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Abstract
We study some properties of a stationary and axisymmetric slowly black hole in the
Einstein-Gauss-Bonnet-dilaton (EGBD) theory. This nontrivial gravity model that is the best
motivated alternative to the general relativity (GR) provides quadratic curvature terms in the
action. By using pertubative analytical black hole solutions in EGBD theory, we consider
the domain of existence and quadrupole moment of slowly spinning BH in the small scaled
angular momentum limit. The effects of the Gauss-Bonnet coupling and the spin parameter
on the radii of the static limit surface are also investigated.

Keywords Slowly black hole · Gravity model · EGBD theory

1 Introduction

The Einstein-Gauss-Bonnet-dilaton (EGBD) theory that is well known as an interesting
extension of general relativity (GR) modifies the Einstein-Hilbert action by adding a real
scalar feild called as dilaton. In this theory, the dilaton is non-minimally coupled to the
Gauss-Bonnet (GB) term [1, 2] that leads to quadratic curvature terms in the action. The
EGBD gravity provides a ghost-free theory with second order of equation of motion. Also,
the EGBD gravity occurs in the low-energy effective string theory in which case the scalar
field can be realized as the string dilaton [3].

Black holes (BHs) that are important objects in the nature introduced as a significant
prediction of GR. Due to existence of higher curvature coupling, BH solutions in EGBD
gravity are different from those estimated by GR. So, the investigation of BHs in EGBD
theory makes new insights on some appearances of quantum gravity and can be used to
expand testable predictions of the theory. The first discussion on BH solutions of the EGBD
gravity can be found in Refs. [4, 5]. In addition, numerical forms of rapidly spinning BH
solutions in EGBD theory have been considered in [6–8] within a non-perturbative approach
for finite spin and arbitrary values of the angular momentum. While they don’t regard the
treatment of EGBD theory as an effective field theory but they found that the EGBD black
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holes can display some physical differences when compared to the Kerr solution. Their
results are also important to study on geodesic properties of BHs and indicates that EGBD
black holes can violate the Kerr bound.

Moreover, analytical stationary BH solutions in EGBD gravity were derived for non-
spinning BHS [9] and slowly rotating BHS [17] that are spherically symmetric and
approximate axisymmetric respectively. Furthermore, by using the perturbative approach,
the approximate slowly rotating BH solutions of EGBD theory in the small coupling limit
have been found to quadratic order [15] and fifth order in [10] of the BH spin.

We know that Einstein-Gauss-Bonnet-dilaton (EGBD) gravity is a theoretically well-
motivated alternative theory of General Relativity (GR) in the strong-gravity. Static and
rotating BHs solutions in EGBD gravity that are found numerically can provide deviations
from the Kerr black holes of Einstein’s gravity. Thus (EGBD) gravity can be tested with
observations of astrophysical black holes. In [22], a preliminary study has been done on the
possibility of distinguishing the Kerr black holes in Einstein’s gravity from the black holes
in Einstein-dilaton-Gauss-Bonnet gravity with present and future X-ray missions from the
analysis of the disk’s reflection spectrum. X-ray reflection spectroscopy that is a promis-
ing technique for testing general relativity in the strong field regime may distinguish the
black holes in Einstein-dilaton-Gauss-Bonnet gravity from those in Einstein’s gravity in
the future. Furthermore, recent gravitational wave observations allow us to test theories of
gravity in the strong-gravity regime. For example, the authors of [23] discussed the testing
Einstein-dilation Gauss-Bonnet gravity by using two new neutron star black hole binaries
(GW200105 and GW200115). They made two independent analyses to find constraints on
the Gauss-Bonnet coupling constant of the theory. Constraints on this parameter have also
been investigated by the authors of Ref. [24] from a cosmological point of view which is
the best constriction up to now using cosmological data at the background level. In addi-
tion, results of [28] show that the Gauss-Bonnet coupling should fall in the possible negative
range α

M2 ∈ (−4.5, 0) or take very small positive values by using the observation data of
M87∗. More studies related to the (EGBD) gravity can be found in Refs. [25–27, 29–33].

