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Abstract
In this paper, We investigate three-mode photon-added Greenberger-Horne-Zeilinger 
(GHZ) entangled coherent states by repeatedly operating the photon-added operator on the 
GHZ entangled coherent states. The product of two Laguerre polynomials is demonstrated 
to be connected to the normalizing constant. The influence of the operation on the non-
classical and non-Gaussian behavior of the GHZ entangled coherent states is investigated. 
Sub-Poissonian statistics, such as Mandel’s parameter and the negativity of the Wigner 
function, show that non-classical properties can enhance GHZ entangled coherent states. 
Finally, the occurrence of the anti-bunching phenomena in this class of tripartite excited 
states is studied using the second-order correlation function.

Keywords  GHZ states · Photon-added coherent states · Wigner function · Mandel 
parameter · Correlation function

1  Introduction

In quantum information processing tasks, we usually encode information in multipartite 
quantum states with high amount of quantum correlations between the different parties of 
the system [1–4]. In this sense, it is always needed to find the ways to enhance and to pro-
tect the degree of entanglement between the components of the quantum system employed 
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to implement quantum protocols especially in presence of effects such as photon-substrac-
tion, photo addition, and their superposition, mixing local squeezing and local displace-
ment. In this context, recently some useful tools to generate and to enhance the entangle-
ment degree between two and three modes of quantized radiation field. This is essentially 
due to the advent of experimental quantum optics of quantum optics allows to produce and 
manipulate various non-classical optical fields [5, 6]. The photon addition and subtraction 
modeled mathematically by the actions of bosons creation operators a‡ and annihilation 
operators a, have prompted significant investigations [7–9]. As quantum entanglement is a 
crucial part of quantum information theory and is at the heart of many quantum technolo-
gies, a lot of attention was dedicated to the generation of this resource using optical states 
to encode the quantum information to be processed to implement quantum protocols such 
as [10–12], quantum teleportation [13, 14], quantum dense coding [15, 16], quantum key 
distribution [17], quantum cryptography [15, 17], and many other applications. In exploit-
ing quantum correlations in multi-particle quantum system, a classification of the states 
according their degree of entanglement was considered in several works. The states violat-
ing Bell inequalities were studied in [18–21]. The W-type and GHZ-type entangled states 
were considered in [22, 23].

In another development, much attention has been paid to the multi-mode coherent 
states, Gerry et al. [24] propose a method for generating ECSs of a two-mode field. Moreo-
ver, ones have studied the optimal quantum information processing via GHZ-type [25] and 
W-type ECSs [26]. Jeong’s group [25] present the generation of GHZ-type ECSs using 
beam splitters (BSs) with a single-mode CSS and demonstrate Bell inequality violations 
for GHZtype ECSs. Some theoretical schemes have been proposed to generate the GHZ-
type ECS in cavity fields [27, 28]. Kuang’s group [29, 30] propose single-mode and two-
mode excite ECSs and their generation via cavity QED. The optical generation of excited 
ECSs is also investigated by using the BSs and the type-I beta-barium borate (BBO) crys-
tal [31, 32]. Furthermore, the photon-added coherent state (PACS) was first proposed by 
Agarwal and Tara [7], they presented a hybrid non-classical state called a PACs which 
exhibits an intermediate property between a classical coherent state (CS) and a purely 
quantum Fock state (FS) [7]. More recently, by using a type-I BB) crystal, a single photon 
detector (SPD) and a balanced homodyne detector, Zavatta et  al. experimentally created 
a single-photon-added coherent state (SPACS) which allowed them to first visualize the 
classical-to quantum transition process [33]. In the other hand, the authors [34] try to pre-
sent a general formalism for the construction of deformed photon-added nonlinear coher-
ent states (DPANCSs), which in special case lead to the well-known PACS. Recently, [35] 
introduced a new kind of photon-added entangled coherent states (PA-ECSs), by perform-
ing repeatedly an f-deformed photon-addition (DPA) operation, on each mode of the entan-
gled coherent states (ECSs). By choosing a particular deformation function, as a result, 
they study how the entanglement properties can be enhanced by DPA operation. Further-
more, their findings indicate that there is a family of coherent amplitudes |�| for which the 
two-mode DPA operation preserves the maximal entanglement of the odd ECSs while the 
non-deformed photon-addition operation suppresses it. In the other study, Mojaveri et al. 
want to see how adding photons to two-qutrit entangled states affects them. They give a 
general study of non-classical features including photon statistics and entanglement for this 
purpose, with a focus on the control role of the shift parameter in these states [36].

