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Abstract

Monogamy relations characterize the distributions of quantum entanglement in multipartite
systems. In this work, we present some tighter monogamy relations in terms of the power
of the Tsallis-g and Rényi-a entanglement in multipartite systems. We show that these new
monogamy relations of multipartite entanglement with tighter lower bounds than the exist-
ing ones. Furthermore, three examples are given to illustrate the tightness.

Keywords Monogamy relations - The Tsallis-¢g entanglement - The Rényi-a entanglement

1 Introduction

Quantum entanglement is an essential feature in terms of quantum mechanics, which dis-
tinguishes quantum mechanics from the classical world and plays a very important role in
communication, cryptography, and computing. A key property of quantum entanglement is
the monogamy relations [1, 2], which is a quantum systems entanglement with one of the
other subsystems limits its entanglement with the remaining ones, known as the monogamy of
entanglement (MoE) [2, 3]. For any tripartite quantum state p45c, MOE can be expressed as
the following inequality E(p4pc) = E(pap) + E(pac), Where pyp = tr(paipe)s Pac = Up(Pac)
and £ is an quantum entanglement measure. Furthermore, Coffman, Kundu and Wootters
expressed that the squared concurrence also satisfies the monogamy relations in multiqubit
states [1]. Later the monogamy relations are widely promoted to other entanglement measures
such as entanglement of formation [4], entanglement negativity [5], the Tsallis-g and Rényi-a
entanglement [6, 7]. These monogamy relations will help us to have a further understanding of
the quantum information theory [8], even black-hole physics [9] and condensed-matter phys-
ics [10]. In [11, 12], the authors prove that the 7 th power of Tsallis-g entanglement satisfies
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monogamy relations for 2 < g <3, the power # > 1, the Rén\yi—a entanglement also satisfies
monogamy relations for a >2, the power n >1,and2 > a > 77_1 the power > 2.

Our paper is organized as follows. In Section 2, we review some basic preliminaries of
concurrence, Tsallis-g, and Rényi-a entanglement. In Section 3, we develop a class of monog-
amy relations in terms of the Tsallis-g entanglement, they are tighter than the results in [11].
In Section 4, we explore a class of monogamy relations based on the Rényi-a entanglement
which are tighter than the results in [12]. In Section 5, we summarize our results.

2 Basic Preliminaries
We first recall the definition of concurrence. For a bipartite pure state lp),5, the concur-
rence can be defined as [13-15]
CUP)a5) = \/2(1 = trp?), (1)
where p, = tr5(1p) ).
For any mixed state p,p, its concurrence is defined via the convex-roof extension in [16]

Clpag) = min Y. p,C(1@;)ap), 2
J

where the minimum is taken over all possible pure state decompositions of
PaB = zpj|§0j>AB<§0j|’ and ZPJ‘ =1

J J
It has been proved that the concurrence C(pyp, ...5, ) Of mixed state p, g ..p  has an
important property such that [17]

N-1
C*(Papp, ) = Co(paip) + Co(pap, gy ) = o 2 Z C*(papp)» 3)
i=1

where pAlBi = trBl"'B[—lBH-l'“BN—I (pA|Bl“‘BN—|)'

Quantum entanglement plays an important role in quantum information. Another well-
known quantum entanglements are Tsallis-g entanglement and Rényi-a entanglement. For
any bipartite pure state lgp) 15 the Tsallis-g entanglement is defined as [18].

1
T,(10)ap) = Sy(pa) = ﬁ(l - trp}), )
where ¢ >0, g#1, and p, = trB(I(p)AB((pI). When ¢ tends to 1, the Tsallis-g entropy con-
verges to the von Neumann entropy.

