[h(B)^{\sim} \right] \right\} = \sum_{x} g(x) \text{tr} \left\{ \mathcal{I}_{x}(\rho) \left[h(B)^{\sim} \right] \right\}
$$

$$
= \text{tr} \left\{ \sum_{x} g(x) \mathcal{I}_{x}(\rho) \left[h(B)^{\sim} \right] \right\} = \text{tr} \left\{ g(\mathcal{I})^{\sim}(\rho) \left[h(B)^{\sim} \right] \right\}
$$

 \bigcirc Springer

In a similar way we obtain

$$
\Delta_{\rho}[f(A, B)] = \text{tr}\left\{ \left(g(\mathcal{I})^{\sim}(\rho) \left[h(B)^{\sim} \right] \right)^2 \right\} - \left\langle f(A, B) \right\rangle_{\rho}^2
$$

If *A* and *B* are arbitrary observables, we define the observable *B conditioned* by *A* to be

$$
(B \mid A)_y = \mathcal{I}_{\Omega_A}^*(B_y) = \sum_{x \in \Omega_A} \mathcal{I}_x^*(B_y)
$$

where $\Omega_{B|A} = \Omega_B [2, 3]$ $\Omega_{B|A} = \Omega_B [2, 3]$ $\Omega_{B|A} = \Omega_B [2, 3]$ $\Omega_{B|A} = \Omega_B [2, 3]$. We interpret *(B | A)* as the observable obtained by first measuring *A* without taking the outcome into account and then measuring *B*. If *B* is real-valued we have

$$
(B \mid A)^{\sim} = \sum_{y} y(B \mid A)_{y} = \sum_{x,y} y \mathcal{I}_{x}^{*}(B_{y}) = \mathcal{I}_{\Omega(A)}^{*}(\widetilde{B})
$$

$$
\langle (B \mid A) \rangle_{\rho} = \sum_{y} y \text{tr} \left[\rho \mathcal{I}_{\Omega(A)}^{*}(B_{y}) \right] = \sum_{y} y \text{tr} \left[\overline{\mathcal{I}}(\rho) B_{y} \right] = \text{tr} \left[\overline{\mathcal{I}}(\rho) \widetilde{B} \right] = \langle B \rangle_{\overline{\mathcal{I}}(\rho)}
$$

$$
\rho \left[(B \mid A) \right] = \Delta_{\rho} \left[(B \mid A)^{\sim} \right] = \Delta_{\rho} \left[\mathcal{I}_{\Omega(A)}^{*}(\widetilde{B}) \right] = \text{tr} \left\{ \left[\mathcal{I}_{\Omega(A)}^{*}(\widetilde{B}) \right]^{2} \right\} - \left[\langle B \rangle_{\overline{\mathcal{I}}(\rho)} \right]^{2}
$$

$$
\mathbf{W} = \mathbf{W} \times \mathbf{A} \times \
$$

We now illustrate the theory of this section with some examples.

Example 5 *The simplest example of an instrument is a trivial instrument* $\mathcal{I}_x(\rho) = \omega(x)\rho$ *where* ω *is a probability measure on the finite set* Ω _{*T}</sub>. It is clear that I measures the trivial*</sub> *observable* $A_x = \omega(x)I$. Let B be an arbitrary observable and let $f : \Omega_A \times \Omega_B \to \mathbb{R}$. We *then have*

$$
(A \circ B)_{(x,y)} = \mathcal{I}_x^*(B_y) = \omega(x)B_y
$$

$$
f(A, B)_z = f(A \circ B)_z = \sum \{ \omega(x)B_y : f(x, y) = z \}
$$

We conclude that

$$
f(A, B)^{\sim} = \sum_{x,y} f(x, y)\omega(x)B_y
$$

$$
\langle f(A, B) \rangle_{\rho} = \sum_{x,y} f(x, y)\omega(x) \text{tr}(\rho B_y)
$$

$$
\Delta_{\rho}[f(A, B))] = \text{tr}\left\{\rho \left[\sum_{x,y} f(x, y)\omega(x)B_y\right]^2\right\} - \langle f(A, B) \rangle_{\rho}^2
$$

Moreover, since

$$
(B \mid A)_y = \sum_x \mathcal{I}_x^*(B_y) = \sum_x \omega(x)(B_y) = B_y
$$

we have that $(B | A) = B$.

