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Abstract
Monogamy relations characterize the distributions of quantum entanglement in multipartite 
systems. In this work, we present some tighter monogamy relations in terms of the power 
of the Tsallis-q and Rényi-α entanglement in multipartite systems. We show that these new 
monogamy relations of multipartite entanglement with tighter lower bounds than the exist-
ing ones. Furthermore, three examples are given to illustrate the tightness.

Keywords Monogamy relations · The Tsallis-q entanglement · The Rényi-α entanglement

1 Introduction

Quantum entanglement is an essential feature in terms of quantum mechanics, which dis-
tinguishes quantum mechanics from the classical world and plays a very important role in 
communication, cryptography, and computing. A key property of quantum entanglement is 
the monogamy relations [1, 2], which is a quantum systems entanglement with one of the 
other subsystems limits its entanglement with the remaining ones, known as the monogamy of 
entanglement (MoE) [2, 3]. For any tripartite quantum state ρA∣BC, MoE can be expressed as 
the following inequality E(�A|BC) ≥ E(�AB) + E(�AC) , where ρAB =  trC(ρA|BC), ρAC =  trB(ρA|BC), 
and E is an quantum entanglement measure. Furthermore, Coffman, Kundu and Wootters 
expressed that the squared concurrence also satisfies the monogamy relations in multiqubit 
states [1]. Later the monogamy relations are widely promoted to other entanglement measures 
such as entanglement of formation [4], entanglement negativity [5], the Tsallis-q and Rényi-α 
entanglement [6, 7]. These monogamy relations will help us to have a further understanding of 
the quantum information theory [8], even black-hole physics [9] and condensed-matter phys-
ics [10]. In [11, 12], the authors prove that the η th power of Tsallis-q entanglement satisfies 
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monogamy relations for 2 ≤ q ≤ 3, the power η ≥ 1, the Rényi-α entanglement also satisfies 
monogamy relations for α ≥ 2, the power η ≥ 1, and 2 > 𝛼 ≥

√
7−1

2
 , the power η ≥ 2.

Our paper is organized as follows. In Section 2, we review some basic preliminaries of 
concurrence, Tsallis-q, and Rényi-α entanglement. In Section 3, we develop a class of monog-
amy relations in terms of the Tsallis-q entanglement, they are tighter than the results in [11]. 
In Section 4, we explore a class of monogamy relations based on the Rényi-α entanglement 
which are tighter than the results in [12]. In Section 5, we summarize our results.

2  Basic Preliminaries

We first recall the definition of concurrence. For a bipartite pure state |φ〉AB, the concur-
rence can be defined as [13–15]

where ρA = trB(|φ〉AB〈φ|).
For any mixed state ρAB, its concurrence is defined via the convex-roof extension in [16]

where the minimum is taken over all possible pure state decompositions of 
�AB =

∑
j

pj��j⟩AB⟨�j� , and 
∑
j

pj = 1.

It has been proved that the concurrence C(�A|B1⋯BN−1
) of mixed state �A|B1⋯BN−1

 has an 
important property such that [17]

where �A|Bi
= trB1⋯Bi−1Bi+1⋯BN−1

(�A|B1⋯BN−1
).

Quantum entanglement plays an important role in quantum information. Another well-
known quantum entanglements are Tsallis-q entanglement and Rényi-α entanglement. For 
any bipartite pure state |φ〉AB, the Tsallis-q entanglement is defined as [18].

where q ≥ 0, q≠ 1, and ρA = trB(|φ〉AB〈φ|). When q tends to 1, the Tsallis-q entropy con-
verges to the von Neumann entropy.

For a mixed state ρAB, the Tsallis-q entanglement is defined by its convex-roof exten-
sion, which can be expressed as

where the minimum is taken over all possible pure state decomposition of 
�AB =

∑
i

pi��i⟩AB⟨�i�.

(1)C(��⟩AB) =
�

2(1 − tr�2
A
),

(2)C(�AB) = min
�

j

pjC(��j⟩AB),

(3)C2(�A|B1⋯BN−1
) ≥ C2(�A|B1

) + C2(�A|B2⋯BN−1
) ≥ ⋯ ≥

N−1∑

i=1

C2(�A|Bi
),

(4)Tq(��⟩AB) = Sq(�A) =
1

q − 1
(1 − tr�

q

A
),

(5)Tq(�AB) = min
�

i

piTq(��i⟩AB),
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When 5−
√
13

2
≤ q ≤

5+
√
13

2
 , for any bipartite pure state |φ〉AB, it has been explored that the 

Tsallis-q entanglement Tq(|φ〉AB) has an analytical formula [19],

where the function gq(x) is defined as

for 0 ≤ x ≤ 1, and gq(x) is an increasing monotonic and convex function in [20]. Specially, 
for 2 ≤ q ≤ 3, the function gq(x) has an important property [18]

When 5−
√
13

2
≤ q ≤

5+
√
13

2
 , for any two-qubit mixed state ρ, the Tsallis-q entanglement can 

be expressed as Tq(ρ) = gq(C2(ρ)) [20].
Now, we recall some preliminaries of the Rényi-α entanglement. For a bipartite pure state 

|φ〉AB, the Rényi-α entanglement can be defined as [21]

where α > 0, and α≠ 1, ρA = trB(|φ〉AB〈φ|). When α tends to 1, the Rényi-α entropy con-
verges to the von Neumann entropy.

