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Abstract
Quantum secure multiparty summation plays an important role in quantum cryptography. In
the existing quantum secure multiparty summation protocols, the (n, n)-threshold protocol
has been given extensive attention. To increase the applicability of quantum secure mul-
tiparty summation protocols, a new quantum secure multiparty summation protocol based
on Shamir’s threshold scheme and d-dimensional GHZ state is proposed in this paper. In
the proposed protocol, i) it has a (k, n)-threshold approach; ii) in the result output phase,
it can not only detect the existence of deceptive behavior but also determine the specific
cheaters; iii) compared with the (n, n)-threshold quantum secure multiparty summation
protocols, it needs less computation cost when L satisfies L > 4, where L is the length of
each participant’s secret. In addition, the security analysis shows that our protocol can resist
intercept-resend attack, entangle-measure attack, Trojan horse attack, and participant attack.
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1 Introduction

In practical applications, the research of secure multiparty computation is of great sig-
nificance, which was first proposed by Yao [1]. The goal of studying secure multiparty
computation is to enable numerous participants to collaboratively compute a particular func-
tion without disclosing their respective input information. They all receive accurate output
information after the calculation. In the current research, to solve various practical problems,
many secure multiparty computation protocols are proposed, respectively. For instance,
secure multiparty sorting protocols [2, 3], secure multiparty cloud computation protocols
[4, 5], and secure multiparty summation protocols [6–9]. In this paper, we only pay atten-
tion to the secure multiparty summation, which is one of the common security problems in
current life. Secure multiparty summation protocols allow the existence of multiple partic-
ipants, and each participant has a private message. Subsequently, these participants jointly
compute a summation function under the condition that no personal private message is
revealed. Finally, the output information of the summation function is available to each
participant.

With the emergence of quantum algorithms [10, 11], quantum secure multiparty com-
putation has attracted much attention [12–16]. At present, the research on quantum secure
multiparty summation (QSMS) is still limited. And most of the existing QSMS protocols
are (n, n)-threshold protocols. That is to say, in the result output phase, the output informa-
tion of the summation function can only be obtained when all participants are present. In
2017, Shi et al. [17] designed a special quantum two-party summation protocol, but when
one of the two participants is dishonest, the other participant will not get the correct output
information. In 2022, Ye et al. [18] proposed a lightweight 2-dimensional three-user secure
quantum summation protocol, but if the quantum system is free-space, then the protocol will
be less applicable than the protocols of high-dimensional quantum system in some cases.
And another consideration in protocols [17, 18] is that the number of participants is limited.
Therefore, Liu et al. [19] in 2017, Yang et al. [20] in 2018, Lv et al. [21] in 2019 and Wang
et al. [22] in 2021 respectively proposed an (n, n)-threshold QSMS protocol. Compared to
previous related protocols, they are more efficient and solve the limitation of the number of
participants. However, through analysis, we found that protocols [19–22] have one thing in
common that is not well considered, that is, if any participant provides wrong information in
the output result phase, the honest participants cannot get the correct output information and
cannot find the specific cheaters. In particular, protocols [19–21] still require non-negligible
computation cost, as they need to measure more message particles.

In addition, it is also worth noting if one or more participants fail during the result
output phase. The applicability of these (n, n)-threshold protocols will be affected. There-
fore, to increase the applicability of QSMS protocols. In 2020, Song et al. [23] proposed
a (k, n)-threshold quantum secure multiparty computation protocol based on Lagrange
unitary operation and Shamir’s threshold secret sharing, which has higher computational
efficiency than previous similar protocols. However, in the result output phase, protocol
[23] can only identify the existence of the deception and cannot find the specific deceivers.
The same year, Sutradhar et al. [24] introduced a quantum multiparty protocol that supports
(k, n)-threshold summation and contrasts it with comparable protocols, demonstrating that
it is more advantageous in terms of both communication and computation. However, the
honest participants in protocol [24] may not obtain the correct output information because
there is a possibility that some participants provide invalid measurement results in the result
output phase.
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In this paper, we present a new verifiable (k, n)-threshold QSMS protocol by using
Shamir’s threshold scheme, d-dimensional GHZ (Greenberger-Horne-Zeilinger) state, and
hash function. Compared with the existing QSMS protocols, our protocol has the following
properties:

(1) Based on Shamir’s threshold scheme and d-dimensional GHZ state, we construct a
(k, n)-threshold QSMS protocol. Compared with the (n, n)-threshold QSMS proto-
cols, our protocol is more flexible and needs less computation cost when L meets
L > 4, where L denotes the length of each participant’s secret.

(2) Based on hash function, in the result output phase, this paper can not only achieve
verifiability of the deception, but also find the specific cheaters.

(3) This paper can resist intercept-resend attack, entangle-measure attack, Trojan horse
attack, forgery attack, collusion attack, and malicious attack by the semi-honest third
party TP.

The remaining structure of the protocol is as follows: In Section 2, some available
basic knowledge are introduced. In Section 3, a verifiable (k, n)-threshold quantum secure
multiparty summation protocol is designed. In Section 4, the correctness analysis and the
security analysis are given respectively. In Section 5, we present the performance com-
parison between our protocol and related protocols. Finally, conclusion of this protocol is
given.