The experimental generation of non-classical features of quantum states based on the 
superposition of photon-added even/odd coherent states has recently received a special 
interest. However, adding photons to any quantum state, such as the thermal state, coher-
ent state, squeezed vacuum state, is in general a challenging task and can produce classical 
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states. The features of the photon-added squeezed vacuum state were investigated in [37], 
photon-added coherent states, and photon-added thermal states considered in several works 
[6, 38, 39]. The formalism of photon added coherent states or excited coherent states were 
considered in [40–42]. Many authors have examined the effects of adding quanta to coher-
ent states [7], of successive elementary one-photon excitations of a coherent state and 
modified photon-added coherent states [43].

This study aims to investigate the non-classical and non-Gaussian characteristics of 
photons that have been introduced to a multi-mode (GHZ) entangled coherent state. The 
purpose is to distil the better one for quantum information processing implementation 
and compare it to a single-mode excited GHZ-type entangled coherent state [44], meas-
uring quantum correlations in non-classical multipartite coherent states [42, 44–46]. In 
this paper, we propose A class of three-mode excited GHZ-type entangled coherent states 
(EGHZECSs) that are produced by conducting creation operator operations on GHZ-type 
ECSs and then decomposing them into the additional photon even (odd) coherent state.

Quantum non-classicality of single-mode and multi-mode systems is a fundamental 
property of quantum optics and quantum physics. The quasi-probability functions, which 
include the Glauber-Sudarshan P-function [47, 48], the Sudarshan Q-function (Husimi) 
[49], and the Wigner function (WF) [50], are essential tools in characterizing non-classi-
cality through their negative values. The negativity of the Wigner function distribution is a 
powerful tool to characterize non-classicality.

This paper is organized as follows. In Section 2, we introduce three-mode GHZ entan-
gled coherent states. We give the expression of the superpositions of multipartite entan-
gled coherent states and we derive analytically the expression of three-mode photon-added 
GHZ entangled coherent states (PAGHZECSs), which are obtained by adding photons to a 
general multi-mode GHZ-coherent state. In Section 3, we investigate the non-classical pho-
ton statistical properties of multiple-photon-added entangled coherent states, the associated 
sub-Poissonian photon statistics, and the second-order correlation function. These quanti-
fiers are all obtained by applying the partial negativity of the Wigner function for photon-
added three-mode GHZ entangled coherent states. The obtained results are illustrated by 
numerical analysis. Finally, we end up with some closing remarks.

1.1 � Superpositions of Multipartite Entangled Coherent States

Any multipartite state associated with a multi-partite bosonic modes system may be 
expressed as a superposition of entangled coherent states. Here, we consider N mode GHZ 
coherent states defined by

where �𝛼⟩1 ⊗ �𝛼⟩2 ⊗ ...⊗ �𝛼⟩N = �𝛼, 𝛼, ..., 𝛼⟩1,2,...,N with ��⟩i = exp
�
−

���2

2

� +∞∑
ni=0

�ni√
ni!
��ni⟩ 

represents a bosonic coherent state of amplitude α in i −th modes, and N  denotes the nor-
malization factor given by

where the quantity κ, represents the overlap between the states ��⟩ and �−�⟩ . It is given by

(1)
���𝜓𝜑

�
= N

0
𝜑

�
�𝛼⟩1 ⊗ �𝛼⟩2 ⊗ ...⊗ �𝛼⟩N + exp (i𝜑)�−𝛼⟩1 ⊗ �−𝛼⟩2 ⊗ ...⊗ �−𝛼⟩N

�
,

(2)N
0
�
=
{
2
[
1 + �n cos (�)

]}−1∕2
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In this work, we shall consider three mode coherent states (N = 3).