For a bipartite mixed state ρAB, the Rényi-α entanglement can be defined as

where the minimum is taken over all possible pure state decompositions {pi,�i
AB
} of ρAB.

When � ≥

√
7−1

2
 , for any two-qubit state ρAB, the Rényi-α entanglement has an analytical 

formula [21, 22]

where fα(x) can be expressed as

0 ≤ x ≤ 1, and fα(x) is a monotonically increasing convexity function.
For α ≥ 2, the function fα(x) satisfies the following inequality [22],

For 
√
7−1

2
≤ 𝛼 < 2 , the function fα(x) has an important property such that [23]

(6)Tq(��⟩AB) = gq(C
2(��⟩AB)),

(7)gq(x) =
1

q − 1

�
1 −

�
1 +

√
1 − x

2

�q

−

�
1 −

√
1 − x

2

�q�
,

(8)gq(x
2 + y2) ≥ gq(x

2) + gq(y
2).

(9)E�(��⟩AB) =
1

1 − �
log2(tr�

�

A
),

(10)E�(�AB) = min
�

i

piE�(��i⟩AB),

(11)E�(�AB) = f�(C(�AB)),

(12)f�(x) =
1

1 − �
log2

��
1 −

√
1 − x2

2

��

+

�
1 +

√
1 − x2

2

���
,

(13)f�

�√
x2 + y2

�
≥ f�(x) + f�(y).

(14)f 2
�

�√
x2 + y2

�
≥ f 2

�
(x) + f 2

�
(y).
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3  Tighter Monogamy Relations in Terms of the Tsallis‑q Entanglement

To present the tighter monogamy relations of the Tsallis-q entanglement in multipartite 
systems, we introduce three lemmas as follows.

Lemma 1 For 0 ≤ x ≤ 1 and μ ≥ 1, we have

Proof If x = 0, then the inequality is trivial. Otherwise, let f (�, x) =
(1+x)�−

�2

�+1
x−1

x�
 , then, 

�f

�x
=

�x�−1
[
1+

�(�−1)

�+1
x−(1+x)�−1

]

x2�
 . When μ ≥ 1 and 0 ≤ x ≤ 1, it is obvious that 1 + �(�−1)

�+1
x ≤ (1 + x)�−1 . Thus, 

�f

�x
≤ 0 , and f(μ,x) is a decreasing function of x, i.e. f (�, x) ≥ f (�, 1) = 2� −

�2

�+1
− 1 . Consequently, we 

have (1 + x)� ≥ 1 +
�2

�+1
x +

(
2� −

�2

�+1
− 1

)
x� . Since �2

�+1
≥

�

2
 , for 0 ≤ x ≤ 1 and μ ≥ 1, one gets 

1 +
�2

�+1
x +

(
2
� −

�2

�+1
− 1

)
x
� = 1 +

�2

�+1
(x − x

�) + (2� − 1)x� ≥ 1 +
�

2
x +

(
2
� −

�

2
− 1

)
x
� = 1

+
�

2
(x − x

�) + (2� − 1)x� ≥ 1 + (2� − 1)x�

.

Lemma 2 For any 2 ≤ q ≤ 3, μ ≥ 1, gq(x) defined on the domain D = {(x,y)|0 ≤ x,y ≤ 1}, if x 
≥ y, then we have

Proof For 2 ≤ q ≤ 3, μ ≥ 1, according to inequality (8), we have

where the first inequality is due to inequality (8) and the second inequality is due to Lemma 
1.

Lemma 3 For any N-qubit mixed state �A|B1⋯BN−1
 , we have

Proof Suppose that �A�B1⋯BN−1
=
∑
i

pi��i⟩A�B1⋯BN−1
 is the optimal decomposition for 

Tq(�A|B1⋯BN−1
) , then we have

(15)
(1 + x)� ≥ 1 +

�2

�+1
x +

(
2� −

�2

�+1
− 1

)
x�

≥ 1 +
�

2
x +

(
2� −

�

2
− 1

)
x� ≥ 1 + (2� − 1)x�.

(16)g�
q
(x2 + y2) ≥ g�

q
(x2) +

�2

� + 1
g�−1
q

(x2)gq(y
2) +

(
2� −

�2

� + 1
− 1

)
g�
q
(y2).