2 Preliminaries

2.1 Shamir’s Threshold Scheme

In 1979, Shamir [31] proposed a (k, n)-threshold secret sharing scheme based on the
Lagrange interpolation formula. The details are as follows:

(1) Preparation phase
Let GF(d) be a finite field (d is a large odd prime number); the shared secret is S;

n(< d) participants P1, P2, ..., Pn; a secret distributor D; any k(≤ n) of n participants can
reconstruct the secret S.

(2) Construction phase
Firstly,D independently chooses k−1 elements α1, α2, ..., αk−1 ∈ GF(d) and constructs

a (k − 1)-th polynomial as

f (x) = S + α1x + α2x
2 + ... + αk−1x

k−1(modd), (1)

where Eq. 1 satisfies f (0) = S(modd) and αk−1 �= 0.
Secondly, D chooses n different non-zero elements x1, x2, ..., xn ∈ GF(d), computes

yi = f (xi) for i = 1, 2, ..., n, and takes (xi, yi) as the secret share of the participant Pi .
Finally, D sends (xi, yi) to the corresponding participant Pi for i = 1, 2, ..., n.
(3) Reconstruction phase
Suppose that there are k participants who want to reconstruct the secret S together, then

the following operations are performed:
Firstly, without loss of generality, assuming that the k participants are exactly P1, P2,

..., Pk , then the k secret shares (x1, y1), (x2, y2), ..., (xk, yk) can be obtained.
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Secondly, the polynomial f (x) can be reconstructed by using the Lagrange interpolation
formula:

f (x) =
k∑

i=1

yi

k∏

j=1,j �=i

x − xj

xi − xj

(modd). (2)

Finally, the constant term f (0) = S(mod d) of Eq. 2 can be obtained, i.e., the shared
secret S is reconstructed.

2.2 d-dimensional GHZ State

In the d-dimensional Hilbert space, the X-basis and Z-basis are defined as follows [25]:

X = {|Jj 〉, j = 0, 1, · · · , d − 1}, Z = {|j〉, j = 0, 1, · · · , d − 1}, (3)

where |Jj 〉 = 1√
d

d−1∑

j=0

ωjt |t〉, and ω = e
2πi
d . Namely, the d-dimensional GHZ state of

n-particles in the Z-basis can be expressed as

Ψ = 1√
d

d−1∑

j=0

|j〉
⊗

n. (4)

If each particle of quantum state Ψ is measured under the X-basis, and we use
v1, v2, · · · , vn ∈ {0, 1, · · · , d − 1} to denote the measurement results |Jj 〉(j ∈
{0, 1, · · · , d − 1}) of the n particles, then we can get

v1 + v2 + · · · + vn = 0(modd). (5)

2.3 Hash Function

Hash function is a function of many for one, which takes information of different lengths as
input and turns it into output of the same length. The process of generating hash value can
be expressed as follows:

h = H(m), (6)

where m is a string of different lengths that needs to be changed, H(·) denotes the hash
function, and h represents a hash value of the fixed length. A secure hash function must
have several properties as follows:

1) Rapidity: For any given message m, it is easy to calculate H(m), that is, H(m) is
computable in polynomial time.

2) Unidirectionality: For any given hash value h, it is computationally impossible to find
the message m satisfying H(m) = h.

3) Collision resistance: It is computationally infeasible to find two different messages m

and m′ so that H(m) = H(m′).

3 Our Scheme

This section consists of three main phases: (1) Preparation phase; (2) Construction phase;
(3) Multiparty summation phase, including cheating identification phase and result output
phase.
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3.1 Preparation Phase

1) n participants: P1, P2, ..., Pn.
2) Assume that the unique identity information of the participant Pi is xi ∈ {0, 1, ..., d −

1}, where i = 1, 2, ..., n.
3) A semi-honest third-party TP is needed. TP will do his best to get the secrets of the

participants while implementing the protocol. But he is not allowed to conspire with
others [30].

4) Each participant needs to randomly select some decoy particles in the X-basis or Z-
basis.

5) TP needs to publish a suitable hash function H(·).
6) The symbol “+” indicates the addition operation of modulo d .

3.2 Construction Phase

In this phase, TP and each participant have to do the following operations:
Step 1: Each participant Pi(i = 1, 2, ..., n) randomly selects a key Ci = (c1i , c

2
i , ..., c

n
i ),

and keeps ci
i in his hand, where c1i + c2i + ...+ cn

i = 0, cr
i ∈ {0, 1, ..., d − 1}, r = 1, 2, ..., n.

Then, the participant Pi sends the correct and valid c
j
i to the participant Pj through a secure

quantum channel [26, 27], where j = 1, 2, ..., i − 1, i + 1, ..., n. Finally, the participant Pi

has (ci
1, c

i
2, ..., c

i
n), where i = 1, 2, ..., n.