In this work, we are interested to study some properties of slowly rotating BHs such as
quadrupole moments and domain of existence by utilizing the analytical solutions of Ref.
[15] that are quadratic order in the ratio of the spin angular momentum to the BH mass
squared. It must be mentioned that previous results on these properties found in [7] are in
numerical forms. However their solutions are of limited practical use and are impractical
for more studies on geodesic properties of blsck hole. The plan of this study is organized
as follows. In Section 2 we review an approximate slowly rotating BH solution in EGBD
gravity to quadratic order in the BH spin and coupling parameter. In Section 3, we first
study the horizon structure of the BH and then some properties of the EGBD black holes is
considered regarding the different values for the EGBD coupling parameters as well as the
small spin angular momentum of the BHs. Finally, in Section 4 we present our conclusions.

2 BH Solutions in Einstein-Gauss-Bonnet-dilaton Gravity

In this section, We review the space-time metric and BH solutions in EGBD theory that
were obtained by [15] to second order both in the spin and in the coupling parameter. This
theory is described by the following action

S ≡
∫

d4x
√−g

{
κR + αeϑ

[
R2 − 4RabR

ab + RabcdRabcd
]

− β

2

[�aϑ �a ϑ + 2V (ϑ)
] + Lmat

}

(1)
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where, g denotes to the determination of the metric gab and R,Rab and Rabcd show the Ricci
scalar, Ricci tensor and the Riemann tensor respectively. The external matter Lagrangian is
represented by Lmat and ϑ is a scalar field coupled to the Gauss-Bonnet term. The α and
β indicate to the coupling constants and κ = 1

16π
. For simplicity, we take β = 1 in the

following discussions. Also, the Latin letters are used for space-time indices and the metric
signature is (−,+, +,+). The field equation of EGBD gravity are given by

Gab + α

κ
D(ϑ)

ab = 1

2κ

(
T mat

ab + T
(ϑ)
ab

)
(2)

where the scalar field stress-energy tensor T (ϑ) reads as

T (ϑ) = β

[
�aϑ �b ϑ − 1

2
gab

(�cϑ �c ϑ − 2V (ϑ)
)]

, (3)

and
D(ϑ)

ab ≡ − 2R �a �bϑ + 2 (gabR − 2Rab) �c �cϑ

+ 8Rc(a�c�b)ϑ − 4gabR
cd �c �dϑ

+ 4Racbd �c �dϑ .

(4)

The (2), (3) and (4) are of second differential order and therefore, the EGBD theory is free
from the Ostrogradsky instability [11]. It must be noted that, the EGBD theory has a shift
symmetry (ϑ → ϑ + constant) so the theory does not allow mass term in the action (1).
Therefore, we can choose V (ϑ) = 0.

2.1 Slowly Rotating BH Solutions

In this section, we study the slowly rotating BH solution in EGBD gravity at quadratic order
in spin by using two approximation schemes have been applied in Ref. [12]. We first define
a dimensionless parameter ζ as

ζ = α2

κM4
(5)

where M is the typical mass of the system. Theoretical constraint implies an upper bound

on α as α2

M2 ≤ 0.691 for the static BH solution in EGBD gravity [13, 14]. This restriction
motivates us to consider slowly BH solution in EGBD theory with small coupling approx-
imation ζ 	 1 and χ ≡ a/m 	 1 where, m is the mass of the black hole and a = J/m.
The parameter J is the magnitude of the spin angular momentum of the BH and then χ is
dimensionless.

Let us start with the following Kerr metric by using Boyer-Lindquist-like coordinates
(t, r, θ, ϕ)

ds2
K = −

(
1 − 2mr

�

)
dt2 − 4marsin2θ

�
dtdϕ + �

�
dr2

�dθ2 +
(

r2 + a2 + 2ma2rsin2θ

�

)
sin2 θdϕ2.

