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Abstract
Entanglement-assisted quantum error-correcting codes, which is a generalization of quan-
tum error-correcting codes, could be derived from any classical codes by utilizing pre-
shared entangled states between the sender and the receiver. In this paper, we construct 
some entanglement-assisted quantum maximum-distance-separable (EAQMDS) codes 
from constacyclic codes and cyclic codes by exploiting less pre-shared entangled states, 
respectively. Most of these codes are new in the sense that their parameters are not covered 
by the codes available in the literature. In particular, we extend the results in Tian et al. 
(Int. J. Theor. Phys. 60, 1843–1857, 2021) to more general case.

Keywords Entanglement-assisted quantum error-correcting codes · Constacyclic codes · 
Cyclic codes · Cyclotomic cosets
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1 Introduction

Quantum error-correcting(QEC) codes were introduced to preserve coherent states 
against noise and other unwanted interactions in quantum computation and quantum 
communication. Given a prime power q, an [[n, k, d]]q QEC code is a qk-dimensional 
vector subspace of the Hilbert space (ℂq)⊗n ≅ ℂqn with minimum distance d, which can 
detect up to d − 1 quantum errors and correct up to ⌊ d−1

2
⌋ quantum errors. As we know, 

QEC codes can be constructed from classical linear codes with certain self-orthogo-
nality properties. However, self-orthogonal conditions of some famous codes, such as 
LDPC codes and Turbo codes are hard to determine. In 2006, a more general framework 
named entanglement-assisted stabilizer formalism was introduced [2, 19], the related 
codes are called entanglement-assisted quantum error-correcting(EAQEC) codes, which 
can increase the communication capacity and can be contructed from any classical 
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linear codes without self-orthogonality properties by utilizing pre-shared entanglement 
between the sender and the receiver. After that, many EAQEC codes with good param-
eters have been constructed. (Please see, for example, [8, 10, 11, 16, 24–27, 33, 44] and 
the relevant references therein).

Assume that q is a prime power. A q-ary EAQEC code encodes k information qudits into 
n channel qudits by utilizing c pairs of maximally entangled states, denoted by [[n, k, d;c]]q , 
can correct up to ⌊ d−1

2
⌋ errors, where d is the minimum distance of the EAQEC code. Actu-

ally, if c = 0 , it is indeed the standard [[n, k, d]]q QEC code. In this paper, QEC codes are 
also regarded as EAQEC codes. Similar to QEC codes, the parameters of EAQEC codes 
are mutually restricted, and there is an entanglement-assisted (EA) quantum Singleton 
bound for EAQEC codes.

Theorem 1 [1, 2, 14, 24] Assume that � is an [[n, k, d;c]]q EAQEC code. If d ⩽
n+2

2
 , then

where 0 ⩽ c ⩽ n − 1.

If c = 0 , it is the quantum Singleton bound and a QEC code achieving this bound is 
called a quantum MDS code. When d ⩽

n+2

2
 , an [[n, k, d;c]]q EAQEC code achieving such 

bound is called an EAQMDS code. Recently, for d >
n+2

2
 , Grassl [13] gave some examples 

of EAQEC codes with parameters beating such bound. A difficulty in the construction of 
EAQEC codes is to determine the number of maximally entangled states. There are two 
main techniques to find such number for present. One is through computing the hull dimen-
sion of linear codes [15], and the other is through decomposing the defining sets of consta-
cyclic codes [6, 31]. When the number of maximally entangled states c is fixed, EAQMDS 
codes are optimal in the sense that they have the largest minimum distance. So far, many 
families of EAQMDS codes have been constructed from LCD codes [39], k-Galois dual 
codes [30], generalized Reed-Solomon codes and Goppa codes [3, 9, 12, 28, 36, 37], etc.

Due to the rich algebraic structure and efficient encoding and decoding circuits, consta-
cyclic codes including cyclic codes and negacyclic codes are preferred objects on the con-
struction of EAQMDS codes and many EAQMDS codes have been constructed from them. 
Among the obtained results, the lengths of these EAQMDS codes divide q2 − 1 (Please see, 
for example, [6, 29, 31, 32, 34, 35, 41]) or q2 + 1 (Please see, for example, q2 + 1 in [6, 35, 
40, 41]; q

2+1

2
 in [6, 45]; q

2+1

5
 in [7, 21, 34, 45]; q

2+1

10
 in [21, 35, 45]; q

2+1

13
 in [21, 43]; q

2+1

17
 in [21], 

etc). Recently, Chen et  al. [4, 5] constructed some families of EAQMDS codes of length 
q2+1

a
 , where a = t2 + 1 and t ⩾ 2 is a positive integer, which can be seen as the generaliza-

tion of EAQMDS codes of lengths q2+1
5

 , q2+1
10

 and q2+1
17

 . Concrete parameters of already known 

2(d − 1) ⩽ n − k + c,

EAQMDS codes of lengths q
2+1

5
 and q

2+1

13
 are listed in Table  1, which will be used in the 

sequel.
In this paper, through the analysis of the intersection of the defining set Z  of constacy-

clic codes (including cyclic codes) and −qZ  , we obtain some families of EAQMDS codes 
of length q

2+1

�
 , where � = a2 + (a + 1)2 and a ⩾ 2 is a positive integer. It can be easily 

derived that there are very little even prime power q to satisfy q
2+1

�
 to be an integer, except 

for � = 5 , which had already been extensively studied in [5, 7, 21] (Please see Table 1). 
Hence, here we only consider q being an odd prime power, and a ⩾ 2 . The concrete param-
eters of the EAQMDS codes constructed in this paper are listed in Table 2.
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Table 1  Known entanglement-assisted quantum MDS codes of lengths q
2+1

5
 and q

2+1

13

q Parameters [[n, k, d;c]]q d References

10m + 2 [[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

6m + 3 ⩽ d ⩽ 10m + 3 is odd [5, 7, 21]

[[
q2+1

5
,
q2+1

5
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 8m + 2 is even [5]

[[
q2+1

5
,
q2+1

5
− 2d + 7, d;5]]q

8m + 4 ⩽ d ⩽ 12m + 2 is even

10m + 8 [[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

6m + 7 ⩽ d ⩽ 10m + 9 is odd [5, 7, 21]

[[
q2+1

5
,
q2+1

5
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 8m + 6 is even [5]

[[
q2+1

5
,
q2+1

5
− 2d + 7, d;5]]q

8m + 8 ⩽ d ⩽ 12m + 10 is even

20m + 3 [[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

12m + 4 ⩽ d ⩽ 20m + 4 is even [7]

20m + 7 [[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

12m + 6 ⩽ d ⩽ 20m + 8 is even [7]

10m + 3 [[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

4m + 3 ⩽ d ⩽ 6m + 1 is odd [34]

m odd 6m + 4 ⩽ d ⩽ 10m + 4 is even
m even [[

q2+1

5
,
q2+1

5
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 8m + 2 is even

[[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

4m + 3 ⩽ d ⩽ 6m + 1 is odd

[[
q2+1

5
,
q2+1

5
− 2d + 7, d;5]]q

8m + 4 ⩽ d ⩽ 12m + 4 is even

10m + 7 [[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

8m + 7 ⩽ d ⩽ 14m + 11 is odd [34]

m odd 6m + 6 ⩽ d ⩽ 10m + 8 is even
m even [[

q2+1

5
,
q2+1

5
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 8m + 6 is even

[[
q2+1

5
,
q2+1

5
− 2d + 6, d;4]]q

8m + 7 ⩽ d ⩽ 14m + 11 is odd

[[
q2+1

5
,
q2+1

5
− 2d + 7, d;5]]q

8m + 8 ⩽ d ⩽ 12m + 8 is even

10m + 3 [[
q2+1

5
,
q2+1

5
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 8m + 2 is even [4, 45]

[[
q2+1

5
,
q2+1

5
− 2d + 7, d;5]]q

8m + 4 ⩽ d ⩽ 12m + 4 is even

[[
q2+1

5
,
q2+1

5
− 2d + 11, d;9]]q

12m + 6 ⩽ d ⩽ 16m + 4 is even [4]

10m + 7 [[
q2+1

5
,
q2+1

5
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 8m + 6 is even [4, 45]

