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Abstract
In this paper we propose a scheme containing two qutrits (�-type three-level atoms) that
interact with a two-mode quantized field using the Rabi model (i.e., without considering the
rotating wave approximation (RWA)), where the dipole-dipole (D-D) interaction between
the two atoms is also taken into account. At first, we transform the corresponding Rabi
model Hamiltonian to the generalized Jaynes-Cummings model (JCM) i.e., with intensity-
dependent atom-field coupling, via an approximate method. Afterwards, by solving the
time-dependent Schrödinger equation and thus achieving the state vector of the system at
arbitrary time, we readily arrive at the density matrix of the system. In this way, by attain-
ment of the reduced density matrices for different constituents of the system, we are able to
evaluate their entanglement between various system components via the calculation of linear
entropy. By an overview of the numerical results, regular and irregular oscillations, collapse-
revival (CR) phenomena, low and high, quasi-stable or even stable amount of entanglement
can be observed. Also, the death and then sudden birth of entanglement are available in some
cases. Among the above-mentioned consequences, stability and quasi-stability of entangle-
ment (under the influence of both aforesaid effects, CRTs and D-D interaction) is practically
remarkable due to its various usefulness in quantum information processing schemes.
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1 Introduction

Quantum entanglement [1] has been considered as one of the most important non-classical
aspects of quantum physics. This phenomenon is now of particular importance in the field
of quantum information science and technology [2]. As a few of its applications, one may
refer to the quantum computing [3], quantum teleportation [4–6], entanglement swapping
[7–10], quantum dense coding [11–13], quantum key distribution [14, 15] and cryptography
[16, 17].

The standard Jaynes-Cummings model (JCM), as one of the simplest model for describ-
ing and generation of entanglement, contains the interaction between a two-level atom with
a single-mode quantized field [18]. As some of the advantages of this model, one may
refer to its simplicity for generalization to more complicated atoms and fields, as well as
its ability to predict collapse-revival (CR) patterns in atomic population inversion and other
quantities, the results of which are largely consistent with experimental realizations. It is
noticeable that, this model is accompanied with the rotating wave approximation (RWA),
i.e., the counter rotating terms (CRTs) in this model are neglected [19] and thus, it is one of
the solvable models in quantum optics field [18, 20]. In this line, Tavis-Cummings model
is a generalization of JCM in which the two-level atom is replaced by two or more two- or
multi-level atoms and the field may be replaced by multi-mode quantized field [21]. As a
few of such schemes one may refer to: systems including two two- and three-level atoms
interacting with a two-mode quantized field [22, 23], two qubits each of which interacts with
a single-mode field in two separate cavities [24], a moving three-level atom that interacts
with a two-mode quantized field [25], two three-level atoms that interact with a two-mode
field [26] as well as other more or less similar atom-field interacting models in the literature
[27–33]. Note that, CRTs describe virtual transitions between atomic and field states, i.e.,
unstable energy terms; so that they are usually ignored in atom-field interactions (especially
in weak coupling regimes) wherein the RWA is valid [19]. However, such terms cannot be
ignored in strong atom-field couplings. To take into account CRTs (virtual photons), while
complicates computations, but can create new features such as the spontaneous release of
virtual photons [34, 35] and non-classical photon statistics [36, 37]. These terms can also
influence on Zeno and anti-Zeno effects [38, 39] and the CR dynamics [40].

In addition, as we implicitly mentioned in above, models describing atom-field inter-
acting quantum systems, even the simplest of them, i.e., the standard JCM, may be solved
analytically only in the RWA (if the CRTs are neglected) [18, 20]; in fact the existence
of CRTs creates serious problems in arriving at analytical solution of the time-dependent
Schrödinger equation. Therefore, a lot of researches has been performed in order to remove
such limitations, which are mainly based on numerical solution.