Step 2: Each participant Pi(i = 1, 2, ..., n) generates a d-dimensional GHZ state ψi =
1√
d

d−1∑
j=0

|j〉⊗3 of 3-particles in the Z-basis, respectively. When each particle of the quantum

state ψi(i = 1, 2, ..., n) is measured in the X-basis, TP and the participant Pi agree to use
a1i , a

2
i , a

3
i ∈ {0, 1, ..., d − 1} denote the measurement results |Jj 〉 of the 3 particles, where

j ∈ {0, 1, ..., d − 1}.
Step 3: The participant P1 measures a particle of the quantum stateψ1 in theX-basis, and

assumes that the measurement result of this particle is a31 ∈ {0, 1, ..., d − 1}. Subsequently,
he sets his secret to be S1 = (d − a31) + t1, where t1 ∈ {0, 1, ..., d − 1} is chosen by P1.

Step 4: Similar to Step 2, each participant Pi(i = 2, 3, ..., n) sets his secret to be Si =
(d − a3i ) + ti , where ti ∈ {0, 1, ..., d − 1} is chosen by Pi .

Step 5: Each participant Pi(i = 1, 2, ..., n) publishes an integer Ti = ti + Ei , where
Ei = ci

1 + ci
2 + ... + ci

n.
Step 6: Each participant Pi(i = 1, 2, ..., n) inserts other two particles of the quantum

state ψi into the decoy particles prepared in advance, so that two particle sequences Q1
i

and Q2
i are constructed. At the same time, Pi records the insertion positions and the initial

states of the decoy particles in Q1
i and Q2

i . Subsequently, Q
1
i and Q2

i are sent to TP, where
i = 1, 2, ..., n.

Step 7: After determining that TP receives {Q1
i , Q

2
i } for i = 1, 2, ..., n, the participant

Pi announces the insertion positions and the measurement basis of the decoy particles. Sub-
sequently, TP uses the announced insertion positions and measurement basis of the decoy
particles to judge whether there is an eavesdropping attack during the transmission of the
particle sequences {Q1

i , Q
2
i } for i = 1, 2, ..., n. Assuming there is no eavesdropping attack,

TP can obtain other two particles of the quantum state ψi for i ∈ {1, 2, ..., n}; otherwise, TP
terminates the protocol immediately and asks the participant Pi(i ∈ {1, 2, ..., n}) to resend
the particle sequences {Q1

i ,Q
2
i }.
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Step 8: Assuming that the eavesdropping checks all pass, TP will use the X-basis to
measure the particles of the quantum state ψi for i = 1, 2, ..., n, which in turn yields the
corresponding measurement results a1i , a

2
i (∈ {0, 1, ..., d − 1}) and the pseudo secret Si

∗ =
a1i +a2i +Ti , where Ti = ti +Ei is a public value,Ei = ci

1+ci
2+...+ci

n. Then, TP can obtain

the summation S =
n∑

i=1
Si

∗(modd) =
n∑

i=1
Si(modd). Finally, TP constructs a (k − 1)-th

polynomial based on the obtained S and the chosen b1, b2, ..., bk−1 ∈ {0, 1, ..., d − 1}:
f (x) = S + b1x + ... + bk−2x

k−2 + bk−1x
k−1, (7)

where the coefficient of the highest order term of Eq. 7 needs to satisfy bk−1 �= 0.
Step 9: TP generates (xi, yi) by using the unique identity information xi of the partici-

pant Pi and Eq. 7, where yi = f (xi), i = 1, 2, ..., n. Subsequently, (xi, yi) is sent to Pi as
his secret share through a secure quantum channel [26, 27]. Meanwhile, TP computes and
publishes (xi, H(yi)), where H(yi) denotes the hash value of yi for i = 1, 2, ..., n.

3.3 Multiparty Summation Phase

3.3.1 Cheating Identification Phase

Step 1: Assuming that k(≤ n) participants want to get the summation of all the secrets
together, each participant Pi needs to provide his secret share (xi, yi

′) to other participant
Pj through a secure quantum channel [26, 27], where i, j ∈ {1, 2, ..., n}, and i �= j . If
the summation process can be smoothly carried out, the secret share (xi, yi

′) provided by
Pi(i ∈ 1, 2, ..., n) needs to satisfy the following two conditions:

• xi and yi
′ are linearly independent.

• (xi,H(yi
′)) = (xi,H(yi)), where H(yi

′) denotes the hash value of yi
′ and (xi, H(yi))

is the public information.

Step 2: From Step l above we know that if the participant Pi(∈ {1, 2, ..., n}) is
defined as a deceiver, he will be eliminated. Subsequently, the original qualified subsets
are updated and the new participant is reselected together to reconstruct the summation

S =
n∑

i=1
Si

∗(modd) =
n∑

i=1
Si(modd).

Step 3: Without loss of generality, assuming that the k participants mentioned in the
above Step 1 are exactly P1, P2, ..., Pk , and they are all verified to be honest participants,
the summation S can be obtained by executing Section 3.3.2.