1.1.1 � Three‑Mode Photon‑Added GHZ‑Type Entangled Coherent States

The photon-added or excited GHZ entangled coherent states may be generated by repeated 
action of the creation operator on the three-mode GHZ-type ECSs. The resulting excited 
GHZ-type ECSs are given by

where Nr,s,t
�

 is the normalization factor. It can be computed from (3) by employing [42, 44]

where Lm(x) ≡ L0
m
(x) stands for the m-order Laguerre polynomial Lk

m
 for k = 0. The polyno-

mial Lk
m
 are defined by [7, 51]

We define the state |α,m〉i as follows

The photon-added GHZ-type ECSs |||�
r,s,t
�

⟩
 is a three-component entangled state 

between modes 1, 2 and 3. The normalization factor in (3) is given by

where

In the particular case t = 0, which corresponds to the case of two-mode entangled coher-
ent states, the (7) leads to

and for s = t = 0, the (9) takes the form

One can verify that for r = s = t = 0, the normalized factor NPA
�

 of the three-mode GHZ 
ECSs reduces to N0

�
=
{
2
[
1 + �3cos(�)

]}−1∕2 , and the GHZ entangled coherent states (1) 
are recovered.

� = ⟨�� − �⟩ = exp
�
−2���2

�

(3)

���𝜓
r,s,t
𝜑

�
=
�
N

r,s,t
𝜑

�−1∕2�
a
†r

1
a
†s

2
a
†t

3

��
�𝛼⟩1 ⊗ �𝛼⟩2 ⊗ �𝛼⟩3 + exp (i𝜑)�−𝛼⟩1 ⊗ �−𝛼⟩2 ⊗ �−𝛼⟩3

�

(4)
⟨
�|a†m

i
am
i
|�
⟩
= m!Lm

(
−|�|2

)
,

⟨
�|a†m

i
am
i
| − �

⟩
= m!�Lm

(
|�|2

)
,

(5)Lk
m
(x) =

m∑

l=0

(−1)l(m + k)!xl

l!(l + k)!(m − l)!

(6)��,m⟩i =
�

�
m!Lm

�
−���2

��1∕2
∞�

l=0

�l
√
l + m

l!
�l + m⟩i

(7)N
r,s,t
�

=
{
2r!s!t!

[
p(−�, r)p(−�, s)p(−�, t) + p(�, r)p(�, s)p(�, t) cos(�)

]}

(8)p(−�,m) = Lm
(
−|�|2

)
, p(�,m) = Lm

(
|�|2

)
�

(9)N
r,s,0
�

=
{
2r!s!

[(
Lr
(
−|�|2

)
Ls
(
−|�|2

)
+ �3Lr

(
|�|2

)
Ls
(
|�|2

)
cos(�)

)]}

(10)N
r,0,0
�

=
{
2r!

[(
Lr
(
−|�|2

)
+ �3Lr

(
|�|2

)
cos(�)
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2 � Non‑Classical Photon Statistical Properties

In this section, we shall consider the photon addition effects on the nonclassical photon sta-
tistical features of the PAGHZECSs. The nonclassical properties of the PAGHZECSs will be 
studied in terms of the Wigner function negativity, Mandel’s Q parameter and the cross-corre-
lation function.

2.1 � The Partial Negativity of the Wigner Function for the Photon‑Added 
Three‑Mode GHZ Entangled Coherent States (PAGHZECSs)

First, we determine at the Wigner function’s negativity condition for three-mode entangled 
coherent states. In general, when the Wigner function exhibits partial negativity in the phase 
space, the quantum state is deem strongly nonclassical. The negativity of Wigner function’s 
is a good indicator for displaying nonclassical features (and investigating non-classicality) of 
quantum states and describing decoherence of quantum states when exposed to the environ-
ment effects. The Wigner function associated wit a given density operator ρ is defined by [44].

The density operator of three-mode added coherent states in (11) takes the form

It can be rewritten as

where ��z1, z2, z3⟩ = ��z1⟩⊗ ��z2⟩⊗ ��z3⟩ is the three-mode coherent state. Using the overlap 
between two coherent states ��⟩ and �β⟩

and the integral

(11)
W(�, � , �) = exp

�
2
�
���2 + ���2 + ���2

�� ∫ d2z1

�2

d2z2

�2

d2z3

�2
⟨−z1,−z2,−z3�����z1, z2, z3⟩

× exp
�
2
�
�z∗

1
− �∗z1

��
exp

�
2
�
�z∗

2
− �∗z2

��
exp

�
2
�
�z∗

3
− �∗z3

��

(12)