(17)

g�
q
(x2 + y2) ≥ (gq(x

2) + gq(y
2))�

= g�
q
(x2)(1 +

gq(y
2)

gq(x
2)
)�

≥ g�
q
(x2) +

�2

�+1
g�−1
q

(x2)gq(y
2) + (2� −

�2

�+1
− 1)g�

q
(y2),

(18)Tq(�A|B1⋯BN−1
) ≥ gq(C

2(�A|B1⋯BN−1
)).

(19)

Tq(�A�B1⋯BN−1
) =

∑
i

piTq(��i⟩A�B1⋯BN−1
)

=
∑
i

pigq(C
2(��i⟩A�B1⋯BN−1

))

≥ gq(
∑
i

piC
2(��i⟩A�B1⋯BN−1

))

≥ gq((
∑
i

piC(��i⟩A�B1⋯BN−1
))2)

≥ gq(C
2(�A�B1⋯BN−1

)),
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where the first inequality is due to that gq(x) is a convex function, the second inequality is 
due to the Cauchy-Schwarz inequality: (

∑
i

a2
i
)(
∑
i

b2
i
) ≥ (

∑
i

aibi)
2 , with ai =

√
pi , and 

bi =
√
piC(��i⟩A�B1⋯BN−1

) , and the third inequality is due to the minimum property of 
C(�A|B1⋯BN−1

).
Now, we give the following theorems of the monogamy inequalities in terms of the 

Tsallis-q entanglement.

Theorem  1 For any 2 ≤ q ≤ 3, the power η ≥ 1, and N-qubit mixed state �A|B1⋯BN−1
 , if 

C(�A|Bi
) ≥ C(�A|Bi+1⋯BN−1

), i = 1, 2,⋯ ,N − 2 , N > 3, we have

where h =  2η − 1, 
QABN−2

= T�
q
(�A|BN−2

) +
�2

�+1
T�−1
q

(�A|BN−2
)Tq(�A|BN−1

) +

(
2� −

�2

�+1
− 1

)
T�
q
(�A|BN−1

).

Proof Let �A|B1⋯BN−1
 be an N-qubit mixed state, from Lemma 3 and inequality (3), we have

where the first inequality is due to the monotonically increasing property of the function 
gq(x) and inequality (3), the second inequality is due to Lemma 2, and the third inequality 
is due to the fact that C2(�A|B1

) ≥ C2(�A|B2⋯BN−1
).

Similar calculation procedure can be used to the term g�
q
(C2(�A|B2⋯BN−1

)) , by iterative 
method we can get

According to the fact Tq(ρ) = gq(C2(ρ)) for any two qubit mixed state ρ, and combining 
inequality (21) and (22), we complete the proof.

Theorem  2 For any 2 ≤ q ≤ 3, the power η ≥ 1, and N-qubit mixed state �A|B1⋯BN−1
 , if 

C(�A|Bi
) ≥ C(�A|Bi+1⋯BN−1

), i = 1, 2,⋯ ,m  , 
C(�A|Bj

) ≤ C(�A|Bj+1⋯BN−1
), j = m + 1,m + 2,⋯N − 2 , N > 3, we have

(20)T�
q
(�A�B1⋯BN−1

) ≥
N−3∑
i=1

hi−1T�
q
(�A�Bi

) + hN−3QABN−2
,

(21)

T�
q
(�A|B1⋯BN−1

) ≥ g�
q
(C2(�A|B1

) + C2(�A|B2⋯BN−1
))

≥ g�
q
(C2(�A|B1

)) +
�2

�+1
g�−1
q

(C2(�A|B1
))gq(C

2(�A|B2⋯BN−1
))

+(2� −
�2

�+1
− 1)g�

q
(C2(�A|B2⋯BN−1

))

≥ g�
q
(C2(�A|B1

)) + hg�
q
(C2(�A|B2⋯BN−1

)),

(22)

g�
q
(C2(�A|B2⋯BN−1

))

≥ g�
q
(C2(�A|B2

)) + hg�
q
(C2(�A|B3⋯BN−1

)) ≥ ⋯

≥ g�
q
(C2(�A|B2

)) + hg�
q
(C2(�A|B3

)) +⋯ + hN−5g�
q
(C2(�A|BN−3

))

+hN−4
{
g�
q
(C2(�A|BN−2

)) +
�2

�+1
g�−1
q

(C2(�A|BN−2
))gq(C

2(�A|BN−1
))

+(2� −
�2

�+1
− 1)g�

q
(C2(�A|BN−1

))

}
.

(23)T�

q
(�A|B1⋯BN−1

) ≥

m∑

i=1

hi−1T�

q
(�ABi

) + hm+1
N−3∑

j=m+1

T�

q
(�ABj

) + hmQABN−1
,
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where h =  2η − 1, 
QABN−1

= T�
q
(�A|BN−1

) +
�2

�+1
T�−1
q

(�A|BN−1
)Tq(�A|BN−2

) + (2� −
�2

�+1
− 1)T�

q
(�A|BN−2

).