[[
q2+1

5
,
q2+1

5
− 2d + 7, d;5]]q

8m + 8 ⩽ d ⩽ 12m + 8 is even

[[
q2+1

5
,
q2+1

5
− 2d + 11, d;9]]q

12m + 10 ⩽ d ⩽ 16m + 10 is even [4]

13m + 5 [[
q2+1

13
,
q2+1

13
− 2d + 6, d;4]]q

3

5
(q − 2) + 3 ⩽ d ⩽ q + 1 [21]

q even
26m + 5 [[

q2+1

13
,
q2+1

13
− 2d + 6, d;4]]q

10m + 4 ⩽ d ⩽ 18m + 4 is even [43]

[[
q2+1

13
,
q2+1

13
− 2d + 10, d;8]]q

18m + 6 ⩽ d ⩽ 22m + 4 is even

[[
q2+1

13
,
q2+1

13
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 12m + 2 is even

[[
q2+1

13
,
q2+1

13
− 2d + 7, d;5]]q

12m + 4 ⩽ d ⩽ 20m + 4 is even

[[
q2+1

13
,
q2+1

13
− 2d + 11, d;9]]q

20m + 6 ⩽ d ⩽ 24m + 4 is even

26m + 21 [[
q2+1

13
,
q2+1

13
− 2d + 6, d;4]]q

10m + 10 ⩽ d ⩽ 18m + 14 is even [43]

[[
q2+1

13
,
q2+1

13
− 2d + 10, d;8]]q

18m + 16 ⩽ d ⩽ 22m + 18 is even

[[
q2+1

13
,
q2+1

13
− 2d + 3, d;1]]q

2 ⩽ d ⩽ 12m + 10 is even

[[
q2+1

13
,
q2+1

13
− 2d + 7, d;5]]q

12m + 12 ⩽ d ⩽ 20m + 16 is even

[[
q2+1

13
,
q2+1

13
− 2d + 11, d;9]]q

20m + 18 ⩽ d ⩽ 24m + 20 is even
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The paper is organized as follows. In Section 2, some notations and basic results of 
constacyclic codes and EAQEC codes are presented. In Sections 3 and 4, some families 
of EAQMDS codes with small pre-shared entangled states are derived from constacy-
clic codes and cyclic codes, respectively. The conclusion is given in Section 5.

2  Preliminaries

Let �q2 be the Galois field with q2 elements, where q is a prime power. A q2-ary linear 
code C  of length n with dimension k and minimum distance d, denoted by [n, k, d]q2 , is a 
linear subspace of � n

q2
 and its parameters satisfy the well-known Singleton bound: 

d ⩽ n − k + 1 . If d = n − k + 1 , then C  is called a maximun distance separable (MDS) 
code. For two vectors x = (x0, x1,… , xn−1) , and y = (y0, y1,… , yn−1) ∈ � n

q2
 , define their 

Hermitian inner product as

The vectors x and y are called orthogonal with respect to the Hermitian inner product if 
⟨x, y⟩ = 0 . For a q2-ary linear code C  , its Hermitian dual code C⊥H is defined as

Then, C⊥H is a q2-ary linear code with dimension n − dim(C).

⟨x, y⟩ ∶= x0y
q

0
+ x1y

q

1
+⋯ + xn−1y

q

n−1
.

C
⊥H ∶= {x ∈ � n

q2
∶ ⟨x, y⟩ = 0 for all y ∈ C}.

Table 2  Obtained entanglement-assisted quantum MDS codes of length q
2+1

�

q Parameters [[n, k, d;c]]q d

2�m + 2a + 1 [[
q2+1

�
,
q2+1

�
− 2d + 2, d]]q 2 ⩽ d ⩽

(2a+1)q+1

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 6, d;4]]q

(2a+1)q+1

�
+ 2 ⩽ d ⩽

(4a+1)q+2a+3

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 10, d;8]]q

(4a+1)q+2a+3

�
+ 2 ⩽ d ⩽

(4a+3)q−2a+1

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 3, d;1]]q 2 ⩽ d ⩽

(2a+2)q−2a

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 7, d;5]]q

(2a+2)q−2a

�
+ 2 ⩽ d ⩽

(4a+2)q+2

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 11, d;9]]q

(4a+2)q+2

�
+ 2 ⩽ d ⩽

(4a+4)q−4a

�
 is even

2�m − 2a − 1 [[
q2+1

�
,
q2+1

�
− 2d + 2, d]]q 2 ⩽ d ⩽

(2a+1)q−1

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 6, d;4]]q

(2a+1)q−1

�
+ 2 ⩽ d ⩽

(4a+1)q−2a−3

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 10, d;8]]q

(4a+1)q−2a−3

�
+ 2 ⩽ d ⩽

(4a+3)q+2a−1

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 3, d;1]]q 2 ⩽ d ⩽

(2a+2)q+2a

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 7, d;5]]q

(2a+2)q+2a

�
+ 2 ⩽ d ⩽

(4a+2)q−2

�
 is even

[[
q2+1

�
,
q2+1

�
− 2d + 11, d;9]]q

(4a+2)q−2

�
+ 2 ⩽ d ⩽

(4a+4)q+4a

�
 is even
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Let � : �(c0, c1,… , cn−1) = (�cn−1, c0,… , cn−2) be the constacyclic shift on � n

q2
 . A q2-

ary linear code C  of length n is called a �-constacyclic code if �(C) = C  . In case � = 1 , 
those constacyclic codes are called cyclic codes. Defining a map

Then a q2-ary linear code C  of length n is a �-constacyclic code if and only if 
�(C) = {�(c)|c ∈ C)} is an ideal of the quotient ring R . Note that each ideal of R is 
principal. Let C = ⟨f (x)⟩ be a �-constacyclic code of length n, where f(x) is a monic poly-
nomial of minimal degree in C  . Then f(x) is called the generator polynomial of C  and 
f (x)|(xn − �).

Assume that gcd(n, q) = 1 , ord(�) = r , and ordrn(q2) = m , i.e., the multiplicative order 
of q2 modulo rn is m. Then there exists a primitive rn-th root of unity � in �q2m such that 
�n = � , which implies that xn − � =

∏n−1

i=0
(x − �1+ri) . Let mi(x) be the minimal polynomial 

of �1+ri over �q2 and ℤn = {0, 1, 2,… , n − 1} be the ring of integers modulo n. For each q2
-ary �-constacyclic code C  with generator polynomial f(x) of length n, there is a subset 
𝛺 ⊆ ℤn such that f (x) =

∏
i∈� mi(x) . Let ℤrn be the ring of integers modulo rn. For each 

i ∈ ℤrn , the q2-cyclotomic coset of i modulo rn is defined by

where �i is the smallest positive integer such that iq2�i ≡ i mod rn . Assume that C  
is a q2-ary �-constacyclic code of length n with generator polynomial f(x), then the set 
Z = {i ∈ ℤrn|f (�i) = 0} , is called the defining set of C  , where � is a primitive rn-th root 
of unity in some extension field of �q2 . It is clear that Z  is a union of some q2-cyclotomic 
cosets and dim(C) = n − |Z| , where |Z| denotes the cardinality of the set Z  . The mini-
mum distance of C  can be estimated by the following well-known bound.

Theorem 2 (BCH bound) [22] Let � be an integer in the range 2 ⩽ � ⩽ n . Assume that C  
is a �-constacyclic code of length n with defining set Z  . If Z  consists of � − 1 consecutive 
elements, then d(C) ⩾ �.

The following lemma gives a criterion for verifying that C  contains its Hermitian dual 
code C⟂H.

Lemma 1 [20] Let C  be a �-constacyclic code of length n over �q2 with defining set 
Z  . Then C  contains its Hermitian dual code C⟂H if and only if Z

⋂
Z

−q = � , where 
Z

−q = {−qz mod rn|z ∈ Z}.

As we know, the key in the construction of EAQEC codes is to determine the number 
of maximally entangled states. Scholars have proposed several methods to solve this prob-
lem and the related construction methods for EAQEC codes also have been given. Among 
these methods, a frequently used one is the decomposition of the defining set of the source 
codes, please see [6, 34], etc. Similar to such method, we have the following result.