� =
����

r,s,t
�

��
� r,s,t
�

���
=

�
N

r,s,t
�

�2�
a
†r

1
a
†s

2
a
†t

3

�
(��⟩��⟩��⟩ + exp (i�)�−�⟩�−�⟩�−�⟩)

×
�
⟨�, �, �� + exp (−i�)⟨−�,−�,−��

�
a
r

1
a
s

2
a
t

3

��
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�
N
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�
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,
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the Wigner function for the three-mode entangled coherent states can be obtained as

where the different quantities occurring in (16) are given by

with

Substituting (3) into (12) and inserting the completeness relation of three-mode coher-
ent states and making use of the integral formulae

we obtain the following results

where

(16)W(�, � , �) = W (1)(�, � , �) +W (2)(�, � , �) ±
(
W (3)(�, � , �) +W (4)(�, � , �)

)

(17)
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3
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In what follows we shall use the expression (20) to investigate the nonclassical and 
non-Gaussian behaviours in (3). In particular, the negativity of the Winger function will 
indicate when (3) is non-classical.

To study the behavior of the Wigner function of the (3), we plot the variation of 
Wigner function in terms of the excitation photon number r, s and t. When there is no 
photon excitation (r = s = t = 0), the Wigner function of state |||�

r,s,t

0

⟩
 exhibits a single 

upward peak at the center position and has Gaussian shape see Fig.  1(a), which indi-
cates the non-classicality of the state. In addition, when only one photon is added (for 
instance r = 1,s = t = 0), the Wigner function can take negative values. Generally, the 
results show that the Wigner function gets the negative values in some regions of real 
and imaginary parts of η in Fig. It confirms that the PAGHZECS is non-Gaussian and 
nonclassical state. Furthermore, some interesting characters of valleys are presented 
with increasing number of r,s and t, which indicate that the state |||�

r,s,t

0

⟩
 is an entangled 

state.
The influence of the photon added number (r,s,t) on Wigner function of the state ||� r,s,t

�

⟩
 

reported in Fig.  2(a), (b) and (c) is similar to that of |||�
r,s,t

0

⟩
 . Indeed, it is clear that the 

Wigner function has negative parts with increasing values of r,s and t. Non-classical effects 
are sensitive to the excitation photon number r,s and t. However, we find that the negative 
parts are not important in comparison with the case  reported in Fig. 1(b) and (c).

Fig. 1   WF of photon-added entangled GHZ coherent states (16) for even mode φ = 0 versus the exchange 
values of r, s and t; (a) (r,s,t) = (0,0,0), (b) (r,s,t) = (1,2,1), (c) (r,s,t) = (2,2,2) with α = 0.3 and 
� =

1√
2

(x + iy) , γ = δ = 1

Fig. 2   WF of photon-added entangled GHZ coherent states (16) for even mode φ = π versus the exchange 
values of r, s and t; (a) (r,s,t) = (0,0,0), (b) (r,s,t) = (1,2,1), (c) (r,s,t) = (2,2,2) with α = 0.3 and, γ = δ = 1
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Hence, from Figs. 1 and 2 it is easy to see that, the non-classicality of the state, under 
consideration. For any value of r,s and t, the non-gaussian WF of always exhibits negative 
values in the phase space, which is another indicator of the non-classicality of the states 
|||�

r,s,t
�

⟩
.

In Figs.  3 and  4, we plot the dependence of the Winger function W as a function of 
both real and imaginary parts of η with γ = δ = 1, φ = 0 for Fig. 3 and φ = π for Fig. 4, for 
various values of r,s,t. The result shows that the Winger function of the photon added GHZ 
entangled coherent states takes negative values in some regions of the phase space. There-
fore, we conclude that the photon added GHZ entangled coherent states in a non-classical 
and non-Gaussian state.