Proof For 2 ≤ q ≤ 3, η ≥ 1, we obtain

where the first inequality is due to Theorem 1, and the second inequality is due to Lemma 2 
and the fact that C(�A|Bj

) ≤ C(�A|Bj+1⋯BN−1
) for j = m + 1,m + 2,⋯N − 2, N > 3. According to 

the denotation of QABN−1
 and combining inequality (24), we obtain inequality (23).

Remark 1 We consider a particular case of N = 3. Note that when 2 ≤ q ≤ 3, the power η 
≥ 1, if Tq(�AB1

) ≥ Tq(�AB2
) , then we get the following result,

If Tq(�AB1
) ≤ Tq(�AB2

) , then

To see the tightness of the Tsallis-q entanglement directly, we give the following 
example.

Example 1 Under local unitary operations, the three-qubit pure state can be written as [24, 
25]

where 0 ≤ φ ≤ π, λi ≥ 0,i = 0,1,2,3,4, and 
∑4

i=0
�2
i
= 1 , set �0 =

√
5

3
 , λ1 = 0, λ4 = 0, �2 =

√
3

3
 , �3 =

1

3
 , q 

= 2. From the definition of the Tsallis-q entanglement, after simple computation, we can get 
Tq(�A�BC) = gq[(2�0

√
(�2)

2 + (�3)
2 + (�4)

2)2] , Tq(ρAB) = gq[(2λ0λ2)2], and Tq(ρAC) = gq[(2λ0λ3)2], 
then we have Tq(ρA|BC) = 0.49383, Tq(ρAB) = 0.37037, and Tq(ρAC) = 0.12346. Consequently, 

(24)

T�
q
(�A�B1⋯BN−1

)

≥

m∑
i=1

hi−1T�
q
(�ABi

) + hmg�
q
(C2(�A�Bm+1⋯BN−1

))

≥

m∑
i=1

hi−1T�
q
(�ABi

) + hm
�
g�
q
(C2(�A�Bm+2⋯BN−1

)) + (2� −
�2

�+1
− 1)g�

q
(C2(�A�Bm+1

))

+
�2

�+1
g�−1
q

(C2(�A�Bm+2⋯BN−1
))gq(C

2(�A�Bm+1
))

�

≥

m∑
i=1

hi−1T�
q
(�ABi

) + hm+1g�
q
(C2(�A�Bm+1

)) + hmg�
q
(C2(�A�Bm+2⋯BN−1

)) ≥ ⋯

≥

m∑
i=1

hi−1T�
q
(�ABi

) + hm+1
N−3∑
j=m+1

g�
q
(C2(�ABj

)) + hm
�
(2� −

�2

�+1
− 1)g�

q
(C2(�A�BN−2

))

+g�
q
(C2(�A�BN−1

)) +
�2

�+1
g�−1
q

(C2(�A�BN−1
))gq(C

2(�A�BN−2
))

�
,

(25)
T�
q
(�A|B1B2

) ≥ T�
q
(�AB1

) +
�2

�+1
T�−1
q

(�AB1
)Tq(�AB2

)

+

(
2� −

�2

�+1
− 1

)
T�
q
(�AB2

).

(26)
T�
q
(�A|B1B2

) ≥ T�
q
(�AB2

) +
�2

�+1
T�−1
q

(�AB2
)Tq(�AB1

)

+

(
2� −

�2

�+1
− 1

)
T�
q
(�AB1

).

(27)��⟩A�BC = �0�000⟩ + �1e
i��100⟩ + �2�101⟩ + �3�110⟩ + �4�111⟩,
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T
�

2
(�

A|BC) = (0.49383)� ≥ T
�

2
(�

AB
) + (2� −

�2

�+1
− 1)T

�

2
(�

AC
) +

�2

�+1
T
�−1

2
(�

AB
)T

2
(�

AC
) =

(0.37037)� +
�2

�+1
(37037)�−1(0.12346) + (2� −

�2

�+1
− 1)(0.12346)�   

While the result in [11] is 
T
�

2
(�

AB
) + (2� − 1)T

�

2
(�

AC
) +

�

2
T
2
(�

AC
)((T

�−1

2
(�

AB
)) − (T

�−1

2
(�

AC
))) = (0.37037)� +

(2� − 1)(0.12346)� +
0.12346�

2
((0.37037)�−1 − (0.12346)�−1)

  

One can see that our result is tighter than the ones [11] for η ≥ 1. See Fig. 1.

4  Tighter Monogamy Relations in Terms of the Rényi‑α Entanglement

In order to present the tighter monogamy relations of the Rényi-α entanglement in mul-
tiqubit systems, we introduce three lemmas as follows.

