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Abstract
In this paper, we consider a system of two moving two-level atoms of Tavis-Cumming 
model interacting with a single-mode coherent field in a lossless resonant cavity. We study 
the single-atom entropy squeezing, the linear entropy and the entanglement of system. 
We also use the Husimi distribution function and calculate the atomic Fisher information 
of system. Our numerical calculations indicate that the squeezing period, the squeezing 
time and the maximal squeezing can be controlled by appropriately choosing of the atomic 
motion and the field mode structure. The results show that the squeezing time and degree 
of entropy squeezing dependent on the initial atomic state of the atoms and the field mode. 
Moreover, it shows that choice of the coherent state is effective in entropy squeezing direc-
tions and by choosing the atomic coherent state as the initial state, the squeezing in x direc-
tion occurs while it was shown in Yan, Chin. Phys. B 19(7), 074207 (2010) that only E

(

Sy
)

 
can be seen. The numerical results show that the choice of the initial state as atomic coher-
ence, the atomic motion and the field mode structure are also effective in entanglement and 
atomic Fisher information of the system and the atomic motion leads to a periodical time 
evolution of entanglement between atoms and the field and so there is a strongly dependent 
between the quantum entanglement and the motion factor of the atoms. We finally indicate 
a comparison between the atomic Fisher information and some other information entropies 
such as the Shannon entropy, squeezing and the linear entropy.
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1 Introduction

In recent years, two-level atoms in the external field which are important in quantum optics 
have been investigated in many published papers. The study of the squeezing of a two-
level atom and the light field in quantum systems has also attracted considerable atten-
tion. Based on information entropy the measuring of squeezing plays an essential role in 
quantum information processing and it has strong applications in the optical communica-
tion systems [1, 2, 3] and weak signal detections [4, 5]. Some of its applications are in 
high-resolution spectroscopy, high precision atomic clocks, high polarity spin polarization 
measurement, quantum teleportation, cryptography and so on [6, 7, 8, 9, 10, 11, 12]. In 
general, the Heisenberg uncertainty relation (HUR), which is among the most important 
principles of quantum mechanics, is mainly a standard relation for the representation of 
the atomic squeezing and so one can consider this quantity for measuring quantum fluc-
tuations. However, Fang et al. in Ref. [13] have pointed out that this relationship cannot 
show sufficient information about atomic squeezing for some cases, in particular, when the 
atomic inversion is zero. Several researchers have presented a beautiful method of correct-
ing HUR using the quantum entropy theory and obtained an entropic uncertainty relation 
(EUR), which could be free from the triviality of the HUR. In Ref. [13], using the EUR 
relation, the squeezing based on the information entropy of a two-level atom in the Jaynes-
Cummings model (JCM) in resonance mode has been studied.

Quantum entanglement (QE) is one of the most eminent features of quantum mechanics 
and in the three last decades, much attention has been focused on it from different aspects 
[14]. The quantum information processing is one of the aspects QE that can be prepared 
and controlled by the entangled states in experimental conditions. Consequently, the 
understanding of entangled states, the relationship between the atomic squeezing and the 
entanglement, and also the generation of entanglement and squeezing in circuit quantum 
electrodynamics are very important where have been studied by many researchers. In this 
regard, the von Neumann entropy (VNE) [15], the linear entropy (LE) [16] and the Shan-
non information entropy (SE) [17, 18] are used as a measure to study the entanglement of 
quantum systems in different aspects. In Ref. [19], the authors have been used the LE and 
have been studied entanglement in quantum systems of two-fermion particles. The Wehrl 
entropy (WE) [20, 21, 22, 23, 24, 25, 26] and recently the Fisher information (FI) [27] are 
as another measures which for treating entanglement have also attracted many attentions. 
In Ref. [28], the authors have been used the concept of the atomic FI as a quantity of the 
entanglement and compare it with the linear and atomic Wehrl entropies of the two-level 
atom in the JC model. They have also demonstrated the connections between the entangle-
ment measures. The Fisher information relation in terms of the atomic density operator 
and the correlation between the FI and QE during the time evolution for a trapped ion in 
laser field have been studied in Refs. [7, 16]. The authors have been examined the effect of 
the initial state setting on the classical FI and quantum FI and shown that the FI is effica-
cious tool to study single qubit dynamics as an indicator of entanglement under certain 
conditions. Study on a quantum system of an atom–atom interaction in the presence of 
two external magnetic and classical fields has been done on Ref. [29] and the atomic WE, 
atomic FI and quantum entropy have been investigated. The authors have shown that suit-
able choice of kind of time dependent coupling among the two atoms and external fields, 
can be affected in creation and manipulation of entanglement by external fields [28, 30].