Employing (20), the WFs of the photon added GHZ entangled coherent state are depicted 
in phase space for several different photon excitation numbers (r,s,t) in Figs. 3 and 4. It should 

Fig. 3   WF of photon-added entangled GHZ coherent states (16) for even mode φ = 0 versus the exchange 
values of r, s and t; (a) (r,s,t) = (1,1,0), (b) (r,s,t) = (2,2,0), (c) (r,s,t) = (1,2,0), (d) (r,s,t) = (3,2,0) with α 
= 0.3 and � =

1√
2

(x + iy) , γ = δ = 1.
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be noticed that the Wigner function obtained by first adding one or two photon from an initial 
GHZ coherent state, as can be seen from Fig. 3(a) and (b), when r = s. The non-classical char-
acter of the photon added GHZ entangled coherent state is remarkably exhibited because the 
WFs have a partial negative region when the photon-adding number r = s and both are 
nonzero. In addition, the Wigner function of state |||�

r,s,t
�

⟩
 exhibits a downward peak at the 

center position and has Gaussian shape see Fig. 3(a) and (b), which indicates the non-classi-
cality of state. This situation is also valid for the case repated in Fig. 4(a) and (b). Next, we 
consider the situation when r≠s, in particular. Figure 3(c), and (d) and Figs. 4(c), and (d) are 
plotted for (r = 1,s = 2), and (r = 3,s = 2) (sum is even numbers), respectively, the WF of state 
exhibits an upward peak at the center position and has Gaussian shape, which indicates the 
non-classicality of state. On the other hand, one can clearly see that the negativity of the 
Winger function depends on the number of photons added and on the nature of the initial 

Fig. 4   WF of photon-added entangled GHZ coherent states (16) for even mode φ = π versus the exchange 
values of r, s and t; (a) (r,s,t) = (1,1,0), (b) (r,s,t) = (2,2,0), (c) (r,s,t) = (1,2,0), (d) (r,s,t) = (3,2,0) with α 
= 0.3 and � =

1√
2

(x + �y) , γ = δ = 1
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state, symmetric or antisymmetric. However, the Winger function associated |||�
r,s,t

0

⟩
 exhibits 

more non-classicality (see Fig. 3). Thus, we can conclude that case shows stronger non-classi-
cal behavior than case ||� r,s,t

�

⟩
.

In the next, to see the behavior of the WF of the PAGHZECSs, we plot the three dimen-
sional graphics with varying excitation photon number in Figs. 5 and 6. Where, the numbers 
of photon added r, s and t switch the values 3, 4 and 5 between them, respectively. We observe 
similar behaviours in comparison between Fig. 5(a), (b) and (c) for φ = 0 and Fig. 6(a), (b) and 
(c) for φ = π.

2.2 � Sub‑Poissonian Photon Statistics

Here, we study the photon number statistics for the quantum states under consideration by 
evaluating the Mandel parameter. This parameter is a measure of the sub-Poissonian statistics 
and it is defined as the normalized variance of the photon number distribution and for each 
mode as follows

Fig. 5   WF of photon-added entangled GHZ coherent states (16) for even mode φ = 0 versus the exchange 
values of r, s and t; (a) (r,s,t) = (3,4,5), (b) (r,s,t) = (5,3,4), (c) (r,s,t) = (4,5,3) with α = 0.3 and 
� =

1√
2

(x + �y) , γ = δ = 1

Fig. 6   WF of photon-added entangled GHZ coherent states (16) for even mode φ = π versus the exchange 
values of r, s and t; (a) (r,s,t) = (3,4,5), (b) (r,s,t) = (5,3,4), (c) (r,s,t) = (4,5,3) with α = 0.3 and 
� =

1√
2

(x + �y) , γ = δ = 1
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 where n̂i = a
†

i
ai(i = 1, 2, 3) are the number operators corresponding the i (the subscript i 

relates to the ith mode).
For positive values of the Mandel parameter Q we have super-Poissonian statistics 

(classical states), zero value (Q = 0) corresponds to coherent state ��⟩ and negative values 
(Q < 0) represents, Poissonian and sub-Poissonian photon statistics which reflect a non-
classical character of the states.

To evaluate Mandel’s Q factors, we first compute the average photon number of each 
mode of the photon added GHZ entangled coherent state

where Nr,s,t
�

 is given by (7). The expectation values of the operators a†2
i
a2
i
 are

Thus, one obtains the Mandel’s Q1, Q2 and Q3 parameters of the PAGHZECS, they are 
given by

The Mandel parameter for each mode of the symmetric state φ = 0(even) and antisym-
metric state φ = π(odd) “is plotted versus |�|2 for different values of photon-added modes, 
r, s and t. The results are reported in Figs. 7 and 8 with φ = 0 and φ = π respectively.