3.3.2 Result Output Phase

Step 4: For participant Pu(u ∈ {1, 2, ..., k}), after receiving the secret shares sent by other
honest participants Pi(i = 1, 2, ..., k; i �= u) (Step 3 has assumed that P1, P2, ..., Pk are
all honest participants), he can use the k secret shares (xt , yt ) owned and the Lagrange

interpolation formula to reconstruct the summation S =
n∑

i=1
Si

∗(modd) =
n∑

i=1
Si(modd),

where t = 1, 2, ..., k. The specific output process is shown below:

S =
n∑

i=1

Si
∗ =

n∑

i=1

Si = f (0) =
k∑

i=1

yi

⎛

⎝
k∏

j=1,j �=i

−xj

xi − xj

⎞

⎠ (modd). (8)
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4 Scheme Analysis

4.1 Correctness Analysis

Theorem 1 If each particle of the Z-basis GHZ state ψi = 1√
d

d−1∑
j=0

|j〉⊗n is measured in the

X-basis, and the measurement results |Jj 〉(j ∈ {0, 1, · · · , d − 1}) of the n particle denotes
the a1i , a

2
i , ..., a

n
i ∈ {0, 1, ..., d − 1}, then these measurements satisfy a1i + a2i + ...+ an

i = 0
for i = 1, 2, ..., n.

Proof In Section 2.2, we know that the X-basis and Z-basis are defined as X = {∣∣Jj

〉
, j =

0, 1, ..., d −1} and Z = {|j〉 , j = 0, 1, ..., d−1}, respectively, where |Jj 〉 = 1√
d

d−1∑

j=0

ωjt |t〉,

ω = e
2πi
d . Therefore, if the quantum state ψi is measured in the X-basis and the measure-

ment results are denoted as a1i , a
2
i , ..., a

n
i ∈ {0, 1, ..., d−1}, i = 1, 2, ..., n, then the quantum

state ψi can be expressed by using the following equation:

ψi = 1√
d

d−1∑

j=0

(
1√
d

d−1∑

t=0

ωjt |t〉
)⊗n

= 1

(
√

d)
n+1

d−1∑

j=0

ωj
∑n

m=1a
m
i

∣∣∣a1i a2i ...an
i

〉
. (9)

From Eq. 9, we can discuss the following two cases:
1) If

∑n
m=1a

m
i �= 0, then we can see

d−1∑

j=0

ωj
∑n

m=1a
m
i =

d−1∑

j=0

(ω
∑n

m=1a
m
i )

j = 1 + (ω
∑n

m=1a
m
i )

1 + ... + (ω
∑n

m=1a
m
i )

d−1

= 1 − (ω
∑n

m=1a
m
i )

d

1 − ω
∑n

m=1a
m
i

= 1 − ωd
∑n

m=1a
m
i

1 − ω
∑n

m=1a
m
i

= 1 − (e
2πi
d )

d
∑n

m=1a
m
i

1 − (e
2πi
d )

∑n
m=1a

m
i

= 1 − e2πi
∑n

m=1a
m
i

1 − e
2πi
d

∑n
m=1a

m
i

= 1 − (eπi)
2
∑n

m=1a
m
i

1 − e
2πi
d

∑n
m=1a

m
i

= 1 − (−1)2
∑n

m=1a
m
i

1 − e
2πi
d

∑n
m=1a

m
i

= 1 − 1

1 − e
2πi
d

∑n
m=1a

m
i

= 0, (10)

where eπi = −1, and “i” in eπi is imaginary unit.
2) If

∑n
m=1a

m
i = 0, then we can obtain

d−1∑

j=0

ωj
∑n

m=1 am
i =

d−1∑

j=0

ω0 = d (11)

Therefore, according to Eqs. 9–11, in the X-basis, we can know that the quantum state
ψi can be represented as:

ψi = 1

(
√

d)
n−1

∑

a1i +a2i +...+an
i =0,

a1i ,a2i ,...,an
i ∈{0,1,...,d−1}

∣∣∣a1i a2i ...an
i

〉
(12)
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To sum up, these measurement results a1i , a
2
i , ..., a

n
i ∈ {0, 1, ..., d − 1} can satisfy a1i +

a2i + ... + an
i = 0 for i = 1, 2, ..., n. That is, Theorem 1 is proved.

Remark 1 In our protocol, the GHZ state ψi = 1√
d

d−1∑
j=0

|j〉⊗3 generated by Pi is a special

case when it is n = 3. Namely, according to the proof of Theorem 1, the measurement
results a1i , a

2
i , a

3
i ∈ {0, 1, ..., d − 1} generated by Pi in this protocol can satisfy a1i + a2i +

a3i = 0 for i = 1, 2, ..., n.

Lemma 1 In our protocol, the summation S =
n∑

i=1
Si(modd) =

n∑
i=1

Si
∗(modd), where

Si = (d−a3i )+ti , Si
∗ = a1i +a2i +Ti , Ti = ti+Ei ,Ei = ci

1+ci
2+...+ci

n, c
i
i+c2i +...+cn

i = 0,
i = 1, 2, ..., n.

Proof According to Theorem 1 and Remark 1, we can get

a1i + a2i + a3i = 0, (13)

where a1i and a2i are the measurement results owned by TP, and a3i is the measurement result
owned by Pi for i = 1, 2, ..., n.