� ∶ � n

q2
⟶ R =

�q2 [x]

⟨xn − �⟩

(c0, c1,… , cn−1) ⟼ c0 + c1x + c2x
2 +⋯ + cn−1x

n−1

Ci ∶= {iq2� mod rn ∶ 0 ⩽ � ⩽ �i − 1},

Page 5 of 22  247
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Theorem  3 Let C  be a q2-ary �-constacyclic code of length n with defining set 
Z  . Suppose that � = Z

⋂
Z

−q , where Z
−q = {−qz mod rn ∶ z ∈ Z} . If C  has 

parameters [n, k = n − |Z|, d]q2 , then there is an EAQEC code with parameters 
[[n, n − 2|Z| + |�|, d;|�|]]q.

3  Entanglement‑Assisted Quantum MDS codes Derived 
from Constacyclic Codes

Let � ∈ � ∗
q2

 and ord(�) = q + 1 . In this section, we will construct some EAQMDS codes 
of length n =

q2+1

�
 from �-constacyclic codes, where � = a2 + (a + 1)2 , and a ⩾ 2 is a 

positive integer. It is easy to obtain that q is a prime power with the form q = �m + 2a + 1 
or q = �m − 2a − 1 , where m is a positive integer. As we said before, we only consider q 
being odd with the form q = 2�m ± (2a + 1) . Since � = a2 + (a + 1)2 is always odd. Sim-
ilar to the proof of Lemma 3.12 in [20], We can get the following lemma which will 
play an important role in our construction.

Lemma 2 [20] Let n =
q2+1

�
 , s = q2+1

2
 , and � be odd. Then all cyclotomic cosets modulo 

(q + 1)n containing 1 + (q + 1)i are as follows: 

(1) Cs = {s} and C
s±

q+1

2
n
= {s ±

q+1

2
n}.

(2) Cs−(q+1)i = {s − (q + 1)i, s + (q + 1)i} for 1 ⩽ i ⩽ n∕2 − 1.

Now we give the construction of EAQMDS codes under the case q = 2�m + 2a + 1.

Lemma 3 Let q be an odd prime power with the form q = 2�m + 2a + 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = q2+1

2
 . If C  is an �

-constacyclic code of length n over �q2 with defining set Z =
⋃�

j=0
Cs−(q+1)j , where 

0 ⩽ � ⩽
(2a+1)q+1

2�
− 1 , then C⟂H ⊆ C .

Proof According to Lemma 1, we only need to consider that Z
⋂

Z
−q = � . Suppose that 

Z
⋂

Z
−q

≠ � , then there exist two integers i and j, where 0 ⩽ i, j ⩽
(2a+1)q+1

2�
− 1 such that

for k ∈ {0, 1} . We seek some contradictions as follows. 

 (I) If k = 0 , then 

 which is equivalent to 

s − (q + 1)i ≡ −q[s − (q + 1)j]q2k mod (q + 1)n,

s − (q + 1)i ≡ −q[s − (q + 1)j] mod (q + 1)n,

2�(qj + i) ≡ q2 + 1 mod 2(q2 + 1).
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 Due to 0 ⩽ i, j ⩽
(2a+1)q+1

2�
− 1 , we have 0 ⩽ 2�i, 2�j ⩽ (2a + 1)q + 1 − 2� . We 

now divide into the following subcases.
   (i) If 0 ⩽ 2�j ⩽ 2q − 2a − 1 , then
    

 Writing 2�i in the form 2�i = uq + v , where 0 ⩽ u ⩽ 2a − 1 , 0 ⩽ v ⩽ q − 1 , and 
u = 2a , 0 ⩽ v ⩽ q − 2� + 1 . Then q2 + 1 = 2�(qj + i) = (2�j + u)q + v . By the 
division algorithm, it must be q = 2�j + u , which contradicts to the form of q.

   (ii) If wq − 2a ⩽ 2�j ⩽ (w + 2)q − 2a − 1 , where w = 2, 4,… , 2a − 2 . Then
    

 Hence, 

 which means that (w + 1)(q2 + 1) = 2�(qj + i) = (2�j + u)q + v . Therefore, 
(w + 1)q = 2�j + u , which also contradicts to the form of q.

   (iii) If 2aq − 2a ⩽ 2�j ⩽ (2a + 1)q − 2� + 1 , then
    

 Hence, 

 which is a contradiction.
 (II) If k = 1 , then 

 Since −[s − (q + 1)j]q3 = −sq3 + (q + 1)q3j ≡ −sq − (q + 1)qj mod (q + 1)n , 
one can get s − (q + 1)i ≡ −sq − (q + 1)qj mod (q + 1)n , which is equivalent to 

 Due to 0 ⩽ i, j ⩽
(2a+1)q+1

2�
− 1 , we have 0 ⩽ 2�i, 2�j ⩽ (2a + 1)q + 1 − 2� . We 

now divide into the following subcases.
   (i) If 0 ⩽ 2�j ⩽ q − 2a − 1 , then
    

 while 0 ⩽ 2𝜌i ⩽ (2a + 1)q − 2𝜌 + 1 < q2 + 1. This is a contradiction.
   (ii) If wq − 2a ⩽ 2�j ⩽ (w + 2)q − 2a − 1 , where w = 1, 3,… , 2a − 3 . Then
    

0 ⩽ 2𝜌(qj + i) ⩽ 2(q2 + 1) − 2𝜌 − 1 < 2(q2 + 1).

w(q2 + 1) − 2aq − w ⩽ 2�(qj + i) ⩽ (w + 2)(q2 + 1) − 2� − w − 1.

−(q2 + 1) < 2𝜌(qj + i) − w(q2 + 1) < 2(q2 + 1),

2a(q2 + 1) − 2aq − 2a ⩽ 2�(qj + i) ⩽ (2a + 1)(q2 + 1) + 2(a − � + 1)q − 2a − 2�.

−(q2 + 1) < 2𝜌(qj + i) mod 2(q2 + 1) < q2 + 1,

s − (q + 1)i ≡ −[s − (q + 1)j]q3 mod (q + 1)n.

q2 + 1 + 2�qj ≡ 2�i mod 2(q2 + 1).

q2 + 1 ⩽ 2𝜌qj + q2 + 1 ⩽ 2q2 + 1 − (2a + 1)q < 2(q2 + 1),

(w + 1)(q2 + 1) − 2aq − w ⩽ 2�qj + q2 + 1 ⩽ (w + 3)(q2 + 1) − (2a + 1)q − w − 2.
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 If (w + 1)(q2 + 1) − 2aq − w ⩽ 2�qj + q
2 + 1 ⩽ (w + 1)(q2 + 1) − 1, then 

q
2 + 1 < 2(q2 + 1) − 2aq − w ⩽ 2𝜌qj + q

2 + 1 − (w − 1)(q2 + 1) ⩽ 2q2 + 1 , which is impos-
sible due to (i). If (w + 1)(q2 + 1) ⩽ 2�qj + q

2 + 1 ⩽ (w + 3)(q2 + 1) − (2a + 1)q − w − 2 , 
then 0 ⩽ 2𝜌qj + q

2 + 1 − (w + 1)(q2 + 1) ⩽ 2(q2 + 1) − (2a + 1)q − w − 2 < 2(q2 + 1) . Writing 
2�i in the form 2�i = uq + v , where 0 ⩽ u ⩽ 2a − 1 , 0 ⩽ v ⩽ q − 1 , and u = 2a , 
0 ⩽ v ⩽ q − 2� + 1 . Then w(q2 + 1) = 2�(qj − i) = (2�j − u)q − v . By the divi-
sion algorithm, it must be wq = 2�j − u , which contradicts to the form of q. 

   (iii) If (2a − 1)q − 2a ⩽ 2�j ⩽ (2a + 1)q − 2� + 1 , then 

 If 2aq2 − 2aq + 1 ⩽ 2�qj + q
2 + 1 ⩽ 2a(q2 + 1) − 1, then q2 + 1 < 2(q2 + 1) − 2aq − 2a + 1 ⩽ 2𝜌qj + q

2+

1 − (2a − 2)(q2 + 1) ⩽ 2q2 + 1 , which is also impossible due to (i). If 2a(q2 + 1) ⩽ 2�qj + q
2
+ 

1 ⩽ (2a + 2)q2 − (2� − 1)q + 1 , then 0 ⩽ 2𝜌qj + q
2 + 1 − 2a(q2 + 1) ⩽ 2q2 − (2𝜌 − 1)q + 1 < 2(q2 + 1) . 