(6)

with � ≡ r2 − 2mr + a2 and � ≡ r2 + a2 cos2 θ .
In the small-coupling and slow-rotation approximation, the full metric can be expanded

as [15]

gab = g
(0)
ab + α′2g(2)

ab + O
(
α′4) , (7)

g
(0)
ab = g

(0,0)
ab + χ ′g(1,0)

ab + χ ′2g(2,0)
ab + O

(
χ ′3) (8)
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and

α′2g(2)
ab = α′2g(0,2)

ab + χ ′α′2g(1,2)
ab + χ ′2α′2g(2,2)

ab + O
(
α′2χ ′3) , (9)

where α′ and χ ′ are bookkeeping parameters and show the order of the small-coupling
and slow-rotation approximations respectively. It is also mentioned that g

(0)
ab is the full

Kerr metric, while g
(2)
ab represents a deformation of GR metric. Furthermore, g

(0,0)
ab is the

Schwarzschild metric and the g
(1,0)
ab and g

(2,0)
ab are χ ′ perturbations.

The scalar field can be expanded as follows

ϑ = α′ [ϑ(0,1) + χ ′ϑ(1,1) + χ ′2ϑ(2,1)
]

+ O
(
α′χ ′3) , (10)

where

ϑ(0,1) = α

β

2

mr

(
1 + m

r
+ 4

3

m2

r2

)
(11)

and

ϑ(2,1) = − αχ2

2βmr

[
1 + m

r
+ 4

5

m2

r2
+ 2

5

m3

r3
+ 28

5

m2 cos2 θ

r2

(
1 + 3m

r
+ 48

7

m2

r2

)]
. (12)

Note that due to the Gauss-Bonnet invariant, we get ϑ(1,1) = 0 [15].
The authors of Refs. [16] and [17] found that at O

(
α′2χ ′0) and O

(
α′2χ ′) the nonvan-

ishing terms in g
(0,2)
ab and g

(1,2)
ab are respectively as follows

g
(0,2)
tt = −ζ

3

m3

r3

[
1 + 26m

r
+ 66

5

m2

r2
+ 96

5

m3

r3
− 80m4

r4

]
, (13)

g(0,2)
rr = − ζ

f 2

m2

r2

[
1 + m

r
+ 52

3

m2

r2
+ 2m3

r3
+ 16

5

m4

r4
− 368

3

m5

r5

]
, (14)

and

g
(1,2)
tϕ = 3

5
ζmχ

m3 sin2 θ

r3

[
1 + 140

9

m

r
+ 10m2

r2
+ 16m3

r3
− 400

9

m4

r4

]
(15)

where f = 1 − 2m
r

. Using the pertubative method, the metric components at O(α′2χ ′2)
were obtained in Ref. [15] as

g
(2,2)
tt = −ζχ2 m3

r3

[
4463

2625

(
1 + m

r
+ 27479

31241

m2

r2
− 2186945

187446

m3

r3
− 448285

31241

m4

r4
− 78975

4463

m5

r5

+1229650

13389

m6

r6
+ 303800

13389

m7

r7

)
×

(
3 cos2 θ − 1

)
− 1

6

(
1 + 14m

r
+ 52

5

m2

r2

+1358

14

m3

r3
+ 652

3

m4

r4
+ 1204

5

m5

r5
− 1792

3

m6

r6
− 1120

3

m7

r7

)]
, (16)
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g(2,2)
rr = −ζ

χ2

f 3

m3

r3

[
4463

2625

(
1 − 5338

4663

m

r
− 59503

31241

m2

r2
− 7433843

187446

m3

r3
+ 13462040

93723

m4

r4
− 7072405

31241

m5

r5

+ 9896300

13389

m6

r6
− 28857700

13389

m7

r7 + 13188000

4463

m8

r8
− 7140000

4463

m9

r9

)
×

(
3 cos2 θ − 1

)