Lemma 4 For any N-qubit mixed state �A|B1⋯BN−1
 , we have

Proof Suppose that �A�B1⋯BN−1
=
∑
i

pi��i⟩A�B1⋯BN−1
 is the optimal decomposition for 

E�(�A|B1⋯BN−1
) , then we have

(28)E�(�A|B1⋯BN−1
) ≥ f�(C(�A|B1⋯BN−1

)).

(29)Fig. 1  The axis T stands the Tsallis-q entanglement of |ψ〉A|BC, which is a function of η (1 ≤ η ≤ 3). The 
dotted line stands the value of T�

2
(�

A|BC) . The dashed line stands the lower bound given by our improved 
monogamy relations. The solid black line represents the lower bound given by [11]
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where the first inequality is due to the convexity of fα(x) and the last inequality follows 
from the definition of concurrence for mixed state.

Lemma 5 For any α ≥ 2, μ ≥ 1, suppose that the function fα(x) defined on the domain D = 
{(x,y)|0 ≤ x,y ≤ 1,0 ≤ x2 + y2 ≤ 1}, if x ≥ y, then we have

Proof For μ ≥ 1, and α ≥ 2, we have

where the first inequality is due to inequality (13), and the second inequality is due to 
Lemma 1.

Lemma 6 For any 
√
7−1

2
≤ 𝛼 < 2 , μ ≥ 1, � =

�

2
 , the function fα(x) defined on the domain D 

= {(x,y)|0 ≤ x,y ≤ 1,0 ≤ x2 + y2 ≤ 1}, if x ≥ y, then we have

Proof For μ ≥ 1, and � =
�

2
 , we have

where the first inequality can be assured by inequality (14), and the second inequality is 
due to Lemma 1.

Now, we give the following theorems of the tighter monogamy inequality in terms of 
the Rényi-α entanglement.

Theorem  3 For any α ≥ 2, the power μ ≥ 1, and N-qubit mixed state �A|B1⋯BN−1
 , if 

C(�A|Bi
) ≥ C(�A|Bi+1⋯BN−1

), i = 1, 2,⋯ ,N − 2 , N > 3, then we have

where h =  2μ − 1, 
QABN−2

= E
�
� (�A|BN−2

) +
�2

�+1
E
�−1
� (�A|BN−2

)E�(�A|BN−1
) + (2� −

�2

�+1
− 1)E

�
� (�A|BN−1

).

Proof We consider an N-qubit mixed state �A|B1⋯BN−1
 , from Lemma 4, we have

(30)f �
�
(
√
x2 + y2) ≥ f �

�
(x) +

�2

� + 1
f �−1
�

(x)f�(y) +

�
2� −

�2

� + 1
− 1

�
f �
�
(y).

(31)
f
�
� (
√
x2 + y2) ≥ (f�(x) + f�(y))

�

≥ f
�
� (x) +

�2

�+1
f
�−1
� (x)f�(y) +

�
2� −

�2

�+1
− 1

�
f
�
� (y),

(32)f �
�
(
√
x2 + y2) ≥ f �

�
(x) +

�2

� + 1
f �−2
�

(x)f 2
�
(y) +

�
2� −

�2

� + 1
− 1

�
f �
�
(y).

(33)
f
�
� (
√
x2 + y2) ≥ (f 2

�
(x) + f 2

�
(y))�

≥ f
�
� (x) +

�2

�+1
f
�−2
� (x)f 2

�
(y) + (2� −

�2

�+1
− 1)f

�
� (y),

(34)E�

�
(�A|B1⋯BN−1

) ≥

N−3∑

i=1

hi−1E�

�
(�A|Bi

) + hN−3QABN−2
,

E�(�A�B1⋯BN−1
) =

∑
i

piE�(��i⟩A�B1⋯BN−1
)

=
∑
i

pif�(C(��i⟩A�B1⋯BN−1
))

≥ f�(
∑
i

piC(��i⟩A�B1⋯BN−1
))

≥ f�(C(�A�B1⋯BN−1
)),

(29)
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where the first inequality is due to the monotonically increasing property of the function 
fα(x) and inequality (3), the second inequality is due to Lemma 5, and the third inequality 
is due to the fact that C(�A|Bi

) ≥ C(�A|Bi+1⋯BN−1
) , i = 1,2,⋯ ,N − 2. Then, according to the 

denotation of QABN−2
 and the definition of the Rényi-α entanglement, we complete the proof.

Theorem  4 For any α ≥ 2, the power μ ≥ 1, and N-qubit mixed state �A|B1⋯BN−1
 , if 

C(�A|Bi
) ≥ C(�A|Bi+1⋯BN−1

) , i = 1,2,⋯ ,m, C(�A|Bj
) ≤ C(�A|Bj+1⋯BN−1

) , j = m + 1,m + 2,⋯N 
− 2, N > 3, then we have

where h =  2μ − 1, 
QABN−1

= E
�
� (�A|BN−1

) +
�2

�+1
E
�−1
� (�A|BN−1

)E�(�A|BN−2
) + (2� −

�2

�+1
− 1)E

�
� (�A|BN−2

).