Hence, (2a − 1)(q2 + 1) = 2�(qj − i) = (2�j − u)q − v , which means that (2a − 1)q = 2�j − u , 
and it contradicts to the form of q.

Therefore, we conclude that Z
⋂

Z
−q = � as desired.

Lemma 4 Let q be an odd prime power with the form q = 2�m + 2a + 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = q2+1

2
 . Then 

(1) −qCs = C
s−

q+1

2
n
;

(2) −qC
s−

(2a+1)q+1

2�
(q+1)

= C
s−

q−2a−1

2�
(q+1);

(3) −qC
s−

(4a+1)q+2a+3

2�
(q+1)

= C
s−

(2a+3)q−4a−1

2�
(q+1)

.

Proof 

(1) As � = a2 + (a + 1)2 , and a is a positive integer, it is easy to see that � is odd. 

 which implies that −qCs = C
s−

q+1

2
n
.

(2) −qC
s−

(2a+1)q+1

2�
(q+1)

= C
s−

q−2a−1

2�
(q+1) holds for the following reason 

2aq2 − 2aq + 1 ⩽ 2�qj + q2 + 1 ⩽ (2a + 2)q2 − (2� − 1)q + 1.

−qs = − (q + 1)s + s

= −
� − 1

�
(q + 1)s −

q + 1

�
s + s

= −
� − 1

2
(q + 1)n + s −

q + 1

�
s

≡s −
q + 1

2
n mod (q + 1)n,
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(3) −qC
s−

(4a+1)q+2a+3

2�
(q+1)

= C
s−

(2a+3)q−4a−1

2�
(q+1)

 also holds for the following reason 

  
Lemma 5 Let q be an odd prime power with the form q = 2�m + 2a + 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = q2+1

2
 . If C  is an �

-constacyclic code of length n over �q2 with defining set Z =
⋃�

j=0
Cs−(q+1)j , then

Proof (1) Let Z =
⋃�

j=0
Cs−(q+1)j , where 0 ⩽ � ⩽

(2a+1)q+1

2�
− 1 . Then �Z−q ⋂

Z� = 0 follows 
from Lemma 3.

(2) Let Z = Z1

⋃
Z2

⋃
C
s−

(2a+1)q+1

2�
(q+1)

 , where Z1 =
⋃ (2a+1)q+1

2�
−1

j=0
Cs−(q+1)j , 

Z2 =
⋃�

j=
(2a+1)q+1

2�
+1

Cs−(q+1)j , and (2a+1)q+1
2�

+ 1 ⩽ � ⩽
(4a+1)q+2a+3

2�
− 1 . Then

According to Lemma 3, Z−q

1

⋂
Z1 = � . It follows from Lemma 4, one can get

− q

[
s ±

(2a + 1)q + 1

2�
(q + 1)

]

= − qs ∓
(2a + 1)q2 + q

2�
(q + 1)

≡s −
q + 1

2
n ∓

(2a + 1)(q2 + 1) + q − 2a − 1

2�
(q + 1) mod (q + 1)n

≡s ∓
q − 2a − 1

2�
(q + 1) mod (q + 1)n.

− q

[
s ±

(4a + 1)q + 2a + 3

2�
(q + 1)

]

= − qs ∓
(4a + 1)q2 + (2a + 3)q

2�
(q + 1)

≡s −
q + 1

2
n ∓

(4a + 1)(q2 + 1) + (2a + 3)q − 4a − 1

2�
(q + 1) mod (q + 1)n

≡s ∓
(2a + 3)q − 4a − 1

2�
(q + 1) mod (q + 1)n.

�Z −q
�

Z � =
⎧⎪⎨⎪⎩

0, 0 ⩽ � ⩽
(2a+1)q+1

2�
− 1;

4,
(2a+1)q+1

2�
⩽ � ⩽

(4a+1)q+2a+3

2�
− 1;

8,
(4a+1)q+2a+3

2�
⩽ � ⩽

(4a+3)q−(2a−1)

2�
− 1.

Z
−q

⋂
Z =

(
Z

−q

1

⋃
Z

−q

2

⋃
−qC

s−
(2a+1)q+1

2�
(q+1)

)⋂(
Z1

⋃
Z2

⋃
C
s−

(2a+1)q+1

2�
(q+1)

)

=
(
Z

−q

1

⋂
Z1

)⋃(
Z

−q

1

⋂
Z2

)⋃(
Z

−q

1

⋂
C
s−

(2a+1)q+1

2�
(q+1)

)⋃
(
Z

−q

2

⋂
Z1

)⋃(
Z

−q

2

⋂
Z2

)⋃(
Z

−q

2

⋂
C
s−

(2a+1)q+1

2�
(q+1)

)⋃
(
−qC

s−
(2a+1)q+1

2�
(q+1)

⋂
Z1

)⋃(
−qC

s−
(2a+1)q+1

2�
(q+1)

⋂
Z2

)⋃
(
−qC

s−
(2a+1)q+1

2�
(q+1)

⋂
C
s−

(2a+1)q+1

2�
(q+1)

)
.
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Now we only have to proof that Z−q

1

⋂
Z2 = Z

−q

2

⋂
Z1 = � and Z−q

2

⋂
Z2 = �.

Suppose Z1

⋂
Z

−q

2
≠ � , then there exist two integers i and j, where 0 ⩽ i ⩽

(2a+1)q+1

2�
− 1 

and (2a+1)q+1
2�

+ 1 ⩽ j ⩽
(4a+1)q+2a+3

2�
− 1 such that

for k ∈ {0, 1} . We seek some contradictions as follows. 

 (I) If k = 0 , then 

 which is equivalent to 

 Since 0 ⩽ i ⩽
(2a+1)q+1

2�
− 1 and (2a+1)q+1

2�
+ 1 ⩽ j ⩽

(4a+1)q+2a+3

2�
− 1 , we have 

0 ⩽ 2�i ⩽ (2a + 1)q + 1 − 2� , and (2a + 1)q + 1 + 2� ⩽ 2�j ⩽ (4a + 1)q + 2a + 3 − 2� . We 
now divide into the following subcases.

   (i) If (2a + 1)q + 2� + 1 ⩽ 2�j ⩽ (2a + 3)q − 2a − 1 , then 

 Hence, 

 which is a contradiction.
   (ii) If (2a + 3)q − 2a ⩽ 2�j ⩽ (2a + 4)q − 2a − 1 , then 

 Hence, 

 Writing 2�i in the form 2�i = uq + v , where 0 ⩽ u ⩽ 2a − 1 , 0 ⩽ v ⩽ q − 1 , and 
u = 2a , 0 ⩽ v ⩽ q − 2� + 1 . Then (2a + 3)(q2 + 1) = 2�(qj + i) = (2�j + u)q + v . 
By the division algorithm, it must be (2a + 3)q = 2�j + u , which contradicts to 
the form of q.

   (iii) If wq − 2a ⩽ 2�j ⩽ (w + 2)q − 2a − 1 , where w = 2a + 4,… , 4a − 2 . Then 

− qC
s−

(2a+1)q+1

2�
(q+1)

⋂
C
s−

(2a+1)q+1

2�
(q+1)

= �,

− qC
s−

(2a+1)q+1

2�
(q+1)

⋂
Z1 = C

s−
q−2a−1

2�
(q+1),

C
s−

(2a+1)q+1

2�
(q+1)

⋂
Z

−q

1
= C

s−
(2a+1)q+1

2�
(q+1)

,

− qC
s−

(2a+1)q+1

2�
(q+1)

⋂
Z2 = �,

C
s−

(2a+1)q+1

2�
(q+1)

⋂
Z

−q

2
= �.

s − (q + 1)i ≡ −q[s − (q + 1)j]q2k mod (q + 1)n,

s − (q + 1)i ≡ −q[s − (q + 1)j] mod (q + 1)n,

2�(qj + i) ≡ q2 + 1 mod 2(q2 + 1).

(2a + 1)(q2 + 1) + (2� + 1)q − (2a + 1) ⩽ 2�(qj + i) ⩽ (2a + 3)(q2 + 1) − 2(a + � + 1).