For a mixed state p,p, the Tsallis-g entanglement is defined by its convex-roof exten-
sion, which can be expressed as

T,(pag) = min ZpiTq(|(ﬂi>A3)’ )

where the minimum is taken over all possible pure state decomposition of
Pap = Zpil(pi>AB<(Pi|~
1
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When 2= f <g< 5+y13 , for any bipartite pure state ), it has been explored that the
Tsallis-g entanglement T, (I(p) ,p) has an analytical formula [19],

T,(19)48) = 2,(C*(19)15)), (6)

where the function 8,() is defined as

1 1+Vi—x\ [(1-vi=x)
]

for 0 <x <1, and g,(x) is an increasing monotonic and convex function in [20]. Specially,
for 2 < g <3, the function g (x) has an important property [18]

8, +5%) 2 g,(6%) + 8,07). ®)

When 5_;/6 <¢g< > ;/E, for any two-qubit mixed state p, the Tsallis-g entanglement can
be expressed as Tq(p) = gq(Cz(p)) [20].
Now, we recall some preliminaries of the Rényi-a entanglement. For a bipartite pure state

lp) 15> the Rényi-a entanglement can be defined as [21]

E(|9)ap) = i ~log (1), )

where a >0, and a# 1, p, = trz(lp) ,5{¢!). When « tends to 1, the Rényi-a entropy con-
verges to the von Neumann entropy.
For a bipartite mixed state p 5, the Rényi-a entanglement can be defined as

Ey(pan) = min Y piE,(10:)ap): (10)

where the min &num is taken over all possible pure state decompositions {p;, @/, 3} of pup.
When a > ~—, for any two-qubit state p,,, the Rényi-a entanglement has an analytical
formula [21, 22]

E (pap) = f,(C(pap)), (11)

where f,(x) can be expressed as

1 1-V1I-22\" [(1+V1-x2\"
Ja) = log, t——) | 12)
J 2 2
0 <x <1, and f,(x) is a monotonically increasing convexity function.
For a >2, the function f,(x) satisfies the following inequality [22],
£ (V) 2 £, + 1,00 (13)
or @ < a < 2, the function f,(x) has an important property such that [23]
£(VE+3) 2 £200+ 200, (14)
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3 Tighter Monogamy Relations in Terms of the Tsallis-q Entanglement

To present the tighter monogamy relations of the Tsallis-g entanglement in multipartite
systems, we introduce three lemmas as follows.

Lemma1 For0<x<1andu=>1, we have

(T+0% > 1+ Lyt (zu_ﬂ_z _ 1>xu
p+1 p+1

I (15)
> 1+gx+(2ﬂ—§—1)xﬂ > 1424 — 1),
R
ProofIfM)p[ l)ﬂquﬂ)tm] inequality is trivial. Otherwise, let f(u,x) = ——=— then,
. When > 1 and 0 < x <1, tis obvious that 1 + ”(*‘ Ml <1 4 = Thus,
af < 0, and f{ux) is a decreasing function of x, ie. f(u,x) > f(u, 1) = 2# — £~ — 1 Consequently, we

2
have(1+x)">1+—x+<2”—MT—1>x".SmoeM+]_2,f0r0§x§landyzl,onegets
1+#x+(2—u’% 1);»—1+ (- xu)+(2ﬂ—1>xﬂ21+gx+(2ﬂ—g—1)xﬂ:1-

FEG—X) @ - Dt 2 L+ = D

Lemma2 Forany?2<q<3, 21, g (x) defined on the domain D = {(x,y)|0 < x,y <1}, if x
>y, then we have

2
80 +0%) 2 g0 + el 2>gq(y2>+<2” #—1>g;’(y2)- (16)

Proof For 2 < g <3, u >1, according to inequality (8), we have
gHOP + ) 2 (g,(8) + g, 0

_ 2 2,0%)
= g‘q‘(x )a+ m)ﬂ a7)

> gh(®) + o gh 1 (0)g, 07) + (2 — L — 1)gh(P),

where the first inequality is due to inequality (8) and the second inequality is due to Lemma
L.