Proof For any α ≥ 2, μ ≥ 1, C(�A|Bi
) ≥ C(�A|Bi+1⋯BN−1

) , i = 1,2,⋯ ,m, from Theorem 3, we 
know that

When C(�A|Bj
) ≤ C(�A|Bj+1⋯BN−1

), j = m + 1,m + 2,⋯N − 2 , N > 3, we get that

(35)

E
�
� (�A|B1⋯BN−1

) ≥ f
�
�

(√
C2(�A|B1

) + C2(�A|B2⋯BN−1
)

)

≥ f
�
� (C(�A|B1

)) +
�2

�+1
f
�−1
� (C(�A|B1

))f�(C(�A|B2⋯BN−1
))

+

(
2� −

�2

�+1
− 1

)
f
�
� (C(�A|B2⋯BN−1

))

≥ f
�
� (C(�A|B1

)) + hf
�
� (C(�A|B2⋯BN−1

))

≥ ⋯

≥ f
�
� (C(�A|B1

)) + hf
�
� (C(�A|B2

)) +⋯ + hN−4f
�
� (C(�A|BN−3

))

+hN−3
{
f
�
� (C(�A|BN−2

)) +
�2

�+1
f
�−1
� (C(�A|BN−2

))f�(C(�A|BN−1
))

+

(
2� −

�2

�+1
− 1

)
f
�
� (C(�A|BN−1

))

}
,

(36)E�

�
(�A|B1⋯BN−1

) ≥

m∑

i=1

hi−1E�

�
(�ABi

) + hm+1
N−3∑

j=m+1

E�

�
(�ABj

) + hmQABN−1
,

(37)E�

�
(�A|B1⋯BN−1

) ≥

m∑

i=1

hi−1E�

�
(�ABi

) + hmf �
�
(C(�A|Bm+1⋯BN−1

)).

(38)

f
�
� (C(�A|Bm+1⋯BN−1

)) ≥ f
�
�

(√
C2(�A|Bm+1

) + C2(�A|Bm+2⋯BN−1
)

)

≥ f
�
� (C(�A|Bm+2⋯BN−1

)) +

(
2� −

�2

�+1
− 1

)
f
�
� (C(�A|Bm+1

))

+
�2

�+1
f
�−1
� (C(�A|Bm+2⋯BN−1

))f�(C(�A|Bm+1
))

≥ f
�
� (C(�A|Bm+2⋯BN−1

)) + hf
�
� (C(�A|Bm+1

))

≥ ⋯

≥ h{f
�
� (C(�A|Bm+1

)) +⋯ + f
�
� (C(�A|BN−3

))}

+

{
f
�
� (C(�A|BN−1

)) +
�2

�+1
f
�−1
� (C(�A|BN−1

))f�(C(�A|BN−2
))

+(2� −
�2

�+1
− 1)f

�
� (C

2(�A|BN−2
))

}
,
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where the first inequality is due to the monotonically increasing property of the function 
fα(x) and inequality (3), the third inequality is from the fact that C(�A|Bj

) ≤ C(�A|Bj+1⋯BN−1
) , j 

= m + 1,m + 2,⋯N − 2, N > 3. According to the definition of the Rényi-α entanglement, 
and combining inequality (37) and (38), we obtain inequality (36).

Remark 2 We consider a particular case of N = 3. Note that when α ≥ 2, the power μ ≥ 1, if 
E�(�AB1

) ≥ E�(�AB2
) , then we get the following result,

if E�(�AB1
) ≤ E�(�AB2

) , then

To see the tightness of the Rényi-α entanglement directly, we give the following 
example.

Example 2 Let us consider the state in (27) given in Example 1. Set �0 =
√
5

3
 , λ1 = λ4 = 0, 

�2 =

√
3

3
 , �3 =

1

3
 , where α = 2. From definition of the Rényi-α entanglement, after simple 

computation, we get E2(φA|BC) = 0.98230, E2(φAB) = 0.66742, E2(φAC) = 0.19010, and 
E
�

2
(�A|BC) = (0.98230)� ≥ E

�

2
(�AB) + (2� −

�2

�+1
− 1)E

�

2
(�AC) +

�2

�+1
E
�−1

2
(�AB)E2(�AC)

= (0.66742)� +
�2

�+1
(0.66742)�−1(0.19010) + (2� −

�2

�+1
− 1)(0.19010)� . While the formula 

in [12] is E�
2
(�AB) +

�

2
E
�−1

2
(�AB)E2(�AC ) + (2� −

�

2
− 1)E

�

2
(�AC ) = (0.66742)� +

�

2
(0.66742)�−1(0.19010) + (2� −

�

2
− 1)(0.19010)� . 

One can see that our result is tighter than the ones in [12] for μ ≥ 1. See Fig. 2.