−(q2 + 1) < 2𝜌(qj + i) − (2a + 2)(q2 + 1) < q2 + 1,

(2a + 2)(q2 + 1) + q2 − 2(aq + a + 1) ⩽ 2�(qj + i) ⩽ (2a + 4)(q2 + 1) − 2a − 2� − 3.

0 < 2𝜌(qj + i) − (2a + 2)(q2 + 1) < 2(q2 + 1).
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 Hence, 

 which means that (w + 1)(q2 + 1) = 2�(qj + i) = (2�j + u)q + v . Therefore, 
(w + 1)q = 2�j + u , which also contradicts to the form of q.

   (iv) If 4aq − 2a ⩽ 2�j ⩽ (4a + 1)q + 2a + 3 − 2� , then 

 Hence, 

 which is a contradiction.
 (II) If k = 1 , then 

 which is equivalent to 

 Similar to the discussion of Lemma 3 (2) and Lemma 5 (1), this case is 
impossible.

Finally, suppose Z
−q

2

⋂
Z

2
≠ �, then there exist two integers i and j, where 

(2a+1)q+1

2�
+ 1 ⩽ i, j ⩽

(4a+1)q+2a+3

2�
− 1 such that

for k ∈ {0, 1} . Going on the line of the proofs similar to the above cases, one can get such 
case is impossible either.

Therefore,

which means that �Z−q ⋂
Z� = 4.

(3) This case can be proved by using the same method, we omit it here for simplification.

Theorem  4 Let q be an odd prime power with the form q = 2�m + 2a + 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 . Then there exist q-ary 

EAQMDS codes with the following parameters: 

(1) [[n, n − 2d + 2, d]] , where 2 ⩽ d ⩽
(2a+1)q+1

�
 is even;

(2) [[n, n − 2d + 6, d;4]] , where (2a+1)q+1
�

+ 2 ⩽ d ⩽
(4a+1)q+2a+3

�
 is even;

(3) [[n, n − 2d + 10, d;8]] , where (4a+1)q+2a+3
�

+ 2 ⩽ d ⩽
(4a+3)q−2a+1

�
 is even.

w(q2 + 1) − 2aq − w ⩽ 2�(qj + i) ⩽ (w + 2)(q2 + 1) − 2� − w − 1.

−(q2 + 1) < 2𝜌(qj + i) − w(q2 + 1) < 2(q2 + 1),

4a(q2 + 1) − 2aq − 4a ⩽ 2�(qj + i) ⩽ (4a + 1)(q2 + 1) + 2(2a − � + 2)q − 2(2a + �).

−(q2 + 1) < 2𝜌(qj + i) mod 2(q2 + 1) < q2 + 1,

s − (q + 1)i ≡ −[s − (q + 1)j]q3 mod (q + 1)n,

q2 + 1 + 2�qj ≡ 2�i mod 2(q2 + 1).

s − (q + 1)i ≡ −q[s − (q + 1)j]q2k mod (q + 1)n,

Z
−q

⋂
Z =C

s−
q−2a−1

2�
(q+1)

⋃
C
s−

(2a+1)q+1

2�
(q+1)

=

{
s ±

q − 2a − 1

2�
(q + 1), s ±

(2a + 1)q + 1

2�
(q + 1)

}
,
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Proof Let C  be an �-constacyclic code of length n over �q2 with defining set Z =
⋃�

j=0
C
s−(q+1)j , 

where 0 ⩽ � ⩽
(4a+3)q−2a+1

2�
− 1 . From Lemma 1, we can see that Z  consists of 2� + 1 con-

secutive integers {s − (q + 1)�,… , s − (q + 1), s, s + (q + 1),… , s + (q + 1)�} , which 
implies that C  has minimum distance at least 2� + 2 from Theorem 2. Hence, C  is a q2-ary 
�-constacyclic code with parameters [n, n − (2� + 1),⩾ 2� + 2] . According to Lemma 5,

Combining Theorem 3 with the EA-quantum Singleton bound, there are q-ary EAQMDS 
codes with parameters as desired. The result follows.

Now we consider the case q = 2�m − 2a − 1 , where � = a2 + (a + 1)2 , and a ⩾ 2,m is a 
positive integer.

Lemma 6 Let q be an odd prime power with the form q = 2�m − 2a − 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = q2+1

2
 . If C  is an �

-constacyclic code of length n over �q2 with defining set Z =
⋃�

j=0
Cs−(q+1)j , where 

0 ⩽ � ⩽
(2a+1)q−1

2�
− 1 , then C⟂H ⊆ C .

Proof The proof is similar to Lemma 3, we omit it here.

Lemma 7 Let q be an odd prime power with the form q = 2�m − 2a − 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = q2+1

2
 . Then 

(1) −qC
s−

(2a+1)q−1

2�
(q+1)

= C
s−

q+2a+1

2�
(q+1);

(2) −qC
s−

(4a+1)q−2a−3

2�
(q+1)

= C
s−

(2a+3)q+4a+1

2�
(q+1)

.

Proof 

(1) −qC
s−

(2a+1)q−1

2�
(q+1)

= C
s−

q+2a+1

2�
(q+1) holds for the following reason 

(2) −qC
s−

(4a+1)q−2a−3

2�
(q+1)

= C
s−

(2a+3)q+4a+1

2�
(q+1)

 also holds for the following reason 

c = �Z −q
�

Z � =
⎧⎪⎨⎪⎩

0, 0 ⩽ � ⩽
(2a+1)q+1

2�
− 1;

4,
(2a+1)q+1

2�
⩽ � ⩽

(4a+1)q+2a+3

2�
− 1;

8,
(4a+1)q+2a+3

2�
⩽ � ⩽

(4a+3)q−(2a−1)

2�
− 1.

− q

[
s ±

(2a + 1)q − 1

2�
(q + 1)

]

= − qs ∓
(2a + 1)q2 − q

2�
(q + 1)

≡s −
q + 1

2
n ∓

(2a + 1)(q2 + 1) − q − 2a − 1

2�
(q + 1) mod (q + 1)n

≡s ±
q + 2a + 1

2�
(q + 1) mod (q + 1)n.
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Similar to Lemma 5 and Theorem 4, we have the following results.

Lemma 8 Let q be an odd prime power with the form q = 2�m − 2a − 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = q2+1

2
 . If C  is an �

-constacyclic code of length n over �q2 with defining set Z =
⋃�

j=0
Cs−(q+1)j , then

Theorem  5 Let q be an odd prime power with the form q = 2�m − 2a − 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 . Then there exist q-ary 

EAQMDS codes with the following parameters: 

(1) [[n, n − 2d + 2, d]] , where 2 ⩽ d ⩽
(2a+1)q−1

�
 is even;

(2) [[n, n − 2d + 6, d;4]] , where (2a+1)q−1
�

+ 2 ⩽ d ⩽
(4a+1)q−2a−3

�
 is even;

(3) [[n, n − 2d + 10, d;8]] , where (4a+1)q−2a−3
�

+ 2 ⩽ d ⩽
(4a+3)q+2a−1

�
 is even.

Remark 1 Quantum MDS codes of length n =
q2+1

(m2+1)∕2
 with m ⩾ 3 is odd had been studied 

in [17]. Let m = 2a + 1 , then it is indeed the quantum MDS codes of length n =
q2+1

�
 , 

where � = a2 + (a + 1)2 , and a is a positive integer. We have got such quantum MDS codes 
with the same parameters in [17].

Remark 2 Let a = 2 , then � = 13 , n =
q2+1

13
 . EAQMDS codes of length n =

q2+1

13
 with c = 4 

and c = 8 had been also constructed in [43] from constacyclic codes (please see Table 1), 
where q = 26m + 5 and 26m + 21 . It is easy to see that our results coincide with theirs, in 
other words, we generalize the results in [43].

Example 1 Let a = 3 , then � = 25 , n =
q2+1

25
 . EAQMDS code of length n =

q2+1

25
 are con-

structed. We list some new EAQMDS codes obtained from Theorems 4 and 5 in Table 3.

− q

[
s ±

(4a + 1)q − 2a − 3

2�
(q + 1)

]

= − qs ∓
(4a + 1)q2 − (2a + 3)q

2�
(q + 1)

≡s −
q + 1

2
n ∓

(4a + 1)(q2 + 1) − (2a + 3)q − 4a − 1

2�
(q + 1) mod (q + 1)n

≡s ±
(2a + 3)q + 4a + 1

2�
(q + 1) mod (q + 1)n.