− r

2m

(
1 − m

r
+ 10m2

r2
− 12m3

r3
+ 218

3

m4

r4
+ 128

3

m5

r5
− 724

15

m6

r6
− 22664

15

m7

r7

+ 25313

15

m8

r8
+ 1600

3

m9

r9

)]
, (17)

g
(2,2)
θθ = −4463

2625
ζχ2 m3

r3

(
1 + 10370

4463

m

r
+ 266911

62482

m2

r2
+ 63365

13389

m3

r3
− 309275

31241

m4

r4

−81350

4463

m5

r5
− 443800

13389

m6

r6
+ 210000

4463

m7

r7

)
× r2

(
3 cos2 θ − 1

)
, (18)

g(2,2)
ϕϕ = g

(2,2)
θθ sin2 θ, (19)

where satisfy the field (2) and all other metric components are zero.
By using the relations derived above, we are able to study some geometrical properties

of the slowly spinning black hole in EGBD theory which are presented in the next section.

3 The Geometrical Properties of the Solutions

Now we study the geometrical properties of the analytical slowly BH solutions presented in
the previous section. For this purpose, we consider some quantities which characterize the
spinning EDGB black hole solution to second order in the spin and the leading order in the
coupling parameter.

3.1 Horizon Structure

We first discuss the effects of GB coupling parameter α and spin parameter a on the horizon-
like structure of slowly rotating BH in EGBD gravity. Using to metric at O(α′2χ ′2) given
in (16)–(19) the horizons of rotating EGBD black hole can be obtained as the zero of

gμν∂μr∂νr = grr = gttgϕϕ − g2
tϕ = 0. (20)

That is the coordinate singularity of the metric (6). The largest root of equation above
gives rise to the event horizon with the following from that is a null surface produced by
null geodesic generators [15]

rH = rH,K − 49

40
ζm − 277

960
ζmχ2, (21)

with

rH,K = m +
(
m2 − a2

) 1
2

(22)

where shows the event horizon for the Kerr results. The behaviour of the event horizon
radius with respect to the spin parameter a is plotted in Fig. 1a for fixed values of GB cou-
pling parameter α. As the figure shows, the event horizon radius decreases with increasing
a such that slowly rotating BH in EGBD gravity has smaller horizon radius as compared to
the Kerr BH. The deviation from the Kerr result increases with increasing α. In Fig. 1b, we
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Fig. 1 Variation of event horizon radius versus the spin parameter a (left) and GB coupling parameter α

(right) with M = 1

also plot the shapes of event horizon radius versus the GB coupling constant for different
values of spin parameters a. It can be seen that for a fixed values of a, the radius decreases
with increasing α. By this figure, one can find that in the slow rotation limit χ → 0, the
deviation from the Kerr results is 1% and less for α ≤ 0.1. This deviation increases to 20%
when χ ≤ 0.6.

By considering stationary and axisymmetric slowly rotating BH solution in EGBD
gravity, the angular velocity �H of the horizon is given by [15]

�H = gtt

gtϕ

|r=rH = �H,K

(
1 + 20

21
ζ

)
, (23)

where the horizon angular velocity of Kerr metric �H,K reads

�H,K = a(
r2
H,K + a2

) . (24)

From (5) and (23) one can rewrite the parameter ζ as follows

ζ = 20

21

[
�H

a

χ2

(
χ2 +

(
1 −

√
1 − χ2

)2

− 1

)]
(25)

that help us to get more information about parameter space of the black hole. Using the
obtained relations, the profile of GB coupling parameter α can be displayed versus the spin
parameter a which is plotted in Fig. 2 for different values of horizon angular velocity �H .
This profile provides us information about the existence condition of the horizons that leads
to a bound on the black hole parameters (a, α).