In Fig.  7, we plot Mandel’s parameter Q���⟩
i

 for φ = 0 versus |�|2 associated of each 
mode such that Q1 correspond to mode 1, Q2 corresponds to mode 2 and Q3 corresponds to 
mode 3, have been presenteds them and compared as a function of the parameter |�|2 , and 
for various values of photon added r, s and t with (� = 0) (even state). As Fig. 7 shows, all 
modes of state |||�

r,s,t
�

⟩
 represent fully sub-Poissonian statistics for any values of (r,s,t) and 

|�|2 . However different statistics emerges due to different choice of the modes. For instance, 
based on Fig. 7, for fixed small values of |�|2 , the measure of non-classicality decreases, 
when number of photons added (r,s,t) is enhanced. Specifically, Fig.  7 reveals that the 
measure of non-classicality of the modes Q2 and Q3 become larger than the mode Q1. In 
other words, different statistics may be obtained depending are numbers of photon-added 
in even GHZ coherent states. In addition, Fig. 7(a) and (b) for (r = s = t = 0) and (r = 0,s 
= 1,t = 2) it is easy to see that the initial super-Poissonian statistics (Q > 0) for |α|2 < 0.4 is 

Qi =

⟨
n̂2
i

⟩
−
(⟨

n̂i
⟩)2

⟨
n̂i
⟩ =

⟨(
a
†

i
ai

)2
⟩

⟨
a
†

i
ai

⟩ −
⟨
a
†

i
ai

⟩
, i = 1, 2, 3

(21)
⟨
a
†

1
a1

⟩
=

N
r+1,s,t
�

N
r,s,t
�

− 1,
⟨
a
†

2
a2

⟩
=

N
r,s+1,t
�

N
r,s,t
�

− 1,
⟨
a
†

3
a3

⟩
=

N
r,s,t+1
�

N
r,s,t
�

− 1

(22)

⟨
a
†2

1
a2
1

⟩
=

N
r+2,s,t
�

−4Nr+1,s,t
�

N
r,s,t
�

+ 2
⟨
a
†2

2
a2
2

⟩
=

N
r,s+2,t
�

−4Nr,s+1,t
�

N
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�

+ 2
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a
†2

3
a2
3
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=

N
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�

−4Nr,s,t+1
�

N
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�
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(23)
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N
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�
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�
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�

N
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�
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�

−
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+ 1
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Fig. 7   Mandel parameter Q as a function of the coherent state parameter |�|2 for even mode φ = 0 and vari-
ous values of (r,s,t) of photon added; (a) Mandel’s Q factors of Q1 = Q2 = Q3 with (r = s = t), (b) Mandel’s 
factor of Q1 with (r≠s≠t), (c) Mandel’s factor of Q2 with (r≠s≠t), (d) Mandel’s factor of Q3 with (r≠s≠t)
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Fig. 8   Mandel parameter Q as a function of the coherent state parameter |�|2 for even mode φ = π and vari-
ous values of (r,s,t) of photon added;(a) Mandel’s Q factors of Q1 = Q2 = Q3 with (r = s = t), (b) Mandel’s 
factor of Q1 with (r≠s≠t), (c) Mandel’s factor of Q2 with (r≠s≠t), (d) Mandel’s factor of Q3 with (r≠s≠t)
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rapidly transformed into the coherent states (Q = 0) with the increasing values of |α|2 > 0.4. 
Furthermore, for (r≠ 0,s≠ 0,t≠ 0) in Fig. 7(a) and (b) we have (Q < 0) for sub-Poissonian 
statistics, and same behaviour viewed in Fig. 7(c) and (d)for any values of r, s and t. More-
over, in the mode odd φ = π it can be formed from Fig. 8 for (r = s = t = 0) and (r = 0,s 
= 1,t = 2) in Fig. 8(a) and (b) it is easy to see that the initial sub-Poissonian statistics (Q 
< 0) for |α|2 < 1 is slowly transformed into the coherent state (Q = 0) for |α|2 > 1. But, we 
have the same behaviour observed in Fig. 7 also obtained in Fig. 8 in each mode. Clearly, 
the Mandel parameter of the each mode even/odd (� = 0) in Figs. 7 and 8 show the same 
behaviors. It can be observed a strong non-classical property in each mode even/odd for all 
values of (r≠ 0,s≠ 0,t≠ 0), the non-classicality measure increases when the r, s and t 
increases for all values of |�|2 . While on each mode of the even/odd three-mode photon-
added GHZ entangled coherent states becomes non-classical for all consideration values of 
photon-additions (r,s,t) and all values of |�|2.