Theorem  5 For any 
√
7−1

2
≤ 𝛼 < 2 , the power μ ≥ 1, � =

�

2
 , and N-qubit mixed state 

�A|B1⋯BN−1
 , if C(�A|Bi

) ≥ C(�A|Bi+1⋯BN−1
), i = 1, 2,⋯ ,N − 2 , N > 3, then we have

where h =  2μ − 1, 
QABN−2

= E
�
�(�A|BN−2

) +
�2

�+1
E
�−2
� (�A|BN−2

)E2
�
(�A|BN−1

) + (2� −
�2

�+1
− 1)E

�
�(�A|BN−1

).

Proof For 
√
7−1

2
≤ 𝛼 < 2 , μ ≥ 1, and � =

�

2
 , we consider an N-qubit mixed state �A|B1⋯BN−1

 , 
from Lemma 4, we have

(39)
E
�
� (�A|B1B2

) ≥ E
�
� (�AB1

) +
�2

�+1
E
�−1
� (�AB1

)E�(�AB2
)

+

(
2� −

�2

�+1
− 1

)
E
�
� (�AB2

),

(40)
E
�
� (�A|B1B2

) ≥ E
�
� (�AB2

) +
�2

�+1
E
�−1
� (�AB2

)E�(�AB1
)

+

(
2� −

�2

�+1
− 1

)
E
�
� (�AB1

).

(41)E�

�
(�A|B1⋯BN−1

) ≥

N−3∑

i=1

hi−1E�

�
(�A|Bi

) + hN−3QABN−2
,
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where the first inequality comes from the monotonically increasing property of the function 
fα(x) and inequality (3), the second inequality is due to Lemma 6, and the third inequality is 
due to the fact that C(�A|Bi

) ≥ C(�A|Bi+1⋯BN−1
) , i = 1,2,⋯ ,N − 2. According to the definition 

of the Rényi-α entanglement and the denotation of QABN−2
 , we obtain inequality (41).

Theorem 6 For 
√
7−1

2
≤ 𝛼 < 2 , the power μ ≥ 1, � =

�

2
 , and N-qubit mixed state �A|B1⋯BN−1

 , 
if C(�A|Bi

) ≥ C(�A|Bi+1⋯BN−1
), i = 1, 2,⋯ ,m , C(�A|Bj

) ≤ C(�A|Bj+1⋯BN−1
) , j = m + 1,m + 2,⋯N 

− 2, N > 3, then we have

where h =  2μ − 1, 
QABN−1

= E
�
�(�A|BN−1

) +
�2

�+1
E
�−2
� (�A|BN−1

)E2
�
(�A|BN−2

) + (2� −
�2

�+1
− 1)E

�
�(�A|BN−2

).

(42)

E
�
�(�A|B1⋯BN−1

) ≥ f
2�
�

(√
C(�A|B1

) + C2(�A|B2⋯BN−1
)

)

≥ f
�
� (C(�A|B1

)) +
�2

�+1
f
�−2
� (C(�A|B1

))f 2
�
(C(�A|B2⋯BN−1

))

+(2� −
�2

�+1
− 1)f

�
� (C(�A|B2⋯BN−1

)

≥ f
�
� (C(�A|B1

)) + hf
�
� (C(�A|B2⋅BN−1

))

≥ ⋯

≥ f
�
� (C(�A|B1

)) + hf
�
� (C(�A|B2

)) +⋯ + hN−4f
�
� (C(�A|BN−3

))

+hN−3
{
f
�
� (C(�A|BN−2

)) +
�2

�+1
f
�−2
� (C(�A|BN−2

))f 2
�
(C(�A|BN−1

))

+(2� −
�2

�+1
− 1)f

�
� (C(�A|BN−1

))

}
,

(43)E
�
�(�A�B1⋯BN−1

) ≥
m∑
i=1

hi−1E
�
�(�ABi

) + hm+1
N−3∑
j=m+1

E
�
�(�ABj

) + hmQABN−1
,

Fig. 2  The axis E stands the Rényi-α entanglement of |ψ〉A|BC, which is a function of μ (1 ≤ μ ≤ 4). The 
dotted line stands the value of E�

2
(�

A|BC) . The dashed line stands the lower bound given by our improved 
monogamy relations. The solid black line represents the lower bound given by [12]
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Proof When C(�A|Bi
) ≥ C(�A|Bi+1⋯BN−1

) , i = 1,2,⋯ ,m, from Theorem 5, we have

When C(�A|Bj
) ≤ C(�A|Bj+1⋯BN−1

), j = m + 1,m + 2,⋯N − 2 , N > 3, from Lemma 6, we 
get

where the first inequality comes from the monotonically increasing property of the func-
tion fα(x) and inequality (3), the second inequality is due to Lemma 6, and the third ine-
quality is due to the fact that C(�A|Bj

) ≤ C(�A|Bj+1⋯BN−1
) , j = m + 1,m + 2,⋯N − 2, N > 3. 