Lemma 3 For any N-qubit mixed state pyp ...5, . we have

T (pai,.-B,,) 2 gq(CZ(PA|BI--.BN_I))- (18)
Proof Suppose that p, .5 = Zpi|(pi)A|Bl..,BN_] is the optimal decomposition for
T,(paiB,...8,_,)> then we have l

T (Pais,8y ) = 22T (|0)aB,.8, )
= 32 C@ a5,

éq(ZPiC2(|(Pi)A|BI-~.BN_,)) (19)
2o (P CUPIap,5, )P
2o(C2 s, D)

vV v

v
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where the first inequality is due to that g (x) is a convex function, the second inequality is
due to the Cauchy-Schwarz inequality: (¥ a?)(Xb7) = (¥ a;b;), with a; = 4/p;, and

l i l
b, = \/p_l-C(|(pi) AlB,--B,_,)» and the third inequality is due to the minimum property of
C(pAIBl~~~BN_1)'
Now, we give the following theorems of the monogamy inequalities in terms of the
Tsallis-g entanglement.

Theorem 1 For any 2 < g <3, the power n 21, and N-qubit mixed state PAIB,-By_p* if
C(/’A|B)>C(/’A|B ),i=1,2,---,N—=2,N>3, we have

i+1" BN 1
N-3 )
TY(paip, .5, ) 2 Z} hlilT;’(PmB‘) + hN73QABN_2’ (20)
where h =21 -1,
2 2
QABN-z = Tg(pA|BN-2) + #TZ_I(pA|BN—2)Tq(pA|BN—1) + (2” - # - 1>Tg(pA|BN—1)'

Proof Let p AIB, By, be an N-qubit mixed state, from Lemma 3 and inequality (3), we have

T3Patp,-n,.,) 2 83(CPap) + C (P, )

g1C(pap ) + 281 (CX 5 )8y (CP Py, )
+(2" - —2 - 1)8"(C2(/’A|B2 By,

g1(c? (pmgl)) +hgl(C*(pap,...5, )

\%

2

v

where the first inequality is due to the monotonically increasing property of the function
gq(x) and inequality (3), the second inequality is due to Lemma 2, and the third inequality
is due to the fact that Cz(pA|3 ) > C? (PaIB,-By )

Similar calculation procedure can be used to the term g”(CZ(PA|3, By I)) by iterative
method we can get

gZ(Cz(Psz...BN_l))
81(C2 o) + g (Cpris, ., ) 2 -
§1(C2pa1,0) + hgI(C2pp ) + - + V5N CHpays, )

+hV- 4{g"<c2<pA.BN D+ gt (o5, 8, (Co(Parn, )

vV v

(22)

n+1

+(21 — n% ) l)gZ(Cz(/’Ale))}'

According to the fact T, (p) = gq(Cz(p)) for any two qubit mixed state p, and combining
inequality (21) and (22), we complete the proof.

Theorem 2 For any 2 < g <3, the power n 21, and N-qubit mixed state pyp .5, if

C(pA|B[) > C(pA|B£+1“‘BN_|)’i =1,2,-,m 7
Cloap) < Clpap,, .5, )-J =m+ 1m+2,-+N—2,N>3, we have

N-3
T (Paip, ) = Zh’ "Tpap) + 1™ Y, THpap) +H"Qup, (23)
=1 Jj=m+1
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where h —2’7 -1,
QABN 1 =7 (pAIBN 1) + 11+ng l(pAlBN 1)T (pAlBN 2) +(Q2' -5 - DTy (pAlBN 2)
Proof For 2 < g <3, >1, we obtain

7’;;’(PA|BI---BN4)

Y KT a) + HHC (s

1:]

2 W T () + h’”{g"(Cz(pAw By, ) T (21— n”q — DgI(C*(pyp,,,))

i=1

I\/

)

1By

IV

i’]+1

g” ! (Cz(pA|Bm+2-~~BN , ))gq(cz(pAleH ) }

> 3K T p5) + 1 GC s ) + WG C o ) 2
i= 1
N-3
2
> Zh, T(pa) + 1Y gg<cz(pABj»+h'"{(2"— L~ DgC(oup, )
i=1 Jj=m+1

+1(C2(pagy, ) + g1 (C2(parp, )8 (CP (s, z))}

rl+]

(24)
where the first inequality is due to Theorem 1, and the second inequality is due to Lemma 2
and the fact that C(pAlBj) < C(pA|Bj+1"'BN71) forj=m+1,m+2,-N —2, N> 3. According to
the denotation of 0,  and combining inequality (24), we obtain inequality (23).