In the case of the mode odd (� = �) see Fig. 8 three-mode photon-added GHZ entan-
gled coherent state of the each mode coherent states, the non-classicality has absolutely 
exhibits the higher-order in all the considered situations but it is important in two cases 
when (r = s = t) and (r≠s≠t). We can conclude that adding photon in three modes GHZ 
entangled coherent state has a great effect on increasing the non-classicality feature of the 
each mode of the odd state and approaches to the value zero when the parameter |�|2 is 
large.

2.3 � Second Order Correlation Function

The analytical expression of correlation functions at any order, taking into consideration 
the non-unit quantum efficiency of the detection scheme, utilizing only values that can be 
obtained experimentally by direct detection We also illustrate that high-order correlations 
serve as a valuable tool for determining the nature of the state and show that as correlation 
order increases, the distinctions between classical and quantum states become increasingly 
clear.

The correlation functions gjk
n̂

 are usually defined in terms of the normally-ordered crea-
tion and annihilation operators [52].

where ak is the operator of the mode k-th and n̂k = a
†

k
ak . Thus they introduce the second-

order correlation function g(2)(0) [53, 54],which leads to better understanding of the non-
classical behavior of the quantum states [55].

In this section, we generalized extension for the three-mode correlation function is 
given by [56–58]

where i,j,k = 1,2,3 and i≠j≠k. The expectation value of 
⟨
a
†

1
a1a

†

2
a2a

†

3
a3

⟩
 in the PAGHZECS is
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In the situation when the function g(3)
123

(0) is positive we have the photon bunching, 
and g(3)

123
(0) < 0 we have the photon anti-bunching

Reporting (22) and (26) into (25), we obtain the cross-correlation function as follows

and it becomes less than 1 for a nonclassical state (g(3)
abc

(0) < 1).
We plot the second-order correlation function (27) versus different values of r, s and 

t in Figs. 9 and 10 with φ = 0 and φ = π respectively.
We examine the second order correlation function by using (27). In Fig.  9(a), and 

(b) and Fig. 10(a), and (b), we plot the dependence of g(3)
abc

(0) on |�|2 for several values 
of (r, s, t) , therein over all of the regions of |�|2 , the case of r = s = t = 0 (the solid Pink 
line) corresponds to the GHZECS. The graphs of second-order correlation function in 
Figs. 9 and 10 clearly indicates the anti-bunching phenomenon.
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Fig. 9   Second order correlation g(3)
abc

(0) as a function of the coherent state parameter |�|2 for even mode φ 
= 0 and various values of (r,s,t) of photon added;(a) (r = s = t), (b) (r≠s≠t)
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Fig. 10   Second order correlation g(3)
abc

(0) as a function of the coherent state parameter |�|2 for even mode φ 
= π and various values of (r,s,t) of photon added; (a) (r = s = t), (b) (r≠s≠t)
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3 � Concluding Remarks

In this paper, we have introduced a class of state called photon-added three modes GHZ 
coherent state and studied their nonclassical and non-Gaussian properties based on the 
Wigner function. It is shown that the Wigner function of the photon-added three modes 
GHZ coherent state gets negative values in some regions of the phase space and depends 
of the number on added photons to the three modes GHZ coherent states. This shows 
that the photon-added three modes GHZ coherent state quantum features is affected by 
this effect and it becomes a nonclassical and non-Gaussian state, whereas the original 
GHZ coherent state is the Gaussian state. The nonclassical and non-Gaussian properties 
of this state occur by adding photons to the original GHZ coherent state. In addition, 
the obtained results show that the Mandel parameter of the photon-added three modes 
of the even and odd GHZ coherent state always presents negative values; this indicates 
that the photon-added three modes GHZ coherent state obeys sub-Poissonian statistics, 
characteristic of non-classicality. However, the sub-Poissonian characteristics of the 
three modes of these entangled states increase with increasing the photon-addition of 
the mode r, s and t. Furthermore, the second-order correlation function does not show 
any non-classical feature for the even and odd three-mode photon-added GHZ entangled 
coherent states for all considered values of photon additions r, s and t. This is another 
interstice results of this work and we hope to be able to generalize this to the case of N 
> 3 partite coherent states.
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