Subsequently, based on Eq. 13, we can obtain

a1i + a2i = d − a3i . (14)

Furthermore, we can get
n∑

i=1

Si
∗ =

n∑

i=1

(a1i + a2i + Ti) =
n∑

i=1

(a1i + a2i + ti + Ei)

=
n∑

i=1

(a1i + a2i + ti ) +
n∑

i=1

Ei

=
n∑

i=1

[(d − a3i ) + ti] +
n∑

i=1

n∑

r=1

ci
r

=
n∑

i=1

Si + 0 = S. (15)

Lemma 1 is proved.

Proposition 1 In the multiparty summation phase, the summation S =
n∑

i=1
Si

∗(modd) =
n∑

i=1
Si(modd) can be reconstructed if there are no less than k honest participants correctly

executing this protocol.

Proof In the multiparty summation phase, firstly, without loss of generality, assuming that

the participants P1, P2, ..., Pk want to reconstruct the summation S =
n∑

i=1
Si

∗(modd) =
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n∑
i=1

Si(mod d), then they need to obtain the k secret shares {(x1, y1′), (x2, y2′), ..., (xk, yk
′)}

through a secure quantum channel [26, 27]; secondly, for participant Pi(i = 1, 2, ..., k),
he can use the public information (xt , H(yt )) and the hash function H(·) to verify the
honesty of other participants Pt for t ∈ {1, 2, ..., k}, and i �= t . Assuming that the
secret shares provided by P1, P2, ..., Pi−1, Pi+1, ..., Pk are all verified to be correct and
valid (see Section 3.3.1), the participant Pi(i = 1, 2, ..., k) can obtain the k secret
shares {(x1, y1), (x2, y2), ..., (xk, yk)}; finally, the participant Pi(i = 1, 2, ..., k) can use
the Lagrange interpolation formula and the secret shares {(x1, y1), (x2, y2), ..., (xk, yk)} to
reconstruct the summation S:

S =
n∑

i=1

Si
∗ =

n∑

i=1

Si = f (0) =
k∑

i=1

yi

⎛

⎝
k∏

j=1,j �=i

−xj

xi − xj

⎞

⎠ (modd). (16)

Proposition 1 is proved.

4.2 Security Analysis

4.2.1 Intercept-Resend Attack

In our protocol, assume that the eavesdropper Eve intercepts the particles sent to TP by
the participant Pi(i ∈ {1, 2, ..., n}), and then sends the forged particles to TP so that he
can pass the eavesdropping check. This attack is not feasible. Because each participant
Pi(i = 1, 2, ..., n) sends the particle sequences {Q1

i ,Q
2
i } to TP, and each particle sequence

Qr
i (r ∈ {1, 2}) is composed of one particle in ψi and some decoy particles, where each

decoy particle is randomly selected in the X-basis or Z-basis. Since the eavesdropper Eve
does not know the insertion positions, the initial states, and the measurement basis of the
decoy particles, the probability of his attack failing is P = 1−( 12 × d−1

d
)
q
, where q denotes

the number of decoy particles. When q is large enough, P = 1 − ( d−1
2d )

q
converges to 1.

Therefore, Eve’s intercept-resend attack will be detected with a high probability.

4.2.2 Entangle-Measure Attack

In the process of particle transmission, the eavesdropper Eve uses the unitary operation
UE to entangle an auxiliary particle, and then steals the privacy information by measuring
this auxiliary particle. We assume that this auxiliary particle is |E〉. In order to express
entanglement-measurement attack more clearly, we analyze the decoy particles selected
under different basis as follows:

1) If the decoy particles are randomly selected from the Z-basis, using the unitary
operation UE to act on the decoy particles can obtain:

UE |0〉 |E〉 = β00 |0〉 |e00〉 + β01 |1〉 |e01〉 + · · · + β0(d−1) |d − 1〉 ∣∣e0(d−1)
〉

UE |1〉 |E〉 = β10 |0〉 |e10〉 + β11 |1〉 |e11〉 + · · · + β1(d−1) |d − 1〉 ∣∣e1(d−1)
〉

...

UE |d − 1〉 |E〉 = β(d−1)0 |0〉 ∣∣e(d−1)0
〉 + β(d−1)1 |1〉 ∣∣e(d−1)1

〉 + · · ·
+β(d−1)(d−1) |d − 1〉 ∣∣e(d−1)(d−1)

〉
,
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where these quantum states |eij 〉 (i, j ∈ {0, 1, · · · , d − 1}) are determined by the unitary
operation UE , and

|β00|2 + |β01|2 + · · · + ∣∣β0(d−1)
∣∣2 = 1

|β10|2 + |β11|2 + · · · + ∣∣β1(d−1)
∣∣2 = 1

...∣∣β(d−1)0
∣∣2 + ∣∣β(d−1)1

∣∣2 + · · · + ∣∣β(d−1)(d−1)
∣∣2 = 1.

In addition, in order to prevent eavesdropping attacks, the eavesdropper Eve must make
the following provisions:

β01 = β02 = · · · = β0(d−1) = 0
β10 = β12 = · · · = β1(d−1) = 0

...
β(d−1)0 = β(d−1)1 = · · · = β(d−1)(d−2) = 0.