�Z −q
�

Z � =
⎧⎪⎨⎪⎩

0, 0 ⩽ � ⩽
(2a+1)q−1

2�
− 1;

4,
(2a+1)q−1

2�
⩽ � ⩽

(4a+1)q−2a−3

2�
− 1;

8,
(4a+1)q−2a−3

2�
⩽ � ⩽

(4a+3)q+(2a−1)

2�
− 1.
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4  Entanglement‑Assisted Quantum MDS Codes derived from Cyclic 
Codes

In this section, we will construct some EAQMDS codes of length n =
q2+1

�
 from cyclic 

codes, where � = a2 + (a + 1)2 , and a ⩾ 2 is a positive integer. We first give the following 
useful lemma, which will be used in the sequel.

Lemma 9 [23] Let n ∣ (q2 + 1) and s = ⌊ n

2
⌋ . If n is odd, then the q2-cyclotomic cosets 

modulo n containing integers from 0 to n are: C0 = {0},Ci = {i,−i} = {i, n − i} , where 
1 ⩽ i ⩽ s . If n is even, then the q2-cyclotomic cosets modulo n containing integers from 0 to 
n are: C0 = {0},Cs = {s} and Ci = {i,−i} = {i, n − i} , where 1 ⩽ i ⩽ s − 1.

It can be easily checked that n is even if q = 2�m ± (2a + 1) , i.e. q is an odd prime power. 
We first consider the case q = 2�m + 2a + 1 . Due to Lemma 9, we have the following results.

Lemma 10 Let q be an odd prime power with the form q = 2�m + 2a + 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = n

2
 . Then 

(1) −qCs = Cs;
(2) −qC

s−
(a+1)q−a

�

= C
s−

aq+a+1

�

;
(3) −qC

s−
(2a+1)q+1

�

= C
s−

q−(2a+1)

�

.

Proof 

(1) It is obvious that −qs ≡ s mod n . Hence, −qCs = Cs.
(2) −qC

s−
(a+1)q−a

�

= C
s−

aq+a+1

�

 holds for the following reason 

Table 3  New entanglement-
assisted quantum MDS codes

n q Parameters [[n, k, d;c]]q d

q2+1

25

43 [[74, 80 − 2d, d;4]]
43

14 ⩽ d ⩽ 22 is even

[[74, 84 − 2d, d;8]]
43

24 ⩽ d ⩽ 26 is even
57 [[130, 136 − 2d, d;4]]

57
18 ⩽ d ⩽ 30 is even

[[130, 140 − 2d, d;8]]
57

32 ⩽ d ⩽ 34 is even
107 [[458, 464 − 2d, d;4]]

107
32 ⩽ d ⩽ 56 is even

[[458, 468 − 2d, d;8]]
107

58 ⩽ d ⩽ 64 is even
157 [[986, 992 − 2d, d;4]]

157
46 ⩽ d ⩽ 82 is even

[[986, 996 − 2d, d;8]]
157

84 ⩽ d ⩽ 94 is even
q2+1

41

73 [[130, 136 − 2d, d;4]]
73

18 ⩽ d ⩽ 30 is even

[[130, 140 − 2d, d;8]]
73

32 ⩽ d ⩽ 34 is even
173 [[730, 736 − 2d, d;4]]

173
40 ⩽ d ⩽ 72 is even

[[730, 740 − 2d, d;8]]
173

   74 ⩽ d ⩽ 80 is even
337 [[2770, 2776 − 2d, d;4]]

337
76 ⩽ d ⩽ 140 is even

[[2770, 2780 − 2d, d;8]]
337

142 ⩽ d ⩽ 156 is even
401 [[3922, 3928 − 2d, d;4]]

401
90 ⩽ d ⩽ 166 is even

[[3922, 3932 − 2d, d;8]]
401

168 ⩽ d ⩽ 186 is even
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(3) −qC
s−

(2a+1)q+1

�

= C
s−

q−(2a+1)

�

 also holds for the following reason 

Lemma 11 Let q be an odd prime power with the form q = 2�m + 2a + 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , and s = n

2
 . If C  is a 

cyclic code of length n over �q2 with defining set Z =
⋃�

i=0
Cs−i , then

Proof (1) Let Z = Cs

⋃
Z1 , where Z1 =

⋃�

i=1
Cs−i and 1 ⩽ � ⩽

(a+1)q−a

�
− 1 . As 

−qCs = Cs , according to Lemma 1, we only need to consider that Z1

⋂
Z

−q

1
= � . Suppose 

that Z1

⋂
Z

−q

1
≠ � , then there exist two integers i and j, where 1 ⩽ i, j ⩽

(a+1)q−a

�
− 1 , such 

that

for k ∈ {0, 1} . We seek some contradictions as follows. 

 (I) If k = 0 , one obtains that s − i ≡ −q(s − j) mod n, which is equivalent to 

 As 1 ⩽ i, j ⩽
(a+1)q−a

�
− 1 , one gets � ⩽ �i, �j ⩽ (a + 1)q − a − � . We now divide 

into the following subcases.
   (i) If � ⩽ �j ⩽ q − a − 1 , then 

− q

[
s ±

(a + 1)q − a

�

]

= − qs ∓
(a + 1)q2 − aq

�

≡s ∓
(a + 1)(q2 + 1) − aq − (a + 1)

�
mod n

≡s ±
aq + a + 1

�
mod n.

− q

[
s ±

(2a + 1)q + 1

�

]

= − qs ∓
(2a + 1)q2 + q

�

≡s ∓
(2a + 1)(q2 + 1) + q − (2a + 1)

�
mod n

≡s ∓
q − (2a + 1)

�
mod n.

�Z −q
�

Z � =
⎧⎪⎨⎪⎩

1, 0 ⩽ � ⩽
(a+1)q−a

�
− 1;

5,
(a+1)q−a

�
⩽ � ⩽

(2a+1)q+1

�
− 1;

9,
(2a+1)q+1

�
⩽ � ⩽

(2a+2)q−2a

�
− 1.

s − i ≡ −q(s − j)q2k mod n,

�(qj + i) ≡ 0 mod q2 + 1.

1 < 𝜌(q + 1) ⩽ 𝜌(qj + i) ⩽ q2 − a − 𝜌 < q2 + 1,
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 which is a contradiction.
   (ii) If wq − a ⩽ �j ⩽ (w + 1)q − a − 1 , where w = 1, 2,… , a − 1 . Then 

 Hence, 

 Writing �i in the form �i = uq + v , where u = 0 , � ⩽ v ⩽ q − 1 ; 1 ⩽ u ⩽ a − 1 , 
0 ⩽ v ⩽ q − 1 ; u = a , 0 ⩽ v ⩽ q − a − �. Hence, w(q2 + 1) = (�j + u)q + v . By 
the division algorithm, it must be wq = �j + u , which contradicts to the form of q.

   (iii) If aq − a − 1 ⩽ �j ⩽ (a + 1)q − a − � , then 

 Hence, 

 which means that a(q2 + 1) = �(qj + i) = (�j + u)q + v . Therefore, aq = �j + u , 
which also contradicts to the form of q.

 (II) If k = 1 , one obtains that s − i ≡ −q(s − j)q2 mod n, which is equivalent to 

 As 1 ⩽ i, j ⩽
(a+1)q−a

�
− 1 , one gets � ⩽ �i, �j ⩽ (a + 1)q − a − � . We now divide 

into the following subcases.
   (i) If � ⩽ �j ⩽ q − 1 , then 

 while 𝜌 ⩽ 𝜌i ⩽ (a + 1)q − a − 𝜌 < 𝜌q . This is a contradiction.
   (ii) If wq ⩽ �j ⩽ (w + 1)q − 1 , where w = 1, 2,… , a − 1 . Then 

 If wq2 ⩽ �qj ⩽ w(q2 + 1) + (a + 1)q − a − � , then −w ⩽ �qj − w(q2 + 1) ⩽ (a + 1)q − a − � , which 
means that �qj − w(q2 + 1) = �i. Writing �i in the form �i = uq + v , where u = 0 , 
� ⩽ v ⩽ q − 1 ; 1 ⩽ u ⩽ a − 1 , 0 ⩽ v ⩽ q − 1 ; u = a , 0 ⩽ v ⩽ q − a − �. Hence, 
w(q2 + 1) = �qj − �i = (�j − u)q − v. By the division algorithm, it must be wq = �j − u , 
which contradicts to the form of q. If w(q2 + 1) + (a + 1)q − a − � + 1 ⩽ �qj ⩽ (w + 1)q2 − q , 
then 𝜌i < (a + 1)q − a − 𝜌 + 1 ⩽ 𝜌qj − w(q2 + 1) ⩽ q

2 − q − w < q
2 + 1 , which is a contradiction.