The area under each curve shows the region that metric (6) allows different roots corre-
sponding to the black hole horizons. One can see in Fig. 2 that the parameter space (a, α)
increases with increasing �H . // Also, the event horizon area of the BH can be found by
[15]//

AH = 2π

∫ π

0

√
gθθgϕϕ |r=rH dθ = AH,K

[
1 − 49

40
ζ

(
1 + 19

98
χ2

)]
, (26)

where the area of the Kerr metric AH,K is given by

AH,K = 4π
(
r2
H,K + a2

)
. (27)
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Fig. 2 The parameter space of (a, α) for the existence of the black hole horizon for various vales of �H

In Fig. 3a and b, the dimensionless horizon area aH = AH

4πM2 is plotted for different
values of spin parameter and GB coupling by using the pertubative solutions. In Fig. 3a,
it is clear that for a fixed value of the dimensionless reduced angular momentum J/M2,
the scaled horizon area aH decreases with increasing the dimensionless coupling constant
α/M2. In Ref. [18], it was shown numerically that the EGBD spinning BH can exceed to
Kerr bound J/M2 ≤ 1 for a particular set of solution near to extremality. In the Fig. 3b,
we study this results by using the analytical BHs solutions. We find that the violation from
the Kerr bound can not be seen for slowly rotating BH in EGBD gravity by using the per-
turbative solutions. However, it must be noted that Our results are more valid in small areas

Fig. 3 The scaled horizon area aH = AH

M2 versus the scaled angular momentum J

M2 (right) and the scaled
GB coupling α

M2 (left)
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of J/M2 because of the initial approximations that we have used to obtain the analytical
BHs solutions.

In addition, it is well known that stationary observes can be outside of the event horizons
but, static observers can exist only outside of the static limit surface (SLS) that can be by
the worldlines of timelike killing vector η

μ

(t) [19]

η
μ

(t)ημ(t) = gtt = 0. (28)

The zeros of (28) give us the radii of SLS which are proportional to the θ and black
hole parameters (a, α) space. These roots are shown in Fig. 4a and b for different values of
a, α, and θ . By this curves we find that there are two real positive roots corresponding to
the two radii of SLS. As can be seen in Fig. 4e, these radii are more affected by varying
the parameter θ such that the radii of outest SLS increases with decreasing θ while a and α

have fixed values.

3.2 Quadrupole andMoment of Inertia

The quadrupole moment Q of the BHs that is a measurable parameter can be used to test no-
hair theorems [20]. The quadrupole moment as well as the higher-order multipole moments
can be achieved by transforming the metric to asymptotically Cartesian and mass-centred
(ACMC) coordinates. It must be noted that the quadrupole moment itself is not a directly
observable quantity but it does effects on the motion of massive and massless bodies leading
to corrections to the gravitational radiation that is indeed observable. The authors of Ref. [6]
have computed the quadrupole moment of rapidly spinning EGBD BH numerically. They
have found that the scaled quadrupole moment of black holes can deviate by 20% and more
from the corresponding Kerr value for a given value of the scaled angular momentum. In
the case of stationary and axisymmetric space-time, the quadrupole moment at O(α′2χ ′2)
is given by [15]

Q = QK

(
1 + 4463

2625
ζ

)
, (29)

where QK is the Kerr quadrupole moment.
The authors of Ref. [18] could not be able to map out the scaled quadrupole moment for

the limit J/M2 → 0 because the ratios of small numbers were involved in their numeri-
cal calculations. In this study, using the perturbative solutions we discuss the quadrupole
moment spinning BH in EGBD gravity for J → 0.

In Fig. 5 the magnitude of the scaled quadrupole moment QM/J 2 is plotted versus the
scaled angular momentum J/M2 for several values of horizon angular velocity �H in the
slow-spin regimes. As the figure shows the deviation from the Kerr value increases with
increasing the angular horizon velocity. We find that for J/M2 ≤ 0.05 this deviation can
exceed the Kerr results by 50% and more.