Therefore, we can simplify the above equations as follows:

UE |0〉 |E〉 = β0 |0〉 |e0〉
UE |1〉 |E〉 = β1 |1〉 |e1〉

...
UE |d − 1〉 |E〉 = βd−1 |d − 1〉 |ed−1〉,

where β0 = β00, β1 = β11, ..., βd−1 = β(d−1)(d−1), and e0 = e00, ..., ed−1 = e(d−1)(d−1).
2) If these decoy particles are randomly selected from the X-basis, using the unitary

operation UE to act on the decoy particles can get:

UE

∣∣Jj

〉 |E〉=UE

(
1√
d

d−1∑

t=0

ωjt |t〉
)

|E〉= 1√
d

d−1∑

t=0

ωjtUE |t〉 |E〉 = 1√
d

d−1∑

t=0

ωjtβt |t〉 |et 〉 ,

(17)
where j ∈ {0, 1, · · · , d − 1}.

Furthermore, due to
∣∣Jj

〉 = 1√
d

d−1∑
t=0

ωjt |t〉, then we know |j〉 = 1√
d

d−1∑
t=0

ω−j t |Jt 〉 and
can get

UE

∣∣Jj

〉 |E〉 = 1√
d

d−1∑

t=0

ωjtβt |et 〉
(

1√
d

d−1∑

i=0

ω−it |Ji〉
)

= 1

d
(|J0〉

∑d−1

t=0
ωt(j−0)βt |et 〉 + |J1〉

∑d−1

t=0
ωt(j−1)βt |et 〉 + ...

+ |Jd−1〉
∑d−1

t=0
ωt(j−(d−1))βt |et 〉) (18)

According to the above analysis, we can know that to avoid eavesdropping inspections,

the eavesdropper Eve must set
d−1∑
t=0

ωt(j−i)βt |et 〉 = 0 for i ∈ {0, 1, · · · , d−1}, j �= i. There,

for ∀j ∈ {0, 1, 2, ..., d−1}, d−1 equations can be obtained. Then, based on these equations,
β0 |e0〉 = β1 |e1〉 = · · · = βd−1 |ed−1〉 is easily acquired. In a word, no matter what state the
useful particles are in, Eve can only obtain the same information from the auxiliary particles,
but cannot obtain the related privacy information. That is, the entanglement-measurement
attack stopped.
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4.2.3 Trojan Horse Attack

In the case that the particles used in this protocol are photons, two types of Trojan horse
attacks [25, 29] as described below may exist: (1) Delayed photon attack; (2) Invisible
photon attack. To resist these two attacks, we perform the following analysis:

• i) To resist the delayed photon attack, participants randomly select a portion of the
received photon signal as the sample signal, and separate each sample signal using the
PNS (Photon Number Separator) technique. Subsequently, they arbitrarily choose two
signals in the X-basis or the Z-basis for measurement, and they can judge whether the
particles need to be resent by the multi-photon rate. If the multi-photon rate is too high,
the transmission of particles should be stopped and the particles should be resent.

• ii) To resist the invisible photon attack, participants can add a filter to the device. The
filter is added to permit only photons with wavelengths close to the operating particles
to enter and to isolate the invisible photons from the attackers.

4.2.4 Participant Attack

Proposition 2 In our protocol, the insider attacks can be stopped.

Proof In this paper, we consider the following two kinds of insider attacks: Forgery attack
and Collusion attack.

• Forgery attack: In the multiparty summation phase, each participant exchanges the
secret share (xi, yi) through a secure quantum channel [26,27], where i ∈ {1, 2, ..., n}.
The deception is easily identified if the insider attacker Pt (t ∈ {1, 2, ..., n}) sends
(xt , yt

′) to the honest participant Pi(i ∈ {1, 2, ..., n}; i �= t), where (xt , yt
′) is the

forged secret share by Pt . The specific cheating identification is described as follows:
Step 1: Honest participant Pi hashes the received yt

′ by using the publicly available
hash function H(·) to obtain H(yt

′).
Step 2: If Equation (xt , H(yt

′)) = (xt , H(yt )) does not hold, the deception of the
participant Pt is identified; otherwise, is honest.

• Collusion attack:We analyze the following two collusion scenarios:
I) The secret Si(i = 1, 2, ..., n) of each participant is safe under the collusion attack

of n−2 secret holders. Without losing generality, we assume that the n−2 participants
happen to be P1, P2, ..., Pn−2. The specific analysis is as follows:

– 1) On the one hand, the participants P1, P2, ..., Pn−2 have no less than k secret

shares through collusion. That is, the summation S =
n∑

i=1
Si(modd) can be

reconstructed by using the Lagrange interpolation formula. On the other hand,
the participants P1, P2, ..., Pn−2 conspire to own secrets S1, S2, ..., Sn−2, and
then by combining the reconstructed S, they can get Sn−1 + Sn. That is, they
can’t decrypt Sn−1 and Sn.