The Jaynes-Cummings model is an elementary model in quantum optics that describes the 
interaction between a two-level atom with a quantized electromagnetic field [31]. This is the 
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simplest completely soluble quantum–mechanical model and is nonlinear model of interaction 
between field-atom. In the rotating wave approximation, this model has been extensively stud-
ied and its exact solution has been found. Tavis and Cummings studied and exactly solved the 
problem of N identical two-level atoms interacting through a dipole coupling with a single-
mode quantized radiation field at resonance. The Tavis–Cummings Model (TCM) is a distri-
bution of the JC model and, for historical reasons, the TCM is often called the Dicke model 
[32, 33]. Hence, TCM is a theoretical model that contains a large number of coupled atoms 
(N > 1) in a quantum field in a small cavity, which give arises many non-classical properties.

The effects of the dipole–dipole interaction and phase-interrupting collisions between 
atoms, the effect of the presence of a nonlinear medium and amplitude–phase metastability 
in the TCM have been studied in many references [6, 7, 8, 9, 34, 35, 36, 37, 38]. On the other 
hand, Wang has also studied sustained optimal entropy squeezing of a two-level atom via 
non-Hermitian operation and provided a scheme for generating the sustained optimal entropy 
squeezing of the atom via non-Hermitian operation [39]. Xiao and et al. have investigated the 
entropy squeezing of a two-level system by detuning in non-Markovian environments and 
shown that the atomic entropic squeezing can be preserved for a long time when both the non-
Markovian effect and detuning are present together [40]. The entropy squeezing of a two-level 
atom in JCM has been widely reported. Zou has studied the quantum entropic uncertainty 
relation and entanglement witness in the two-atom system coupling with the non-Markovian 
environments [41, 42].

According to Ref. [43] which attracted our attention to this topic, we investigate the effect 
of the atomic motion and the mode field on the single-atom entropy squeezing in a two- atom 
TCM with atomic motion in a coherent state field with together atomic coherent states. This 
new class of states forms by a simple of coherent of the superposition principle and is fun-
damentally different from the conventional two-photon coherent squeezed states. We show 
that choosing the coherent atomic state changes the entropy squeezing and the results may 
be important for the experimental realization of the preparation of squeezing atom. We also 
use the linear entropy and the Fisher information as the entanglement measures and study the 
effect of the atomic motion and the mode field on entanglement between the two-atom and the 
field.

The paper is prepared as follow: In Section 2, we introduce the Tavis–Cummings Model 
for two identical two-level atoms and write its Hamiltonian in the dipole approximation and 
rotating-wave approximation (RWA). In Section 3, we introduce the atomic entropy squeez-
ing defined by EUR, the atomic coherent Dike state for studying of the squeezing, the lin-
ear entropy as the QE measure and the Fisher information obtained by Husimi distribution 
as another QE measure. Section 4 is devoted to result and discussion. In the last section, we 
briefly report the conclusion of work.

2  Tavis‑Cummings Model and the Reduced Density Operator

We consider the TCM for two identical two-level atoms which are in a single-mode cavity and 
move at the same speed in z-direction [43]. For simplicity, we neglect the dipole–dipole inter-
action of the atoms, and so in the dipole approximation and under the rotating-wave approxi-
mation (RWA), the Hamiltonian can be written in terms of two terms:

where H0 as the Hamiltonian of two atoms and the external cavity field is as ( ℏ = 1)

(1)H = H0 + H1
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and H1 as the interaction Hamiltonian between the atoms and the cavity field is as

The operators a and a† are the photon annihilation and the photon creation operators 
of the cavity field and Sz,± are the pseudo-spin operators of the atoms. It is easy to see 
that the atom operators satisfy the su(2) algebra and the field operators satisfy the bos-
onic algebra as

We have also considered the resonance mode, in which frequencies of the atomic 
transition and the cavity field are both ω. The function f(z) denotes a shape function of 
cavity field mode and the parameter g is the coupling constant between the atoms and 
the cavity field. By considering the motion of atoms along in the z direction then the f(z) 
function can be written in terms of the atomic motion speed as f (vt) . According to Ref. 
[43], we consider the transverse electric and magnetic mode ( TEM ) as the role of the 
electromagnetic pump by

where p represents the number of half-wavelengths of the field mode inside a cavity with 
length L. We also assume that the two atoms at time t = 0 enter the cavity and leave the cav-
ity after passing through p half-wavelengths of electric field.