   (iii) If aq ⩽ �j ⩽ (a + 1)q − a − � , then 

 If aq
2 ⩽ �qj ⩽ a(q2 + 1) + (a + 1)q − a − � , then −a ⩽ �qj − a(q2 + 1) ⩽ (a + 1)q − a − � , which 

means that �qj − a(q2 + 1) = �i. Hence, a(q2 + 1) = �qj − �i = (�j − u)q − v. 
By the division algorithm, it must be aq = �j − u , which also contradicts 
to the form of q. If a(q2 + 1) + (a + 1)q − a − � + 1 ⩽ �qj ⩽ (a + 1)q2 − (a + �)q , then 
𝜌i < (a + 1)q − a − 𝜌 + 1 ⩽ 𝜌qj − a(q2 + 1) ⩽ q

2 − (a + 𝜌)q − a < q
2 + 1 , which is a contradiction.

Therefore, Z−q ⋂
Z = Cs = {s} , which means that �Z−q ⋂

Z� = 1.

wq2 − aq + � ⩽ �(qj + i) ⩽ (w + 1)q2 − a − �.

−(q2 + 1) ⩽ −aq + 𝜌 − w ⩽ 𝜌(qj + i) − w(q2 + 1) ⩽ q2 − a − w − 𝜌 < q2 + 1.

aq2 − (a + 1)q + � ⩽ �(qj + i) ⩽ (a + 1)q2 − (� − 1)q − a − �,

−(q2 + 1) < −(a + 1)q + 𝜌 − a ⩽ 𝜌(qj + i) − a(q2 + 1) ⩽ q2 − (𝜌 − 1)q − 2a − 𝜌 < q2 + 1,

�qj ≡ �i mod q2 + 1.

𝜌q ⩽ 𝜌qj ⩽ q2 − q < q2 + 1,

wq2 ⩽ �qj ⩽ (w + 1)q2 − q.

aq2 ⩽ �qj ⩽ (a + 1)q2 − (a + �)q.
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(2) Let Z = Cs

⋃
Z1

⋃
C
s−

(a+1)q−a

�

⋃
Z2 , where 

Z1 =
⋃ (a+1)q−a

�
−1

i=1
Cs−i

 , 
Z2 =

⋃�

i=
(a+1)q−a

�
+1

Cs−i , and (a+1)q−a
�

+ 1 ⩽ � ⩽
(2a+1)q+1

�
− 1 . Then

From (1), one knows that Z−q

1

⋂
Z1 = � . It follows from Lemma 10, one obtains that

Now we only have to prove that Z−q

1

⋂
Z2 = Z

−q

2

⋂
Z1 = � and Z−q

2

⋂
Z2 = �.

Suppose Z1

⋂
Z

−q

2
≠ � , then there exist two integers i and j, where 1 ⩽ i ⩽

(a+1)q−a

�
− 1 

and (a+1)q−a
�

+ 1 ⩽ j ⩽
(2a+1)q+1

�
− 1 such that

for k ∈ {0, 1} . We seek some contradictions as follows. 

 (I) If k = 0 , then it is equivalent to 

 As 1 ⩽ i ⩽
(a+1)q−a

�
− 1 and (a+1)q−a

�
+ 1 ⩽ j ⩽

(2a+1)q+1

�
− 1 , obviously, 

� ⩽ �i ⩽ (a + 1)q − a − � and (a + 1)q − a + � ⩽ �j ⩽ (2a + 1)q + 1 − � . We 
now divide into the following subcases.

   (i) If (a + 1)q − a + � ⩽ �j ⩽ (a + 2)q − a − 1 , then 

 Hence, 0 < (𝜌 − a)(q + 1) − 1 ⩽ 𝜌(qj + i) − (a + 1)(q2 + 1) ⩽ q
2 − 2a − 𝜌 − 1 < q

2 + 1, which is a 
contradiction.
   (ii) If wq − a ⩽ �j ⩽ (w + 1)q − a − 1 , where w = a + 2, a + 3,… , 2a − 1 . Then 

Z
−q

⋂
Z =

(
−qCs

⋃
Z

−q

1

⋃
−qC

s−
(a+1)q−a

�

⋃
Z

−q

2

)⋂(
Cs

⋃
Z1

⋃
C
s−

(a+1)q−a

�

⋃
Z2

)

=
(
−qCs

⋂
Cs

)⋃(
−qCs

⋂
Z1

)⋃(
−qCs

⋂
C
s−

(a+1)q−a

�

)⋃(
−qCs

⋂
Z2

)
(
Z

−q

1

⋂
Z1

)⋃(
Z

−q

1

⋂
Z2

)⋃(
Z

−q

1

⋂
Cs

)⋃(
Z

−q

1

⋂
C
s−

(a+1)q−a

�

)
(
−qC

s−
(a+1)q−a

�

⋂
Z1

)⋃(
−qC

s−
(a+1)q−a

�

⋂
Z2

)⋃(
−qC

s−
(a+1)q−a

�

⋂
Cs

)⋃
(
−qC

s−
(a+1)q−a

�

⋂
C
s−

(a+1)q−a

�

)⋃(
Z

−q

2

⋂
Cs

)⋃(
Z

−q

2

⋂
C
s−

(a+1)q−a

�

)⋃
(
Z

−q

2

⋂
Z1

)⋃(
Z

−q

2

⋂
Z2

)

− qCs

⋂
Cs = Cs, − qCs

⋂
Z1 = �,

− qCs

⋂
C
s−

(a+1)q−a

�

= �, − qCs

⋂
Z2 = �,

Z
−q

1

⋂
Cs = �, Z

−q

1

⋂
C
s−

(a+1)q−a

�

= C
s−

(a+1)q−a

�

,

− qC
s−

(a+1)q−a

�

⋂
Z1 = C

s−
aq+a+1

�

, − qC
s−

(a+1)q−a

�

⋂
Z2 = �,

− qC
s−

(a+1)q−a

�

⋂
Cs = �, − qC

s−
(a+1)q−a

�

⋂
C
s−

(a+1)q−a

�

= �,

Z
−q

2

⋂
Cs = �, Z

−q

2

⋂
C
s−

(a+1)q−a

�

= �.

s − i ≡ −q(s − j)q2k mod n,

�(qj + i) ≡ 0 mod q2 + 1.

(a + 1)q2 + (� − a)q + � ⩽ �(qj + i) ⩽ (a + 2)q2 − a − �.
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 So −(q2 + 1) < −aq + 𝜌 − w ⩽ 𝜌(qj + i) − w(q2 + 1) ⩽ q2 − a − 𝜌 − w < q2 + 1 , 
which implies that w(q2 + 1) = �(qj + i) . Writing �i in the form �i = uq + v , 
where u = 0 , � ⩽ v ⩽ q − 1 ; 1 ⩽ u ⩽ a − 1 , 0 ⩽ v ⩽ q − 1 ; u = a , 
0 ⩽ v ⩽ q − a − �. Hence, w(q2 + 1) = (�j + u)q + v. By the division algorithm, it 
must be wq = �j + u , which contradicts to the form of q.

   (iii) If 2aq − a ⩽ �j ⩽ (2a + 1)q − � + 1 , then 

 So −(q2 + 1) < −aq − 2a ⩽ 𝜌(qj + i) − 2a(q2 + 1) ⩽ q
2 + (a − 𝜌 + 2)q − 3a − 𝜌 < q

2 + 1 , 
which implies that 2a(q2 + 1) = �(qj + i) = (�j + u)q + v . By the division algo-
rithm, it must be 2aq = �j + u , which also contradicts to the form of q.