The dynamics of a micro-maser based on the interaction of light and matter in the absence
of RWA has been studied in [41]. The Rabi model, in the presence of gravity has been dis-
cussed [42]. This model using the coherent state generalization technique has been reviewed
in [43]. The Rabi model under non-resonant conditions has been examined in [44], where
it is shown that the RWA is not satisfactory even under complete resonant conditions for
strong coupling coefficients. The authors in [45] discussed the effect of anti-bunching of the
field in a system of interaction between a two-level atom and a single-mode quantized field
without RWA. Also, the effect of CRTs on the population inversion and squeezed field in
a system consisting of the interaction between a two-level atom with a single-mode quan-
tized field has been recently studied in [46]. The effect of virtual photon processes (CRTs)
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on quantum entropy and entanglement while a two-level atom interact with a single-mode
radiation field has been evaluated in [47]. The statistics of photon and the total energy of
a system containing of a two-level atom interacting with a single-mode quantized field in
the absence of RWA have been evaluated using the coherent state propagator [48]. Also,
the eigen-energy spectrum as well as a formalism for exact analytical form of the eigen-
functions and eigen-values of the Rabi model have been discussed in [49, 50]. Entanglement
dynamics of two independent atoms without RWA has been discussed [51]. The effective
Hamiltonian for two-photon processes in the system of a three-level atom interacting with a
single-mode quantized radiation field beyond the RWA has been obtained and studied using
the perturbation method [52].

However, recently many attempts have been made to solve the problem analytically or
approximately analytically while CRTs are taken into account; among them we may refer to
[53–55] wherein the perturbation method has been utilized. In detail, recently an appropri-
ate analytical method, based on perturbation theory has been proposed for a two-level atom
which interacts with a single-mode field beyond the RWA [53, 54]. Following this method,
a system of interaction between a �-type three-level atom with a single-mode quantized
field has been investigated by one of us [55]. In the above-mentioned two models, either
for two- or three-level atoms, it is shown that taking into account the CRTs is equivalent to
considering the intensity-dependent (nonlinear) atom-field interaction with some particular
nonlinearity function in the dynamical Hamiltonian, i.e., we concern with a Hamiltonian
with RWA, however, with the price of appearing a specific intensity-dependent atom-field
coupling (recall that atom-field intensity-dependent coupling first introduced by Buck and
Sukumar in [56, 57]). In this respect and in direct relation to our present work, more recently,
one of us extended the latter-mentioned models to the interaction between various con-
figurations of three-level atoms with a quantized two-mode radiation field [58], wherein
we encountered with intensity-dependent Hamiltonians with some particular intermixed
intensity-dependent couplings; by this we mean that while in the first steps of outlining
the model we assumed that each mode of the field interacts individually with only one of
the transition lines of the considered three-level atoms separately, in the resultant effective
Hamiltonians, in each of the interacting transition lines, both mode operators of the field
are appeared in the corresponding nonlinearity functions. In addition, noticing that the D-
D interaction possesses particular importance in atoms with enough strong dipole moment
values such as Rydberg atoms (see [59–62] for their usefulness), using the approach in [53,
54] we recently discussed the influence of D-D interaction on the entanglement and pop-
ulation inversion in the system of two qubits interacting with a two-mode quantized field
beyond the RWA [63].

We end our introductory discussion with mentioning that, numerous advantages for
three-level systems relative to two-level systems can be enumerated in quantum information
processing [64]. Quantum cryptography using three-dimensional systems are more secure
than two-dimensional systems in eavesdropping, so that they play an important role in opti-
mization or preventing eavesdropping [65]. Also, three-level systems have more evident
quantum nonlocality compared with two-level systems [66]. The importance and aforesaid
advantages motivated us to study three-level atomic systems here. Therefore, summing up
the above-mentioned facts, in this paper we have considered a system of two three-level
atoms interacting with a two-mode quantum field in an optical cavity by taking into account
CRTs as well as D-D interaction, and then examined the influence of the two mentioned
effects on the entanglement dynamics of different components of the system (Fig. 1).