The Schrödinger equation in the interaction picture is written by the Hamiltonian H1 
as:

and the time evolution operator, when the Hamiltonian H1 at different times commute with 
together, can be written as:

with

and

By choosing the particular value of the atomic motion velocity in terms of the cou-
pling constant as v = gL

�
 , we have

(2)H0 = �
�

a†a + Sz
�

, Sz =
1

2

2
∑

j=1

�
(j)
z

(3)H1 = gf (z)
�

a†S− + aS+
�

, S± =
2
∑

j=1

�
(j)
± .

(4)
[

S+, S−
]

= 2Sz,
[

Sz, S±
]

= ±S±,
[

a, a†
]

= I.

(5)f (z) = sin (p�vt∕L),

(6)i
�

�t
��(t) ⟩ = H1��(t) ⟩

(7)U(t) = exp

(

−i∫
t

0

H1d�

)

= exp (−igF(t)T),

(8)T =
(

a†S− + aS+
)

,

(9)F(t) = ∫
t

0

f (z)d� = ∫
t

0

sin
(p�v�

L

)

d� =
L

p�v

[

1 − cos
p�vt

L

]

.
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We now consider the cavity field to be in the coherent state

where � = ���ei� =
√

nei� and n is the average photon number of the initial coherent field 
(the intensity of the cavity field) and � is the phase angle of the coherent field where we 
suppose � = 0 . Assuming atom and field are decoupled, then the initial vector state of the 
system is written as

where �
�

�A(0) ⟩ is the initial state of the atom. The vector state of the system at any time 
t > 0 , leads to

where the coefficients A, B and C are obtained from the choice of initial atomic state and 
�

�

u1 ⟩ ≡ �

�

e1, e2 ⟩, ��u2 ⟩ ≡ 1
√

2

�

�

�

e1, g2 ⟩ +
�

�

g1, e2 ⟩
�

 and �
�

u3 ⟩ ≡ �

�

g1, g2 ⟩ are three swap-symmetry 
wave functions of the two identical atoms, which are used as the base vectors.

The atomic reduced density operator for this system in general form is obtained as

where

In the next section, we choice the coherent state given by Dick state as the initial atomic 
state and obtain the partial trace of density operator. We then calculate the atomic entropy 
squeezing, linear entropy and the quantum fisher information and some aspects of them are 
discussed.

(10)F(t) =
1 − cos (pgt)

pg
.

(11)�� ⟩ =
∞
∑

n=0

Fn�n ⟩, Fn = exp
�

−
���2

2

�

�n
√

n!
,

(12)�𝜓(0) ⟩ = �

�

𝜓A(0) ⟩⊗ �𝛼 ⟩,

(13)��(t) ⟩ = U(t)��(0) ⟩ =

∞
�

n=0

�

A�
�

u1, n ⟩ + B�
�

u2, n ⟩ + C�
�

u3, n ⟩
�

,

(14 )�A(t) = trF��(t)⟩⟨�(t)� =

⎡

⎢

⎢

⎢

⎣

�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44

⎤

⎥

⎥

⎥

⎦

,

(15)

�11 =
∞
∑

n=0

�A�

2

, �22 = �23 = �32 = �33 =
1

2

∞
∑

n=0

�B�

2

, �44 =
∞
∑

n=0

�C�

2

,

�12 = �13 = �∗
21

= �∗
31

=
1
√

2

∞
∑

n=0

AB∗,

�42 = �43 = �∗
24

= �∗
34

=
1
√

2

∞
∑

n=0

CB∗,

�41 = �∗
14

=
1
√

2

∞
∑

n=0

AC∗.
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3  Atomic Entropy Squeezing, Linear Entropy and the Quantum Fisher 
Information

In this section, we first express the entropy squeezing of a two-level atom by using 
the quantum information entropy theory [43, 44]. For a two-level atomic system, the 
entropy information operator of the Pauli operator S� is obtained as

where Pi

�

S�
�

= ⟨��i
�

�

��
�

��i ⟩ is the probability distribution for N possible outcomes of 
measurements of the operator S� and �

�

��i ⟩ is an eigenvector of the operator S� . According 
to Ref. [40], for N -dimensional Hilbert space, we have

where for N = 2

For N = 2, one can also show 0 ≤ H
(

S�
) ≤ ln 2 . By defining �H

(

S�
)

= exp
(

H
(

S�
))

 , 
it can simply satisfy the following equation

where means the entropy uncertainty relation (EUR) [13]. From this relation, there is 
impossibility of simultaneously having complete information about the observable Sx and 
Sy . The squeezing of the atom is defined by the above EUR relation and it is named the 
entropy squeezing. In other words, the fluctuation in component S� of the atomic dipole 
is said to be squeezed in entropy if the information entropy H

(

S�
)

 satisfies the following 
condition [43, 45, 46, 47, 48, 49]

The above relation has the similar physical significance with the relation (19), that is, 
the fluctuations in the atomic polarization components cannot simultaneously be arbi-
trarily small.

Now for the TCM, mentioned in the previous section, we shall calculate the tempo-
ral evolutions of the single atom entropy squeezing. For instance, for the first atom, we 
show that due to the choice of the initial state, the squeezing may be occurred in E

(

Sx
)

 
or E

(

Sy
)

 . We also determine the period of the entropy squeezing and the squeezing time 
of information entropy by the field mode structure.

For this aim, we consider  A1 and  A2 as the first and the second atoms respectively 
and so the partial trace of the density operator for the first atom can be obtained by (13) 
as

(16)H
(

S�
)

= −

2
∑

i=1

Pi

(

S�
)

lnPi

(

S�
)

, � = x, y, z

(17)
N+1
∑

k=1

H
(

Sk
) ≥ N

2
ln
(

N

2

)

+
(

N

2
+ 1

)

ln
(

N

2
+ 1

)

,

(18)H
(

Sx
)

+ H
(

Sy
) ≥ 2 ln (2) − H

(

Sz
)

.

(19)�H
(

Sx
)

�H
(

Sy
) ≥ 4

�H
(

Sz
) ,

(20)
E
(

S𝛼
)

= 𝛿H
(

S𝛼
)

−
2

√

|

|

|

𝛿H
(

Sz
)

|

|

|

< 0, 𝛼 ≡ x, y.
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where

and the information entropies of the atomic operators Sx, Sy, Sz are as:

Now in continue, we consider the atomic coherent state given by Dike as the initial 
state of atom and apply the time evolution operator on this initial state. According to 
Ref. [37], the general Dick state for A atoms is defined as

where 0 ≤ � ≤ � denotes the atomic distribution and 0 ≤ � ≤ 2� is the atomic dipole 
phase. For = 2 , we have

In our calculations, we consider n = 36,� = � , and for simplicity, we first apply the time 
evolution operator for each of the three swap-symmetries and then obtain the coefficients A, 
B and C of the Eq. (13). In other word, for atoms which are in the ground state, we have

where after some calculations

with

(21)
�A1

(t) = trA2F
��(t)⟩⟨�(t)� =

�

q11 q12
q21 q22

�

= q11�e1⟩⟨e1� + q12�e1⟩⟨g1� + q21�g1⟩⟨e1� + q22�g1⟩⟨g1�,

(22)q11 =

∞
�

n=0

�

�A�2 +
1

2
�B�2

�

, q12 = q∗
21

=

∞
�

n=0

1
√

2
(AB∗ + BC∗), q22 = 1 − q11,

(23)

H
(

Sx
)

= −
[(

1

2
+ Re

(

q12
)

)

ln

(

1

2
+ Re

(

q12
)

)

+
(

1

2
− Re

(

q12
)

)

ln

(

1

2
− Re

(

q12
)

)]

,

H
(

Sy
)

= −
[(

1

2
+ Im

(

q12
)

)

ln

(

1

2
+ Im

(

q12
)

)

+
(

1

2
− Im

(

q12
)

)

ln

(

1

2
− Im

(

q12
)

)]

,

H
(

Sz
)

= −
[

q22 ln
(

q22
)

+ q11 ln
(

q11
)]

.

(24)��A(0)⟩ =

A
�

k=0

�

A!

k!(A − k)
cosk

�

2
sin(A−k)

�

2
e
i(A−2k)

�

2
�k,A⟩,

(25)
��(0) ⟩ = sin2

�

�

2

�

ei��
�

u3, n ⟩ +

√

2

2
sin (�)�

�

u2, n ⟩ + cos2
�

�

2

�

e−i��
�

u1, n ⟩.