 (II) If k = 1 , then s − i ≡ −(s − j)q3 mod n, which is equivalent to 

 Similar to the above discussion, this case is impossible.
Finally, suppose Z

−q

2

⋂
Z2 ≠ �, then there exist two integers i and j, where 

(a+1)q−a

�
+ 1 ⩽ i, j ⩽

(2a+1)q+1

�
− 1 such that

for k ∈ {0, 1} . Going on the line of the proofs similar to the above cases, one can get such 
case is impossible either.

Therefore,

which means that �Z−q ⋂
Z� = 5.

(3) This case can be proved by using the same method, we omit it here for simplification.

Theorem  6 Let q be an odd prime power with the form q = 2�m + 2a + 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 . Then there exist q-ary 

EAQMDS codes with the following parameters: 

(1) [[n, n − 2d + 3, d;1]] , where 2 ⩽ d ⩽
(2a+2)q−2a

�
 is even;

(2) [[n, n − 2d + 7, d;5]] , where (2a+2)q−2a
�

+ 2 ⩽ d ⩽
(4a+2)q+2

�
 is even;

(3) [[n, n − 2d + 11, d;9]] , where (4a+2)q+2
�

+ 2 ⩽ d ⩽
(4a+4)q−4a

�
 is even.

Proof Let C  be a cyclic code of length n over �q2 with defining set Z =
⋃�

i=0
Cs−i , where 

0 ⩽ � ⩽
(2a+2)q−2a

�
− 1 . From Lemma 9, we can see that Z  consists of 2� + 1 consecutive 

integers {s − �,… , s − 1, s, s + 1,… , s + �} , which implies that C  has minimum distance 
at least 2� + 2 from Theorem  2. Hence, C  is a q2-ary cyclic code with parameters 
[n, n − (2� + 1),⩾ 2� + 2] . According to Lemma 11,

wq2 − aq + � ⩽ �(qj + i) ⩽ (w + 1)q2 − a − �.

2aq2 − aq ⩽ �(qj + i) ⩽ (2a + 1)q2 + (a − � + 2)q − a − �.

�qj ≡ �i mod q2 + 1.

s − i ≡ −q(s − j)q2k mod n,

Z
−q

⋂
Z =C

s

⋃
C
s−

aq+a+1

�

⋃
C
s−

(a+1)q−a

�

=

{
s, s ±

aq + a + 1

�
, s ±

(a + 1)q − a

�

}
,
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Combining Theorem 3 with the EA-quantum Singleton bound, there are q-ary EAQMDS 
codes with parameters as desired. The result follows.

Similar to the discussions of the case q = 2�m + 2a + 1 , we have the following results 
for q = 2�m − 2a − 1.

Lemma 12 Let q be an odd prime power with the form q = 2�m − 2a − 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , s = n

2
 . Then 

(1) −qCs = Cs;
(2) −qC

s−
(a+1)q+a

�

= C
s−

aq−a−1

�

;
(3) −qC

s−
(2a+1)q−1

�

= C
s−

q+2a+1

�

.

Lemma 13 Let q be an odd prime power with the form q = 2�m − 2a − 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 , and s = n

2
 . If C  is a 

cyclic code of length n over �q2 with defining set Z =
⋃�

i=0
Cs−i , then

Theorem  7 Let q be an odd prime power with the form q = 2�m − 2a − 1 , where 
� = a2 + (a + 1)2 , and a ⩾ 2,m is a positive integer. Let n =

q2+1

�
 . Then there exist q-ary 

EAQMDS codes with the following parameters: 

(1) [[n, n − 2d + 3, d;1]] , where 2 ⩽ d ⩽
(2a+2)q+2a

�
 is even;

(2) [[n, n − 2d + 7, d;5]] , where (2a+2)q+2a
�

+ 2 ⩽ d ⩽
(4a+2)q−2

�
 is even;

(3) [[n, n − 2d + 11, d;9]] , where (4a+2)q−2
�

+ 2 ⩽ d ⩽
(4a+4)q+4a

�
 is even.

Remark 3 Let a = 2 , then � = 13 , n =
q2+1

13
 . EAQMDS codes of length n =

q2+1

13
 with c = 1 , 

c = 5 and c = 9 had been also constructed in [43] from cyclic codes (please see Table 1), 
where q = 26m + 5 and 26m + 21 . It is easy to see that our results coincide with theirs, in 
other words, we also generalize the results in [43].

Example 2 Let a = 3 , then � = 25 , n =
q2+1

25
 . EAQMDS code of length n =

q2+1

25
 are con-

structed. We list some new EAQMDS codes obtained from Theorems 6 and 7 in Table 4.

c = �Z −q
�

Z � =
⎧⎪⎨⎪⎩

1, 0 ⩽ � ⩽
(a+1)q−a

�
− 1;

5,
(a+1)q−a

�
⩽ � ⩽

(2a+1)q+1

�
− 1;

9,
(2a+1)q+1

�
⩽ � ⩽

(2a+2)q−2a

�
− 1.

�Z −q
�

Z � =
⎧⎪⎨⎪⎩

1, 0 ⩽ � ⩽
(a+1)q+a

�
− 1;

5,
(a+1)q+a

�
⩽ � ⩽

(2a+1)q−1

�
− 1;

9,
(2a+1)q−1

�
⩽ � ⩽

(2a+2)q+2a

�
− 1.
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5  Conclusion

In this paper, EAQMDS codes of length n =
q2+1

�
 have been constructed by exploiting less 

pre-shared maximally entangled states c, i.e., c = 0, 1, 4, 5, 8, 9 , where � = a2 + (a + 1)2 and 
a ⩾ 2 is a positive integer. Comparing their parameters with all known EAQMDS codes, one 
can obtain that they are new in the sense that their parameters are not covered by the codes 
available in the literature, except a = 2 , which is indeed the results obtained in [43].
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Table 4  New entanglement-
assisted quantum MDS codes

n q Parameters [[n, k, d;c]]q d

q2+1

25

43 [[74, 77 − 2d, d;1]]
43

2 ⩽ d ⩽ 14 is even

[[74, 81 − 2d, d;5]]
43

16 ⩽ d ⩽ 24 is even
[[74, 85 − 2d, d;9]]

43
26 ⩽ d ⩽ 28 is even

57 [[130, 133 − 2d, d;1]]
57

2 ⩽ d ⩽ 18 is even
[[130, 137 − 2d, d;5]]

57
20 ⩽ d ⩽ 32 is even

[[130, 141 − 2d, d;9]]
57

34 ⩽ d ⩽ 36 is even
107 [[458, 461 − 2d, d;1]]

107
2 ⩽ d ⩽ 34 is even

[[458, 465 − 2d, d;5]]
107

36 ⩽ d ⩽ 60 is even
[[458, 469 − 2d, d;9]]

107
62 ⩽ d ⩽ 68 is even

157 [[986, 989 − 2d, d;1]]
157

2 ⩽ d ⩽ 50 is even
[[986, 993 − 2d, d;5]]

157
52 ⩽ d ⩽ 88 is even

[[986, 997 − 2d, d;9]]
157

90 ⩽ d ⩽ 100 is even
q2+1

41

73 [[130, 133 − 2d, d;1]]
73

2 ⩽ d ⩽ 18 is even

[[130, 137 − 2d, d;5]]
73

20 ⩽ d ⩽ 32 is even
[[130, 141 − 2d, d;9]]

73
34 ⩽ d ⩽ 36 is even

173 [[730, 733 − 2d, d;1]]
173

2 ⩽ d ⩽ 42 is even
[[730, 737 − 2d, d;5]]

173
44 ⩽ d ⩽ 76 is even

[[730, 741 − 2d, d;9]]
173

78 ⩽ d ⩽ 84 is even
337 [[2770, 2773 − 2d, d;1]]

337
2 ⩽ d ⩽ 82 is even

[[2770, 2777 − 2d, d;5]]
337

84 ⩽ d ⩽ 148 is even
[[2770, 2781 − 2d, d;9]]

337
150 ⩽ d ⩽ 164 is even

401 [[3922, 3925 − 2d, d;1]]
401

2 ⩽ d ⩽ 98 is even
[[3922, 3929 − 2d, d;5]]

401
100 ⩽ d ⩽ 176 is even

[[3922, 3933 − 2d, d;9]]
401

178 ⩽ d ⩽ 196 is even
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