Remark 1 We consider a particular case of N =3. Note that when 2 < g <3, the power 5
>1,if Tq(pAB,) > Tq(pABz), then we get the following result,

2
Tg(/’mBle) b T"(PAB )+ LT”_l(PAB )7, (/’ABz)

¥l 25)
+(2'1 L 1>T (Pas,)
IfT,(pag,) < Ty(pap,), then
2
Tg(pAlBle) = TV’(PABZ) + %Tg_l(PABZ)Tq(PABI) 26)
(2= L = 1) T2,

To see the tightness of the Tsallis-g entanglement directly, we give the following
example.

Example 1 Under local unitary operations, the three-qubit pure state can be written as [24,
25]

[w)apc = 491000) + 4,€?1100) + A,]101) + A5[110) + A,|111), 27)

where 0 < ¢ <7, 4;>0,i=0,1234, andZ?zoﬁiz = Lsetd, = g A =0,4,=0,4, = % Ay = =

=2. From the definition of the Tsallis-¢ entanglement, after simple computation, we can get
T, (painc) = 841220\ + (A + )P LT pap) = 8 [, and T () = g [
then we have T (pypc) =049383, T (psp) =037037, and T (psc) =0.12346. Consequently,
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2 2 —
T3 (paise) = (049383)" 2 Tl(pup) + (27 = 15 = DT0ac) + 5T (pan)Ta(Pac) =

(0.37037)" + r;’i(37037)'7—1(0.12346) +(2" - # — 1)(0.12346)"

While the result in [11] is
T!(pap) + 27 = DT (pa0) + 1T (pac) (T2 () — (T2 (p40))) = (0.37037)" +

(27 = 1)(0.12346)" + O‘uzﬂ((osﬁosm—1 — (0.12346)171)

One can see that our result is tighter than the ones [11] for # > 1. See Fig. 1.

4 Tighter Monogamy Relations in Terms of the Rényi-a Entanglement

In order to present the tighter monogamy relations of the Rényi-a entanglement in mul-
tiqubit systems, we introduce three lemmas as follows.

Lemma4 For any N-qubit mixed state pyp ..., . we have
E,(paiB,..8, ) Zfa(C(pap, ..., ))- (28)

Proof Suppose that pyp .5 = X Pil®:)ap,..5, , 1S the optimal decomposition for
i

E.(pap,..5,_, ) then we have

0.05 L L L L L L L L L )
1 . . . . .

Fig.1 The axis T stands the Tsallis-g entanglement of |V’>A|Bo which is a function of n (1 < n <3). Ebj
dotted line stands the value of T;’ (Pajgc)- The dashed line stands the lower bound given by our improve
monogamy relations. The solid black line represents the lower bound given by [11]
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E(paiB,.8, ) = ZPiEa(|(Pi>A|B,---BN,])
R S ACE [ T
2 f;(zpic(l(pi>A|Bl...BNil)) (29)
> [(Clorp, o, D)
where the first inequality is due to the convexity of f,(x) and the last inequality follows

from the definition of concurrence for mixed state.

Lemma5 For any a 22, u 21, suppose that the function f,(x) defined on the domain D =
{GI0<xy<1,0< >+ y2 <1}, if x>y, then we have

2
A2 +52) = 1) + f" W, + <2" - MMT - )f”(y) (30)

Proof For p > 1, and a >2, we have

Ja (W2 4y 2 (f,(0) + £, (y))”

> flo+ T @he+ (- L - e, OV

where the first inequality is due to inequality (13), and the second inequality is due to
Lemma 1.