(26)��(t) ⟩ = U(t)�
�

u3, n ⟩,

(27)

��(t) ⟩ =

∞
�

n=0

��

FnC1,n−2(t)
�

�

�

u1, n − 2 ⟩ +
�

FnC2,n − 1(t)
�

�

�

u2, n − 1 ⟩ +
�

FnC3,n(t)
�

�

�

u3, n ⟩
�

,

(28)

C1,n−2 =
√

n(n−1)

2n−1

�

cos
�
√

4n − 2gF(t)
�

− 1
�

,

C2,n−1 = −
i
√

n
√

2n−1
sin

�
√

4n − 2gF(t)
�

,

C3,n =
1

2n−1

�

n cos
�
√

4n − 2gF(t)
�

+ n − 1
�

.
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In the second case, when one of the atoms is in the ground state, we have

where after some calculations

with

Finally, we consider the finally case,

that is, the atoms are in the excited state, and so we obtain

where

Using the above results, the coefficients A, B and C of the Eq. (13) are calculated as:

Now, using the above coefficients, we calculate the density operator from the Eq. (21) 
and by employing it, we are able to compute the entropy squeezing from the Eq. (20) for 
different values of � . Figures 1 and 2 show our numerical results where will be discussed in 
the next section.

We also study the entanglement between the field and the atomic system by the linear 
entropy which defined as [50]

(29)��(t) ⟩ = U(t)�
�

u2, n ⟩,

(30)

��(t) ⟩ =

∞
�

n=0

��

FnD1,n−2t)
�

�

�

u1, n − 2 ⟩ +
�

FnD2,n(t)
�

�

�

u2, n ⟩ +
�

FnD3,n+1(t)
�

�

�

u3, n + 1 ⟩
�

,

(31)

D1,n−1 = −
i
√

n
√

2n+1
sin

�

√

4n + 2gF(t)
�

,

D2,n = cos
�

√

4n + 2gF(t)
�

,

D3,n+1 = −
i
√

n+1
√

2n+1
sin(�) sin

�

√

4n + 2gF(t)
�

.

(32)��(t)⟩ = U(t)�u1, n⟩,

(33)

��(t)⟩ =

∞
�

n=0

[(FnE1,n(t))�u1, n⟩ + (FnE2,n+1(t))�u2, n + 1⟩ + (FnE3,n−2(t))�u3, n + 2⟩],

(34)

E1,n = −
1

2n+3

�

(n + 1) cos
�

√

4n + 6gF(t)
�

+ n + 2

�

,

E2,n+1 = −
i
√

n+1
√

2n+3
sin

�

√

4n + 6gF(t)
�

,

E3,n+2 =
√

(n+1)(n+2)

2n+3

�

cos

�

√

4n + 6gF(t)
�

− 1

�

.

(35)

A = ei� sin2
�

2
Fn+2C1,n(t) +

√

2

2
sin �Fn+1D1,n(t) + e−i� cos2

�

2
FnE1,n(t),

B = ei� sin2
�

2
Fn+1C2,n(t) +

√

2

2
sin �FnD2,n(t) + e−i� cos2

�

2
Fn−1E2,n(t),

C = ei� sin2
�

2
FnC3,n(t) +

√

2

2
sin �Fn−1D3,n(t) + e−i� cos2

�

2
Fn−2E3,n(t).
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where �(t) is the radius of the Bloch sphere and is given by the following equation

⟨�i⟩, i = x, y, z is the expectation values of the atomic variable described by the spin- 1/ 
2 matrices �i . The linear entropy relation given in Eq.  (36) is referred to as the mixed-
ness in the bipartite and it is worth noting that, for the pure state �(t) = 1 then Λ(t) = 0 , 
hence the system is not entangled while for �(t) = 0 or Λ(t) = 1

2
 , we have the maximum 

entanglement.
We have computed the linear entropy of system for some given values of parameters 

and shown them in Fig. 3. The results will be also discussed in Section 4.
In continue and for another attempt, we try to obtain the Fisher information measure 

for the system. According to Refs. [28, 30], the atomic quasi probability distribution 
function QA(Θ,Φ, t)(the Q function) is defined as

(36)Λ(t) =
1

2

(

1 − �2(t)
)

,

(37)�(t) =

�

⟨�x(t)⟩
2 + ⟨�y(t)⟩

2 + ⟨�z(t)⟩
2.