Example 6 *Let* $A = \{A_x : x \in \Omega_A\}$ *and* $B = \{B_y : y \in \Omega_B\}$ *be arbitrary observables and let* $\mathcal{H}_x(\rho) = \text{tr}(\rho A_x) \alpha_x, \ \alpha_x \in \mathcal{S}(H)$ be a Holevo instrument [\[2](#page-14-4), [3](#page-14-5)]. Then *H* measure A *because*

$$
\text{tr} \left[\mathcal{H}_x(\rho) \right] = \text{tr} \left[\text{tr} \left(\rho A_x \right) \alpha_x \right] = \text{tr} \left(\rho A_x \right)
$$

Since $\mathcal{H}_r^*(a) = \text{tr}(\alpha_x a) A_x$ *for all* $x \in \Omega_A$ [\[2,](#page-14-4) [3\]](#page-14-5)*, we have*

$$
(A \circ B)_{(x,y)} = \mathcal{H}_x^*(B_y) = \text{tr}(\alpha_x B_y) A_x
$$

 $\circled{2}$ Springer

If $f : \Omega_A \times \Omega_B \rightarrow \mathbb{R}$, we obtain the real-valued observable

$$
f(A, B)_z = \sum \{ \text{tr}(\alpha_x B_y) A_x : f(x, y) = z \}
$$

We conclude that

$$
f(A, B)_{z} = \sum_{x,y} f(x, y) \mathcal{H}_{x}^{*}(B_{y}) = \sum_{x,y} f(x, y) \text{tr} (\alpha_{x} B_{y}) A_{x}
$$

$$
\langle f(A, B) \rangle_{\rho} = \sum_{x,y} f(x, y) \text{tr} (\alpha_{x} B_{y}) \text{tr} (\rho A_{x})
$$

$$
\Delta_{\rho} [f(A, B)] = \sum_{x,y,x',y'} f(x, y) f(x', y') \text{tr} [\rho \text{tr} (\alpha_{x} B_{y}) A_{x} \text{tr} (\alpha_{x'} B_{y'}) A_{x'}]
$$

$$
-(f(A, B))_{\rho}^{2}
$$

$$
= \text{tr} \left\{ \rho \left[\sum_{x,y} f(x, y) \text{tr} (\alpha_{x} B_{y}) A_{x} \right]^{2} \right\} - \langle f(A, B) \rangle_{\rho}^{2}
$$

Moreover, we have

$$
(B \mid A)_y = \sum_x \mathcal{H}_x^*(B_y) = \sum_x \text{tr}(\alpha_x B_y) A_x \qquad \qquad \Box
$$

Example 7 *Let A B be arbitrary observables and let be the Lüders instrument given by* $A_x(\rho) = A_x^{1/2} \rho A_x^{1/2}$ [\[2,](#page-14-4) [3,](#page-14-5) [6](#page-14-3)]*. Then*

tr
$$
[\mathcal{L}_x(\rho)] =
$$
 tr $(A_x^{1/2} \rho A_x^{1/2}) =$ tr (ρA_x)

so L measures A. Since $\mathcal{L}_x^*(a) = A_x^{1/2} a A_x^{1/2}$ [\[2](#page-14-4), [3\]](#page-14-5) *we have*

$$
(A \circ B)_{(x,y)} = A_x^{1/2} B_y A_x^{1/2}
$$

If $f : \Omega_A \times \Omega_B \rightarrow \mathbb{R}$, we obtain the real-valued observable

$$
f(A, B)_z = \sum \left\{ A_x^{1/2} B_y A_x^{1/2} : f(x, y) = z \right\}
$$

We conclude that

$$
f(A, B)^{\sim} = \sum_{x,y} f(x, y) A_x^{1/2} B_y A_x^{1/2}
$$

$$
\langle f(A, B) \rangle_{\rho} = \sum_{x,y} f(x, y) \text{tr} (\rho A_x^{1/2} B_y A_x^{1/2}) = \sum_{x,y} f(x, y) \text{tr} (A_x^{1/2} \rho A_x^{1/2} B_y)
$$

$$
\Delta_{\rho} [f(A, B)] = \text{tr} \left\{ \rho \left[\sum_{x,y} f(x, y) A_x^{1/2} B_y A_x^{1/2} \right]^2 \right\} - \langle f(A, B) \rangle_{\rho}^2
$$

Moreover, we have

$$
(B \mid A)_y = \sum_x \mathcal{L}_x^*(B_y) = \sum_x A_x^{1/2} B_y A_x^{1/2} \qquad \qquad \Box
$$

 \hat{Z} Springer

References

- 1. Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer-Verlag, Berlin (1995)
- 2. Gudder, S.: Conditional observables in quantum mechanics. [arXiv:quant-ph](http://arxiv.org/abs/quant-ph) **2005**, 04775 (2020)
- 3. Gudder, S.: Quantum instruments and conditioned observables (2020). arXiv preprint [arXiv:2005.08117](http://arxiv.org/abs/2005.08117)
- 4. Heinosaari, T., Ziman, M.: The Mathematical Language of Quantum Theory. Cambridge University Press, Cambridge (2012)
- 5. Kraus, K.: States. Effects and Operations. Springer-Verlag, Berlin (1983)
- 6. Lüders, G.: Über due Zustandsänderung durch den Messprozess. Ann. Physik. **6**, 322–328 (1951)
- 7. Nielson, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.