The contents of this paper are arranged in this order: In Section 2 by proposing a scheme
containing two qutrits interacting with a two-mode cavity field, we introduce an effective

Int J Theor Phys (2022) 61: 147 Page 3 of 21 147



Fig. 1 The scheme of the interaction between two �-type three-level atoms and a two-mode field in the
presence of both D-D interaction and CRTs

Hamiltonian using an approximate method based on perturbation theory, while the CRTs
are also taken into account. In the continuation, we solve the associated time-dependent
Schrödinger equation in order to achieve the state vector of the system and also the reduced
density matrices of the various components of the system. Then, the dynamics of entangle-
ment associated with different parts of the system in the presence and absence of the D-D
interaction as well as the CRTs is examined in Section 3. Finally, we give a summary and a
brief of concluding remarks in Section 4.

2 TheModel Hamiltonian and its Solution

As mentioned in the previous section, in the strong atom-field coupling regimes, the RWA is
inoperative and the CRTs can no longer be ignored. So in this section by inspiring from the
introduced method in Refs. [53–55] and specially [58], we are going to consider a system
of two identical �-type qutrits interacting with a two-mode quantized field in an optical
cavity while CRTs are also taken into account. At first, the Hamiltonian of this system in
the dipole approximation can be written as follows,

Ĥ = Ĥf ree + ĤRWA + ĤCRT . (1)

Here, the free Hamiltonians of atoms and field, atom-field interaction and CRTs are defined
as follows respectively,

Ĥf ree = ν1â
†â + ν2b̂

†b̂ +
∑

j

Ej σ̂jj , j = a, b, c, á, b́, ć, (2)

ĤRWA = g1

(
âσ̂+

ab + â†σ̂−
ab

)
+ g2

(
b̂σ̂+

ac + b̂†σ̂−
ac

)

+ ǵ1

(
âσ̂+

áb́
+ â†σ̂−

áb́

)
+ ǵ2

(
b̂σ̂+

áć
+ b̂†σ̂−

áć

)
, (3)
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ĤCRT = g1

(
â†σ̂+

ab + âσ̂−
ab

)
+ g2

(
b̂†σ̂+

ac + b̂σ̂−
ac

)

+ ǵ1

(
â†σ̂+

áb́
+ âσ̂−

áb́

)
+ ǵ2

(
b̂†σ̂+

áć
+ b̂σ̂−

áć

)
, (4)

where νi (i = 1, 2) are the frequencies of each mode of the field within the cavity, and â (b̂)
and â† (b̂†) are bosonic annihilation and creation operators related to each of the correspond-
ing field modes, respectively. Also, σ̂+

ij = |i〉〈j | (σ̂−
ij = |j〉〈i|) is atomic raising (lowering)

operator. In addition, the parameters g1, ǵ1 (g2, ǵ2) are atom-field coupling coefficients
associated with the left (right) allowed transition lines of atoms 1, 2. Notice that |a〉, |b〉, |c〉,
|á〉, |b́〉 and |ć〉 are the atomic levels of each qutrit with energies Ea , Eb, Ec, Eá , E

b́
and Eć,

respectively. Also, the transition from level |b〉(|b́〉) to |c〉(|ć〉) and vice versa is prohibited
in the electric-dipole approximation and thus, only the transitions |a〉(|á〉) � |b〉(|b́〉) (left
lines) and |a〉(|á〉) � |c〉(|ć〉) (right lines) are allowed.

It is not necessary to state that considering the time-dependent Schrödinger equation
based on the above Hamitonian does not have an analytical solution. Indeed, due to the pres-
ence of CRTs, the coupled differential equations of the probability amplitudes of the state
vector of the system can no longer be solved analytically. Moreover, many attempts have
been made to solve the related equations analytically [53–55, 58]. In this line, a relatively
accurate analytical method based on perturbation theory for a system of interaction between
a three-level atom with a two-mode quantized field has been recently presented in [58] by
one of us. Following the introduced approach, we finally obtain the effective Hamiltonian
for each atom in our above-desired system as:

Ĥeff = Ĥf ree + Ĥ
(ID)
RWA + ε1g1

[(
n̂a + 1

2

)
σ̂ ab

z + σ̂cc

2
− 1

2

]

+ ε2g2

[(
n̂b + 1

2

)
σ̂ ac

z + σ̂bb

2
− 1

2

]
+ ε3ǵ1

[(
n̂a + 1

2

)
σ̂ áb́

z + σ̂ćć

2
− 1

2

]

+ ε4ǵ2

[(
n̂b + 1

2

)
σ̂ áć

z + σ̂
b́b́

2
− 1

2

]
, (5)

where σ̂
ij
z = σ̂ii − σ̂jj , σ̂ij = |i〉 〈j |, and n̂a = â†â, n̂b = b̂†b̂.

Furthermore, the first two terms of above Hamiltonian can be distinctly rewritten as:

Ĥf ree =
2∑

j=1

νjNj + 2�ab − �ac

3
σ̂ ab

z + 2�ac − �ab

3
σ̂ ac

z

+ 2�
áb́

− �áć

3
σ̂ áb́

z + 2�áć − �
áb́

3
σ̂ áć

z + 1

3

2∑

i=1

EiÎi , (6)

Ĥ
(ID)
RWA = g1

[
f1(n̂a, n̂b) â†σ̂−

ab + σ̂+
abâ f1(n̂a, n̂b)

]

+ g2

[
f2(n̂a, n̂b) b̂†σ̂−

ac + σ̂+
acb̂ f2(n̂a, n̂b)

]

+ ǵ1

[
f3(n̂a, n̂b) â†σ̂−

áb́
+ σ̂+

áb́
â f3(n̂a, n̂b)

]

+ ǵ2

[
f4(n̂a, n̂b) b̂†σ̂−

áć
+ σ̂+

áć
b̂ f4(n̂a, n̂b)

]
. (7)
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Various parameters in the above relations are defined as below:

N1 = n̂a +
ˆσab
z

3
+ σ̂ áb́

z

3
, N2 = n̂b + ˆσac

z

3
+ σ̂ áć

z

3
,

�ab = Ea − Eb − ν1, �ac = Ea − Ec − ν2,

�
áb́

= Eá − E
b́

− ν1, �áć = Eá − Eć − ν2,

ε1 = g1

Ea − Eb + ν1
, ε2 = g2

Ea − Ec + ν2
,

ε3 = ǵ1

Eá − E
b́

+ ν1
, ε4 = ǵ2

Eá − Eć + ν2
,

Î1 = σ̂aa + σ̂bb + σ̂cc, E1 = Ea + Eb + Ec,

Î2 = σ̂áá + σ̂
b́b́

+ σ̂ćć, E2 = Eá + E
b́

+ Eć. (8)

And in particular, the four nonlinearity functions in (7) are defined by the following
statements,

f1(n̂a, n̂b) = 1 − ε2
1 n̂a − ε2

2

2
n̂b, f2(n̂a, n̂b) = 1 − ε2

2 n̂b − ε2
1

2
n̂a,

f3(n̂a, n̂b) = 1 − ε2
3 n̂a − ε2

4

2
n̂b, f4(n̂a, n̂b) = 1 − ε2

4 n̂b − ε2
3

2
n̂a . (9)

As is observed, comparing with the initial Hamiltonian (1), in the effective Hamilto-
nian introduced in (5) several intensity-dependent (nonlinear) functions are appeared as
fi(n̂a, n̂b), i = 1, 2, 3, 4. An interesting feature of this approach is that: usually the
intensity-dependent functions which are found in the literature [56, 57, 67] are only depen-
dent on one of the field modes even in the two-mode fields and with arbitrary functions,
usually chosen as

√
n̂ [68–72] 1√

n̂
[30, 73, 74] and etc. In other words, these functions are

chosen quite arbitrarily, so that there is no real relation between the considered functions
and the details of atom-field interaction in the systems under study. However, in our inter-
acting model, even though only one mode, say, mode 1, interacts with one of the transition
lines in the qutrit, the nonlinearity function associated with each line admixes the two num-
ber operators n̂a , n̂b associated with the two field modes, i.e., we have fi(n̂a, n̂b) and not
fi(n̂a), fi(n̂b) or even fi(n̂a)fi(n̂b), in addition to the fact that the form functions of the
intensity-dependent function are explicitly obtained.