(38)QA1
(Θ,Φ, t) =

1

2�
⟨Θ,Φ��A2F

�Θ,Φ ⟩,

Fig. 1  Time evolution of information entropy squeezing E
(

Sy
)

 at θ = π, ϕ = π, and n = 36, where a is for the 
atomic motion neglected; b–d are for the atoms moving at speed v = gL/π, and panel b is for p = 1; panel c 
is for p = 2; panel d is for p = 5
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which depends on the atomic phase parameters Θ and Φ . For calculating this function, 
we use the atomic coherent state given by Eq. (33), and the reduced density operator �A2F

 
given by Eq. (21). On the other hands, for any distribution function f (x) , the Fisher infor-
mation measure is defined as [25]

which has encountered many physical applications [36, 51]. For the atomic Q-function 
obtained from the density function, or for the Husimi distribution, the above equation 
becomes

(39)I = ∫ f (x)

{

�ln(f (x))

�x

}2

dx,

Fig. 2  Time evolution of information entropy squeezing factor E
(

Sy
)

 and E
(

Sx
)

 with the two atoms moving 
at speed v = gL/π and n = 36,� = �, p = 1 , for different �
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where 
(

�1, �2
)

= (Θ,Φ) and �j2 = ⟨Xj
2
⟩ − ⟨Xj⟩

2 is the variances for the variables Θ and Φ [28].
We have calculated the atomic FI via atomic coherent state by choosing the initial state 

of atoms and some given values of parameters of system and have shown the numerical 
results in Fig. 4. We discuss about the result in next section.

4  Result and discussion

Figure 1 shows the time evolution of the information entropy squeezing in the direction E
(

Sy
)

 
at � = �,� = �, n = 36. . In Fig. 1a, we have neglected the atomic motion and the field mode 
structure parameter is equal to zero, and in Fig. 1b–d, the atoms are moving at a speed v = gL

�
 

and the field mode structure parameter p is equal to 1, 2 and 5, respectively. From these 
figures, it can be seen that in Fig. 1a, except at initial stage of time, we cannot observe any 
squeezing and from Fig. 1b–d, we see that the squeezing is repeated with regular fluctuations 

(40)IA2F
=

2
∑

j=1
∫

2�

0 ∫
�

0

QA1
(Θ,Φ, t)

{

��j

� lnQA1
(Θ,Φ, t)

��j

}2

sin (Θ)dΘdΦ,

Fig. 3  Linear entropy against with the two atoms moving at speed v = gL/π and n = 36,� = �, , for different 
values of � and p. In a � = 0, p = 1 b � = �, p = 1 c � = 0, p = 1 d � = �, p = 2  e � =

�

2
, p = 1
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and by increasing of p, the periodicity of E
(

Sy
)

 and also the squeezing time of information 
entropy increase. As a result, we can deduce that the atomic motion in the cavity leads to the 
periodic time evolution of the atomic squeezing E

(

Sy
)

 , in other words the squeezing time of 

Fig. 4  Time evolution of the AFI factors at ϕ = π and n = 36 , where a is for the atomic motion neglected; 
b–d are for the atoms moving at speed v = gL/π and p = 1; and panel b is for � = 0 and; panel c is for � = � ; 
panel d is for � =

�

2
 panel; e–f are � = � ; e for p = 2 and f for p = 5
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information entropy and the period of entropy squeezing can be determined by the field mode 
structure. These results are agreement with the results given in Ref [43]. On the other hand, 
in Ref. [43], it is shown that E

(

Sx
)

 cannot exhibit squeezing in the entropy, while in this work 
and by choosing the atomic coherent state as the initial state, the E

(

Sx
)

 can be occurred.
In Fig. 2, we have shown the time evolution of information entropy squeezing E

(

Sy
)

 and 
E
(

Sx
)

 with the two atoms moving at speed v = gL

�
 and n = 36,� = �, p = 1 for different val-

ues of � . We have plotted the figures that exhibit some degree of entropy squeezing. From the 
figures, it is seen that when the entropy squeezing occurs in E

(

Sy
)

 then the squeezing in E
(

Sx
)

 
cannot be observed and vice versa. It is also seen that for � = 0 and � , E

(

Sy
)

 exhibits maxi-
mal entropy squeezing and by increasing � to � = �∕8 and � = �∕6 , the entropy squeezing 
of E