– 2) On the one hand, TP is a semi-honest third party, so he will not conspire
with P1, P2, ..., Pn−2 to make them get a1i + a2i , i = n − 1, n. That is, Sn−1
and Sn are safe. On the other hand, according to the analysis in Section 4.2.1,
we can know that the intercept-resend attack can be prevented, that is, Sn−1
and Sn are safe.
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II) For the security of the summation S, we consider the worst case, that is, there are
k − 1 insider participants who launch a collusion attack. Without losing generality, we
assume that the k − 1 participants happen to be P1, P2, ..., Pk−1. The specific analysis
is as follows:

– 1) The third-party TP needed in this protocol is semi-honest, so he will
not reveal a1i + a2i of each participant voluntarily, where i = 1, 2, ..., n.
That is to say, i) the participants P1, P2, ..., Pk−1 can’t get the secrets

Sk, Sk+1, ..., Si−1, Si, Si+1, ..., Sn and the summation S =
n∑

i=1
Si(mod d),

where Si = a1i + a2i + ti for i = k, k + 1, ..., n, ti = Ti − Ei , and Ti is a
public value; ii) the participants P1, P2, ..., Pk−1 can’t get the pseudo secrets

S∗
k , S∗

k+1, ..., S
∗
i−1, S

∗
i , S∗

i+1, ..., S
∗
n and the summation S =

n∑
i=1

Si
∗(modd) =

n∑
i=1

Si(modd), where S∗
i = a1i + a2i + Ti for i = k, k + 1, ..., n.

– 2) The participants P1, P2, ..., Pk−1 want to get the k-th secret share (xt , yt )

by breaking the public information (xt , H(yt )), and then use the secret
shares (x1, y1), (x2, y2), ..., (xk−1, yk−1), (xt , yt ) and the Lagrange inter-

polation formula to reconstruct the summation S =
n∑

i=1
Si = f (0) =

k∑
i=1

yi

(
k∏

j=1,j �=i

−xj

xi−xj

)
(mod d), where t ∈ {k, k + 1, ..., n}. This is not

feasible and the detailed analysis can be found in Section 5 of protocol [28].
– 3) According to the analysis in Section 4.2.1, we can know that the intercept-

resend attack doesn’t work. Therefore, a1i + a2i of each participant is safe,

where i = 1, 2, ..., n. That is to say, Si , S∗
i , and S =

n∑
i=1

Si
∗(modd) =

n∑
i=1

Si(mod d) cannot be obtained by P1, P2, ..., Pk−1. The specific analysis is

similar to that Item “II),1)” of Collusion attack.

Proposition 2 is proved.

Remark 2 This protocol can’t resist the collusion attack from n − 1 secret holders, because

they can easily decrypt the last secret from the summation S =
n∑

i=1
Si(modd).

Proposition 3 In our protocol, the external attacks can be resisted.

Proof If the external attackers want to obtain the secret Si(i = 1, 2, ..., n) of each partici-

pant or the summation S =
n∑

i=1
Si

∗(modd) =
n∑

i=1
Si(modd), they can only try to get them

in the following three ways:

• 1) The external attackers want to obtain the secret shares (xi, yi) of the participants
through the public information (xi, H(yi)) for i = 1, 2, ..., n. Obviously, this is not
feasible. The specific analysis can be found in Section 5 of protocol [28].
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Table 1 Comparison of basic properties

Shi and Zhang
[17]

Liu et al.
[19]

Yang and
Ye [20]

Lv et al.
[21]

Song et al.
[23]

Sutradhar
and Om [24]

Ours

Threshold (2, 2) (n, n) (n, n) (n, n) (k, n) (k, n) (k, n)

Dimension of space − 2 d du d d d

Verifiability No No No No No No Yes

Collusion attack — — Yes Yes Yes Yes Yes

Trojan horse attack — Yes — — — — Yes

• 2) In the construction phase, the external attackers want to obtain the measurement
results a1i , a

2
i by intercepting the particle sequences {Q1

i ,Q
2
i } for i ∈ {1, 2, ..., n}, and

then get Si
∗ = a1i + a2i + Ti and Si = a1i + a2i + ti , where ti = Ti − Ei , Ti is a public

value, Ei = ci
1 + ci

2 + ... + ci
n. Obviously, this is not feasible either. The reason can be

known in the analysis of Section 4.2.1 and Item “II),1)” of Collusion attack.
• 3) In the multiparty summation phase, each participant exchanges the secret share

though a secure quantum channel [26, 27]. That is, the external attackers cannot inter-
cept the secret share of each participant through this way. Therefore, the summation S

will not be stolen.

Proposition 3 is proved.

Proposition 4 In our protocol, the malicious attack by the semi-honest third party TP can
be prevented.

Proof TP can obtain a1i +a2i by measuring the received particles, where i = 1, 2, ..., n. If he
wants to get the secret Si = a1i +a2i +ti of each participant, he also needs to know Ei , where
Ti = Ei + ti is a public value. Obviously, this is not feasible because he can’t know Ei .

Proposition 4 is proved.

5 Performance Analysis

In this paper, a new verifiable (k, n)-threshold quantum secure multiparty summation
protocol is proposed. Compared with the existing protocols, the results are as follows:

Under the condition that the quantum environment is a free space, our protocol and pro-
tocols [20, 21, 23, 24] are more adaptable in this respect than the 2-dimensional quantum
secure multiparty summation [19].