To consider the D-D interaction in the desired system, the Hamiltonian responsible to
this type of interaction may be added to the effective Hamiltonian (5). To do this task, we
write the Hamiltonian associated with D-D interaction between the two qutrits as,

ĤD−D = λ1σ̂
+
abσ̂

−
áb́

+ λ2σ̂
+
abσ̂

−
áć

+ λ3σ̂
+
acσ̂

−
áb́

+ λ4σ̂
+
acσ̂

−
áć

+ H .c., (10)

where λi (i = 1, 2, 3, 4) is the coefficients dependent on the strength of D-D interaction
terms. Finally, the new effective Hamiltonian for our system can be written as follows:

Ĥeff = Ĥf ree + Ĥ
(ID)
RWA + ĤD−D + ε1g1

[(
n̂a + 1

2

)
σ̂ ab

z + σ̂cc

2
− 1

2

]

+ε2g2

[(
n̂b + 1

2

)
σ̂ ac

z + σ̂bb

2
− 1

2

]
+ ε3ǵ1

[(
n̂a + 1

2

)
σ̂ áb́

z + σ̂ćć

2
− 1

2

]

+ε4ǵ2

[(
n̂b + 1

2

)
σ̂ áć

z + σ̂
b́b́

2
− 1

2

]
. (11)
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Now, which we arrived at a solvable Hamiltonian, in order to investigate any phys-
ical property, say the entanglement dynamics, we should first solve the time-dependent
Schrödinger equation Ĥeff |ψ(t)〉 = i ∂

∂t
|ψ(t)〉 using the Hamiltonian in (11). Assuming

the initial state of the system in the form of a superposition of the atomic ground and excited
states, and supposing the field modes to be initially in their vacuum state, we have the
normalized atom-field state as below,

|ψ(0)〉 =
(

sin2 α|a, á〉 + sin α cos α|b, b́〉 + cos α|c, ć〉
)⊗

|0, 0〉. (12)

A typical initial condition has been used in Refs. [24, 26, 63]. Also note that, if one
chooses the parameter α such that sin α = 0, or cos α = 0 then we have no atomic super-
position, no coherence and in this case no (initial) entanglement. Consequently, usually the
parameter α has been named as coherence parameter. Accordingly, in this case the general
state of the desired system at any time t can be prescribed as:

|ψ(t)〉 = y1(t)|a, á, 0, 0〉 + y2(t)|b, á, 1, 0〉 + y3(t)|b, á, 0, 1〉 + y4(t)|c, á, 1, 0〉
+ y5(t)|c, á, 0, 1〉 + y6(t)|a, b́, 1, 0〉 + y7(t)|a, b́, 0, 1〉 + y8(t)|a, ć, 1, 0〉
+ y9(t)|a, ć, 0, 1〉 + y10(t)|b, b́, 1, 1〉 + y11(t)|c, ć, 1, 1〉 + y12(t)|b, ć, 1, 1〉
+ y13(t)|c, b́, 1, 1〉 + y14(t)|b, ć, 2, 0〉 + y15(t)|b, ć, 0, 2〉 + y16(t)|c, ć, 0, 2〉
+ y17(t)|b, b́, 2, 0〉 + y18(t)|c, b́, 2, 0〉 + y19(t)|c, b́, 0, 2〉 + y20(t)|b, b́, 0, 0〉
+ y21(t)|c, ć, 0, 0〉. (13)