The moment of inertia is described by I = J/�H where �H is the angular velocity
given by (23). In this work, the scaled moment of inertia J/(�H M3) can be found as

J

�H M3
=

[
j2 +

(
1 +

√
1 − j2

)2
]

×
⎡
⎣1 + 55125

89260

1(
Q
j

− 1
)

⎤
⎦

−1

, (30)

where j = J/M2 is the scaled angular moment and Q denotes to the quadrupole moment
of black hole.
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Fig. 4 The behavior of SLS versus the GB coupling α and the spin parameter a for a = 0.1M (a), a = 0.5M

(b), α = 0.01M2 (c), α = 0.1M2 (d) with θ = π
6 and a = 0.5M,α = 0.1M2 (e)

Lastly, we plot the scaled moment of inertia versus the scaled quadrupole moment in
Fig. 6 for j ≤ 1. One can see for the fixed values of J , the graph has a decreasing trend
which is in agreement with the numerical study obtained by [18].
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Fig. 5 The scaled quadrupole moment QM/J 2 versus the scaled angular momentum J/M2 for different
values of �H

4 Conclusions

In this work, we have reviewed the Einstein-Gauss-Bonnet-dilaton (EGBD) theory that was
constructed as a generalization of the Kerr black holes. This theory can exhibit some phys-
ical differences when compared to the Kerr solution. For example, the domain of existence

Fig. 6 The scaled moment of inertia J

�H M2 versus the scaled quadrupole moment QM/J 2 for different

values of the scaled angular momentum J/M2
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of these Einstein-Gauss-Bonnet-dilaton black holes is bounded by the Kerr black holes.
Also, their mass is always bounded from below, while their angular momentum can slightly
exceed the Kerr bound. An EGBD BH has a higher entropy and temperature than a Kerr
black hole for a given mass and angular momentum. By comparing their innermost stable
circular orbits (ISCOs) with those of the Kerr black holes, It was shown in [8, 21] that the
ISCO is larger for slowly and rapidly rotating EGBd BHs than Kerr BHs. Moreover, the
quadrupole moment of the Kerr solution is completely fixed by its global charges while the
quadrupole moment of EGBD spinning BHs can take considerably different values from the
Kerr case.

Next, we have considered some properties of slowly spinning BHs in EGBD gravity.
Previous numerical investigations of Refs. [7, 18] are necessary to study the high-spin
regimes but they are impractical for regions where the slow-spin expansion does converge.
By using approximate analytical pertubative BH solutions, we have perused the event hori-
zon, domain of existence and quadrupole moment of slowly rotating BHs in EGBD gravity.
It was shown that the event horizon radius violates from the Kerr results by 1% and less
when χ → 0 and α ≤ 0.1. While this deviation increases to 20% when χ → 0.6.

We have also studied the parameter space of the black hole (a, α) for different values of
the horizon angular velocity and found that the allowed region of parameter space increases
with �H . By considering the behavior of the domain of existence of the horizon area, we
found that pertubative solutions can not lead to violation from the Kerr bound J

M2 < 1.
Furthermore, the radii of the static limit surface have been considered for a wide range of
variations of the parameters. It was shown that these radii are more affected by varying
the parameter θ .

Finally, by investigation of the quadrupole moment of the slowly rotating BHS in EGBD
theory we have obtained that the deviation from the Kerr value increases with angular hori-
zon velocity such that for J/M2 ≤ 0.05 this deviation can exceed the Kerr results by 50%
and more.
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33. Jusufi, K., Övgün, A., Banerjee, A.: Phys. Rev. D 96, 084036 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Int J Theor Phys (2023) 62:4444 Page 12 of 12


	Study of Slowly Rotating Black Hole in Dilatonic Einstein-Gauss-Bonnet Gravity
	Abstract
	Introduction
	BH Solutions in Einstein-Gauss-Bonnet-dilaton Gravity
	Slowly Rotating BH Solutions

	The Geometrical Properties of the Solutions
	Horizon Structure
	Quadrupole and Moment of Inertia

	Conclusions
	References