According to the denotation of QABN−1
 and combining inequality (44) and (45), we complete 

the proof.

Remark 3 We consider a particular case of N = 3. Note that when 
√
7−1

2
≤ 𝛼 < 2 , the power 

μ ≥ 1 and � =
�

2
 , if E�(�AB1

) ≥ E�(�AB2
) , then we get the following result,

if E�(�AB1
) ≤ E�(�AB2

) , then

To see the tightness of the Rényi-α entanglement directly, we give the following 
example.

Example 3 Let us consider the state in (27) given in Example 1. Suppose that �0 =
√
5

3
 , λ1 = 

λ4 = 0, �2 =
√
3

3
 , �3 =

1

3
 , and � =

√
7−1

2
 . From definition of the Rényi-α entanglement, we 

have Eα(|ψ〉A|BC) = 0.99265, Eα(|ψ〉AB) = 0.83477, Eα(|ψ〉AC) = 0.41466, and 
E
�
� (�A|BC ) = (0.99265)� ≥ E

�
� (�AB) +

�2

4+2�
E
�−2
� (�AB)E

2
� (�AC ) + (2

�
2 −

�2

4+2�
− 1)E

�
� (�AC ) = (0.83477)� +

�2

4+2�
(0.83477)�−2(0.41466)2

(44)

E
�
�(�A�B1⋯BN−1

) ≥ f
�
� (C(�A�B1

)) + hf
�
� (C(�A�B2

)) +⋯ + hm−1f
�
� (C(�A�Bm

))

+hmf
�
� (C(�A�Bm+1⋯BN−1

))

=
m∑
i=1

hi−1E
�
�(�ABi

) + hmf
�
� (C(�A�Bm+1⋯BN−1

)).

(45)

f
�
� (C(�A|Bm+1⋯BN−1

)) ≥ f
2�
�

(√
C2(�A|Bm+1

) + C2(�A|Bm+2⋯BN−1
)

)

≥ f
�
� (C(�A|Bm+2⋯BN−1

)) +

(
2� −

�2

�+1
− 1

)
f
�
� (C(�A|Bm+1

))

+
�2

�+1
f
�−2
� (C(�A|Bm+2⋯BN−1

))f 2
�
(C(�A|Bm+1

))

≥ f
�
� (C(�A|Bm+2⋯BN−1

)) + hf
�
� (C(�A|Bm+1

))

≥ ⋯

≥ hf
�
� (C(�A|Bm+1

)) +⋯ + hf
�
� (C(�A|BN−3

))

+

{
f
�
� (C(�A|BN−1

)) +
�2

�+1
f
�−2
� (C(�A|BN−1

))f 2
�
(C(�A|BN−2

))

+

(
2� −

�2

�+1
− 1

)
f
�
� (C(�A|BN−2

))

}
,

(46)
E
�
�(�A|B1B2

) ≥ E
�
�(�AB1

) +
�2

�+1
E
�−2
� (�AB1

)E2
�
(�AB2

)

+

(
2� −

�2

�+1
− 1

)
E
�
�(�AB2

),

(47)
E
�
�(�A|B1B2

) ≥ E
�
�(�AB2

) +
�2

�+1
E
�−2
� (�AB2

)E2
�
(�AB1

)

+

(
2� −

�2

�+1
− 1

)
E
�
�(�AB1

).
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+ (2
�

2 −
�2

4+2�
− 1)(0.41466)� . While the formula in [12] is 

E
�
� (�AB) +

�

4
E
�−2
� (�AB)E

2
� (�AC ) + (2

�
2 −

�

4
− 1)E

�
� (�AC ) = (0.83477)� +

�

4
(0.83477)�−2(0.41466)2 + (2

�
2 −

�

4
− 1)(0.41466)� . One 

can see that our result is tighter than the result in [12] for � =
�

2
 , γ ≥ 2. See Fig. 3.

5  Conclusion

Multipartite entanglement can be regarded as a fundamental problem in the theory of 
quantum entanglement. Our results may contribute to a fuller understanding of the Tsal-
lis-q and Rényi-α entanglement in multipartite systems. In this paper, we have explored 
some tighter monogamy relations in terms of η th power of the Tsallis-q entanglement 
T�
q
(�A|B1⋯BN−1

) (η ≥ 1, 2 ≤ q ≤ 3) and the Rényi-α entanglement E�
� (�A|B1⋯BN−1

) (μ ≥ 1, 
α ≥ 2 ) and E�

�(�A|B1⋯BN−1
) (γ ≥ 2, 

√
7−1

2
≤ 𝛼 < 2 ). We show that these new monogamy 

relations of multiparty entanglement have larger lower bounds and are tighter than the 
existing results [11, 12]. Our approach may also be applied to the study of monogamy 
properties related to other quantum correlations.
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