V-1

Lemma 6 For any Y—— < a < 2, u 21, u =L the function f,(x) defined on the domain D
={N0<xy<1,0<x2+y* <1}, ifx >, thenwehave

2
SV +32) = () + ﬂ’i

Proof For u >1, and u = £, we have

I+ yz) (> (x) +f,§(y))”
> fi) + LA 0020 + (2 = L = DR,

-2 2 /42
lfg 0, + <2" BT 1>f,f ). (32)

(33)

where the first inequality can be assured by inequality (14), and the second inequality is
due to Lemma 1.

Now, we give the following theorems of the tighter monogamy inequality in terms of
the Rényi-a entanglement.

Theorem 3 For any a =2, the power u >1, and N-qubit mixed state PaiB, By p
C(PA|B) > C(PA|B ),i=1,2,---,N—2,N >3, then we have

i+1° BN 1
N-3
E:;(pAIB,---BN,I) = Z hl_lES(PAmi) + hN_3QABN72, (34)
i=1
where h —2” -1,
Qus,, = Edlonp, ) + 2 E" oap, EL(Papp, )+ Q" — L= = DEX(pu5. ).

Proof We consider an N-qubit mixed state p,p ..., , from Lemma 4, we have
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Ey(pap,8y ) = fo <\/C2(pA|Bl) + Cz(pAle~~~BN_l)>
> f4(Cloap, ) + oSt (Clonp W Clpapyam, )

(2;4 _ "_2 - 1)}‘{;(6‘(,0A|B2 By)

> HCloas ) + o, D)
N A|B, A|B,-+-B (35)

> Sl )+ Bl ) + =+ H (o)
+hN {fé‘ (Cloapp, ) + ﬁff {(Coapy IVl Coayp,. )

+<2*‘ - ;‘% - 1>ff(C(PA|BN1))}’

where the first inequality is due to the monotonically increasing property of the function
f,(®) and inequality (3), the second inequality is due to Lemma 5, and the third inequality
is due to the fact that C(pAlB‘_) > C(/’A\B,-H-»»BN,,)’ i =1,2,- ,N —2. Then, according to the
denotation of Q 4By, and the definition of the Rényi-a entanglement, we complete the proof.

Theorem 4 For any a 22, the power p 21, and N-qubit mixed state pyp ..p . if
Cloaip) 2 Clpap,,, -, )» t =12, m, Clpyp) < Clpap, ) j=m+1lm+2,N
—2, N >3, then we have

+1° BN 1

N-3
E*(paip,p,.,) 2 Z W B (pap) + W™ Y EMpap) + W Qg s (36)
i=1 Jj=m+1
where h —2" -1,
Qusy , = Exoas, )+ 2Bl (bup, DEa(paip, ) + (2" = 25 = DEL oy, )
Proof For any a 22, u 21, C(pyp) =2 C(pyyp,,..5,_,)» 1 =1,2,;°* ;m, from Theorem 3, we
know that
El o, o, ) 2 D W B pas) + W' (Clonsp,,, 5, ,): (37)
i=1

When C(pajp) < Clpap

i1 B

j=m+1,m+2,.-N—-2 N>3, we get that

Ja(Cloag,, n, ) 2 fo <\/C2(pA|Bm+I) + CXpap,,,By. 1))

> i (Cloap, 8, ) + (2” l— - 1)fa (Clpgip, )

m+1
>
+#ff : (C(payB,,.,By., ))fm(c(!’mzam+I )

> [1(Coarn, o, N+ WA Clor )
S et e (38)

> WA (Clous, )+ = +F2(Clous, )}
+{f£(C(PA|BN_1 )N+ _f” 1(C(/’A|BN_1))fa(c(pA|BN_2 )

p+1

+(2* - fl -y (CZ(PA|BN2))}’
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where the first inequality is due to the monotonically increasing property of the function
f,(x) and inequality (3), the third inequality is from the fact that C(p Al B,_) <C(p AlByyy+Byy )sj
=m+1m+2,N -2, N >3. According to the definition of the Rényi-a entanglement,
and combining inequality (37) and (38), we obtain inequality (36).