(

Sy
)

 decreases. In Fig. 2d, we observe that for � = �∕4 , the entropy squeezing in E
(

Sx
)

 
occurs and when two atoms are initially in a maximal entangled state for � = �∕2 , the entropy 
squeezing E

(

Sx
)

 is maximal. It is noticeable that by choosing the initial state given in Ref [39, 
43]. one cannot see any entropy squeezing in E

(

Sx
)

 , while here we can see it. Therefore, the 
squeezing time and degree of entropy squeezing dependent on the initial atomic state of the 
atoms while the period of the time evolution of squeezing keeps invariant. In other words, we 
can deduce that the initial atomic state and the field mode structure can determine the squeez-
ing time and the squeezing degree. The period of the atomic entropy squeezing can also be 
determined by choosing atomic motion and the field mode structure.

Figure 3 shows the influence of the physical parameters on the entanglement of system by the 
linear entropy. From this figure, we observe that the linear entropy has a periodic behavior and 
it is repeated with regular fluctuations and in each period the entanglement reaches to a maxi-
mum peak and in one moment, there is no entanglement. From Fig. 3a and c, which plotted for 
� = 0 and � respectively and for p = 1, we see that the entanglement becomes the maximum 
amount ( Λ = 0.5 ). Figure 3b and d show that by increasing the atomic motion, the number of 
periodicity is increased, and Fig. 3e shows that the amount of entanglement is reduced. Hence, 
we can deduce that the atomic entropy squeezing not only is an accurate measure of squeezing but 
also has some properties corresponding to the entanglement between the two atoms and the field.

Figure 4 shows the time evolution of the AFI for some given physical parameters of the system 
and it is observed that by considering the atomic motion, the AFI fluctuates regularly and periodi-
cally with period. In other word, the change of the parameter p causes the periodic behavior and 
AFI has the same behavior shown in Figs. 1, 2 and 3. In Fig. 4a, we have ignored the motion fac-
tor and so the AFI is not periodic while from Fig. 4b– d, it is seen that for p = 1 and for different 
values of θ the atomic Fisher information is periodic. Also, by increasing p, the number of perio-
dicities is increased which shown in Fig. 4e and f. According to Figs. 3a and 4b, it can be also 
seen that for � = 0, p = 1 , the increasing of the entanglement corresponds to the decreasing of 
the AFI and vice versa. Similar comparison can be deduced from the other numerical results, for 
example, when we have the maximal entanglement then the obtained AFI is minimal. Hence, we 
can deduce that the statistical quantity AFI has a strongly dependent with the QE and the motion 
factor of the atoms and so one can find a reasonable comparison between the AFI and some other 
information entropies such as the Shannon entropy, squeezing and the linear entropy.

5  Conclusion

In this paper, we have investigated the entropy squeezing for a single atom interacting with 
an external field. We have shown that the choice of the atomic coherent state as the initial 
state is effective in entropy squeezing and the squeezing in x direction occurs while it was 
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shown in Ref. [43] that squeezing occurs only in y direction. We have also shown that 
the period of the atomic entropy squeezing is affected by choosing atomic motion and the 
field mode structure and the time periodic mode of squeezing increases with increasing the 
motion atomic parameter p. We have also observed that when the entropy squeezing occurs 
in E

(

Sy
)

 then the squeezing in E
(

Sx
)

 cannot be observed and vice versa. In the following, 
we have investigated the influence of the physical parameters on the atomic fisher informa-
tion and the linear entropy and have concluded that the entropy squeezing, AFI and entan-
glement can be controlled by changing of some factors such as the external field, the initial 
state of the atom or the choice of atomic motion. According to the results, we have deduced 
that the atomic entropy squeezing not only is an accurate measure of squeezing but also has 
some properties corresponding to the entanglement between the two atoms. On the other 
hands, when we consider the moving atomic coherence system, the entanglement and the 
AFI have the periodic behavior and repeat with regular fluctuations. We have also shown 
that when maximum entanglement occurs, the squeezing does not occur and it corresponds 
to the minimum value of AFI and increasing the entanglement corresponds to decreas-
ing the AFI and vice versa. Therefore, these results and the squeezed states or the entan-
gled states can offer possibilities of improving performance of optical devices and they are 
applicable for the optical communication networks as well as for many optical devices.
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