Protocols [17, 19–21] respectively construct a (n, n)-threshold quantum secure multi-
party summation protocol. That is, if participants of these protocols want to get the output
information, they must require all participants to be online. Therefore, compared with
protocols [17, 19–21], our protocol and protocols [23, 24] are more flexible.

Although protocols [20, 21, 23, 24] considers both external attack and collusion attack,
that is, neither external attackers nor internal attackers can obtain the input information of
the corresponding participants. However, in the result output phase, if there are malicious
internal participants, they may provide wrong information or measurement results to other
honest participants, so that they can get correct output information, while other honest par-
ticipants can’t. In addition, the analysis shows that protocol [23] can determine the existence
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Table 2 Comparison of computation costs

Shi and Zhang
[17]

Liu et al.
[19]

Yang and
Ye [20]

Lv et al.
[21]

Song et al.
[23]

Sutradhar
and Om [24]

Ours

QFT — — n — — k —

QFT−1 — — — — — — —

Measure operation — nL nL nL 1 k 3n

Unitary operation — nL nL nL n + 1 k —

Hash operation — — — — — — n

Classical information — — — — n + k 3n 4n

operation

QFT: The quantum Fourier transform; QFT−1: The quantum inverse Fourier transform; n: The number of
participants; k: The threshold value, and k ≤ n; L: The length of each participant’s secret

of cheating behavior by judging whether the relevant equation is true or not, but can’t find
out the specific cheaters. Therefore, our protocol has more advantages in this respect.

According to the analysis of Section 4.2.3, we know that if the particles used in protocols
are photons, there may be Trojan horse attack. Therefore, our protocol is more secure than
protocols [20, 21] which fail to consider Trojan horse attack.

To analyze the efficiency of different protocols, we compare the computation and com-
munication costs between our protocol and protocols [19–21, 23, 24]. The computation cost
can be considered based on the following six parts: QFT, QFT−1, measure operation, uni-
tary operation, hash operation, and classical information operation. And the communication
cost can be considered based on message particles, decoy particles, and classic information.
In protocol [19], nL measure operation + nL unitary operation and nL message particles +
q(n − 1) decoy particles are the total computation cost and the total communication cost,
respectively. In protocol [20], n QFT + nL measure operation + nL unitary operation and
nL message particles + q(n − 1) decoy particles are the total computation cost and the
total communication cost, respectively. In protocol [21], nL measure operation + nL uni-
tary operation and L message particles + qn decoy particles are the total computation cost
and the total communication cost, respectively. In protocol [23], 1 measure operation +
(n + 1) unitary operation + (n + k) classical information operation and 1 message parti-
cles + n classical information are the total computation cost and the total communication
cost, respectively. In protocol [24], k QFT + k measure operation + k unitary operation +

Table 3 Comparison of communication costs

Shi and
Zhang [17]

Liu et al.
[19]

Yang and
Ye [20]

Lv et al.
[21]

Song et al.
[23]

Sutradhar
and Om [24]

Ours

Number of message
particles

— nL nL L 1 k − 1 3n

Number of decoy
particles

— q(n − 1) q(n − 1) qn — — 2qn

Number of classic
information

— — — — n n(n − 1) n(n − 1)

q: The number of decoy particles
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3n classical information operation and (k − 1) message particles + n(n − 1) classical infor-
mation are the total computation cost and the total communication cost, respectively. In our
protocol, 3n measure operation + n hash operation 4n classical information operation and
3n message particles + 2qn decoy particles + n(n − 1) classical information are the total
computation cost and the total communication cost, respectively. In short, on the one hand,
compared with the (n, n)-threshold protocols [19–21], our protocol requires less computa-
tion cost when L satisfies L > 4. But compared with the (k, n)-threshold protocol [23, 24],
we need more computation cost. The reason why is that this paper uses more message parti-
cles and classic information to achieve secure multiparty summation, and also uses the hash
function to achieve verifiability; on the other hand, we can find that there is no advantage
in communication cost between our protocol and protocols [19–21, 23, 24]. This is because
our protocol uses decoy particles to prevent eavesdropping attacks during particle transmis-
sion, and also uses classical key information to ensure that the secret of each participant is
not known by others.

To understand the performance of related protocols more clearly, we can see Tables 1, 2
and 3.

6 Conclusion

Based on Shamir’s threshold scheme and d-dimensional GHZ state, we proposed a new
(k, n)-threshold quantum secure multiparty summation protocol. Based on the one-to-one
correspondence of hash values, in the result output phase, the honesty of each participant
can be verified, and dishonest participants can be eliminated. In addition, compared with
the (n, n)-threshold protocols [19–21], our protocol needs less computation cost when L

satisfies L > 4, where L is the length of each participant’s secret. Further, the security
analysis shows that this paper can resist a series of typical attacks.

This paper put forward a new quantum secure multiparty summation protocol. It has a
(k, n)-threshold approach and is verifiable, but it has no clear advantage in computation
and communication costs. We hope to propose a more efficient verifiable (k, n)-threshold
quantum secure multiparty summation protocol in the future.
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