Remark 2 We consider a particular case of N =3. Note that when a > 2, the power u > 1, if
E (pap,) = E,(p4p,), then we get the following result,

Eb(paine,) = Ex(pan) + 7 E (045 Eo(pas,)

+(2” — Lo 1)Elpas,). e

if E,(pag,) < E,(pap,), then

2 -
Ey(paip,,) 2 Ei(pap) + 25 E0™ (pap)Eo(pas,)
2 ;4;—1 2 1 (40)
(2 = 25 = 1)l pas,):
To see the tightness of the Rényi-a entanglement directly, we give the following
example.

Examp:}eZ Let us consider the state in (27) given in Example 1. Set 4, = ‘[ , A =44 =0,
Ay = = 5 where o =2. From definition of the Rényi-a entanglement after simple
computatlon we get Ey(@pup0) =0.98230, Ez((PAB) =0.66742, Ez((PAc) =0.19010, and

Ef (PA|Bc) (. 98230)” >EM(PA3)+(2” S s 1)E (PAc)+ i EM I(PAB)Ez(PAc)

= (0.66742)* + —(0 66742)#=1(0. 19010) + (2" — £ —1)0. 19010)“ While the formula
in [12] 1S E"(,;AB) + ”Ef‘ (PaB)E2 (pac) +(2H — & — 1)E‘_‘(pAC) (0. 66742)“ + & 5. 66742)=1(0.19010) + (24 — £ — 1)(0.19010)~.
One can see that our result is tighter than the ones in [12] for u >1. See Fig. 2.
V7-1 y

Theorem 5 For any - <a< 2, the power u 21, u= > and N-qubit mixed state
PAIB,-By_p» ifC(PA|B,) > C(I’A|B ),i=1,2,---,N—2,N >3, then we have

i+1 "'BN—I
N-3
E(};(pAlB]"'BN—l) z Z hl_lEg(pAlB,) + hN_3QABN72’ (41)
i=1
where h —2” -1,
Ous,., = E, (pA‘BN )+ LB g, JEXpagp, )+ (2 = A5 = DELpayp, )
Proof For Y-! -— <a<2,p>l and y =7, we consider an N-qubit mixed state pyp .5,

from Lemma 4, we have
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0

Fig.2 The axis E stands the Rényi-a entanglement of Iy/)AlBC, which is a function of y (1 < u <4). The
dotted line stands the value of E}(p4pc). The dashed line stands the lower bound given by our improved
monogamy relations. The solid black line represents the lower bound given by [12]

Elpa,.5, ) 2 [ <\/C<pA|B,> + cz<pA|Bz...BN_l)>

> f1(Cloap,) + ””—:1 Jﬁz(C(PAwl))ff(C(PAle...BNfl))
+(24 - ,,”_2 — Ufa(Cloip,..5,,)

> fr (C(pA|B ) + hfy (C(pAle By_ 1))
> (42)

2 fy(C(pA|B )+ hf{ (Cloap,)) + -+ + BN f{(Cloap, )
+hN {fa’(C(meNz)) + jfay 2(Clpap, V2 (Cloa, )

+(Q# = L D (Cpy,. ,))}

where the first inequality comes from the monotonically increasing property of the function
f,(x) and inequality (3), the second inequality is due to Lemma 6, and the third inequality is
due to the fact that C(py ) = C(pyp,,...5, ) i =1,2,* ,N —2. According to the definition
of the Rényi-a entanglement and the denotation of O, . we obtain inequality (41).

Theorem 6 For —”72_1 < a<?2,the power uy>1, u= g, and N-qubit mixed state PAIB,~By_
lfc(pA|B[) Z C(pA|Bi+lu~BN_])9i = 1’25 s, m, C(pA|Bj) S C(pA|Bj+1mBN_l)7j =m+ 1!m +2a”.N
-2, N >3, then we have

m N-3
E(pap,By) = 2 hl_lE;(PAB,.) +h Y Eﬁ(m/) +h"Qup, (43)
i=1 Jj=m+1
where h :2" -1,
Qusy , = Enlbas, )+ 2B (pas, JEXpapp, ) + 2 = 25 = DEL(pups,. )
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Proof When C(PA|B ) > C(PA|B ), i =1,2,-+ ,m, from Theorem 5, we have

i+ BNI

Eq(pap,-5,,) = fa(Clpap)) + hfg (Clogp,)) + -+ + hm_lfo{(c(/’msm))

+H"f (Cpap,,., -5, (44)

= X H T Ew(pap) + 1" (Cloapg -

- 1By
i=1

When C(pA|B/) < C(pAIB,»+l~~~BN_,)’j =m+1,m+2,---N—2, N >3, from Lemma 6, we
get

Ja(Clous,,, ., 2 £ <\/C2(pA|Bm+l) + Cz(PA|B,”+2~~BN_1)>

> 1CPaigy o )+ (2= 25 = 1) Cloass,)

+L [T o, o, I2(Corp,.)

> [1(Clous, o, )+ M Clogs, )
N ’ 45)

> hfi(Clpapp,, )+ -+ + hfz (Clpyp, )
+{f5 (Cloajn, )+ 2512 (Cloag, WACous, )

(- L 1) (C(pMBM))},

where the first inequality comes from the monotonically increasing property of the func-
tion f,(x) and inequality (3), the second inequality is due to Lemma 6, and the third ine-
quality is due to the fact that C(l’A|BJ) < C(pAIB,H~-~BN,,)’j =m+1m+2,N-2, N>3.
According to the denotation of Q5  and combining inequality (44) and (45), we complete

the proof.

Remark 3 We con51der a particular case of N =3. Note that when \[2 < a < 2, the power
u>landp = E’ if E,(pag,) = E,(pap,), then we get the following result,

2 —
El(pas,5,) = En(pag) + ”—EY *(Pan, JE2(Pap,)
+<2,, e 1)E (Pas,):

u+l

(46)

if E,(pap,) < Eq(pap,), then

E, (PA|B Bz) > E, (/’ABZ) + _EY 2(PA3,)E2(PA3])

(47)
+(2M— - 1>E (Pas):
To see the tightness of the Rényi-a entanglement directly, we give the following
example.

Example 3 Le\t/us con31der the state \}n (27) given in Example 1. Suppose that A, = i JAp =
Ay =0, 4y = -7, -, and « . From definition of the Rényi-a entanglement we
have Ea(h//)A,BC) _o 99265, E (lw)AB) =0.83477, E,(y),c) =0.41466, and

2 Py
Ely(pajpc) = (0.99265) > EL(pap) + 412V EL” (pAB)EZ(pAC)+ (22 — L — DEL(pac) = (0.83477) + 755-(0.83477) 2(0.41466)*

2y 4+2
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Fig.3 The axis E stands the Rényi-a entanglement of Iy/)AlBC, which is a function of y (2 <y <6). The dot-
ted line stands the value of E (pA‘ sc)- The dashed line stands the lower bound given by our improved

monogamy relations. The solld black line represents the lower bound given by [12]

+(2§—£—1)(O.41466)V. While the formula in [12] is

El(pap) + gEg’z(pAB)Eg(pA@ + (2% - g — DEL(pac) = (0.83477) + %(0.83477)”2(0‘41466)2 + (2% - g — 1)(0.41466)" . One
can see that our result is tighter than the result in [12] for 4 = g y >2. See Fig. 3.

5 Conclusion

Multipartite entanglement can be regarded as a fundamental problem in the theory of
quantum entanglement. Our results may contribute to a fuller understanding of the Tsal-
lis-g and Rényi-a entanglement in multipartite systems. In this paper, we have explored
some tighter monogamy relations in terms of 7 th power of the Tsallis-g entanglement
T" (PA|B By ]) n=>1,2<¢g<3)a \?_d the Rényi-a entanglement E”(pAlB] By l) u>1,
a >2 ) and E” (pAlB By l) (y =2, < a <2). We show that these new monogamy
relations of multiparty entanglement have larger lower bounds and are tighter than the
existing results [11, 12]. Our approach may also be applied to the study of monogamy
properties related to other quantum correlations.
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