We should mention that the obtained intermixed intensity-dependent Hamiltonian in (11)
results in working in the Hilbert space with the used bases in (13). The state bases is closed
in the considered space, unlike the original Rabi model in (1) for which no closed bases is
accessible, the fact that makes the latter model unsolvable. Although at first we supposed
that the first mode interacts with the left transition |a〉 � |b〉 corresponding to the field
mode ν1 and the second mode with the right transition |a〉 � |c〉 with the field frequency ν2,
distinctly (and the same for the second atom), however, our used approach led to an inter-
mixed intensity-dependent coupling (please see (7) and also Ref. [58]). This observation,
breaks down our latter-mentioned restriction. Considering this realization, all considered
bases in (13) can be justifiable. Meanwhile, in order to obtain the corresponding coeffi-
cients y1(τ), y2(τ), · · · , y21(τ); by definition of the rescaled time τ = 2g1t

π
and solving the

Schrödinger equation, we will arrive at 21 coupled differential equations (see Appendix A).
Via solving these equations, we found the explicit form of the general atom-field quantum
state of the system (|ψ(τ)〉), however, the explicit solutions cannot be provided here due to
their length. In the continuation, the density matrix of the system under consideration can be
easily described as ρ̂(τ) = |ψ(τ)〉〈ψ(τ)|. Then, via taking the trace over the “atom 2+field
1+field 2” and “field 1+field 2”, one can achieve the reduced density matrices of “atom 1”
and “atom 1+atom 2”, respectively,

ρ̂A1(τ) = T rA2,F1,F2 [ρ̂(τ)] =
⎛

⎝
r11 0 0
0 r22 r23
0 r∗

23 r33

⎞

⎠ , (14)
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and

ρ̂A1A2(τ) = T rF1,F2 [ρ̂(τ)] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z11 0 0 0 0 z16 z17 0 0
0 z22 z23 z24 z25 0 0 0 0
0 z∗

23 z33 z34 z35 0 0 0 0
0 z∗

24 z∗
34 z44 z45 0 0 0 0

0 z∗
25 z∗

35 z∗
45 z55 0 0 0 0

z∗
16 0 0 0 0 z66 z67 z68 z69

z∗
17 0 0 0 0 z∗

67 z77 z78 z79
0 0 0 0 0 z∗

68 z∗
78 z88 z89

0 0 0 0 0 z∗
69 z∗

79 z∗
89 z99

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where the nonzero elements of above matrices are presented in Appendix B. Our goal in
this study is to investigate the effect of D-D interaction and virtual photons (CRTs) on the
entanglement dynamics of different components of the system. Therefore, we will pay our
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Fig. 2 The linear entropy of “atom 1” for different values of atomic coherent angle α versus rescaled time
τ with ν1/g1 = 1.2, ν2/g1 = 1.1, �ab/g1 = 0.3, �ac/g1 = 0.27, �

áb́
/g1 = 0.25, �áć/g1 = 0.38,

g2/g1 = 1.3, ǵ1/g1 = 1.2 and ǵ2/g1 = 1.15: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ1/g1 = 1,
λ2/g1 = 1.1, λ3/g1 = 0.8, λ4/g1 = 0.6 and d ε = 0.1, λ1/g1 = 1, λ2/g1 = 1.1, λ3/g1 = 0.8, λ4/g1 = 0.6
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attention to the linear entropy as a criterion to examine this quantity using the above reduced
matrices.

3 Entanglement Evaluation Using the Linear Entropy

Investigating the amount of entanglement between subsystems associated with different
pure systems from the general system is one of the most important issues in the field of
quantum technologies. There are various appropriate criteria for examining this quantity in
systems consisting of two qubits such as concurrence [75, 76] and negativity [77, 78]. Since
we are now dealing with a system of three-level atoms, the linear entropy is considered as
a suitable criterion for examining the entanglement degree of different constituents of the
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(d) with D-D interaction and CRTs.

Fig. 3 The linear entropy of “atom 1” for different values of atomic coherent angle α versus rescaled time τ
with ν1/g1 = 1.75, ν2/g1 = 2.25, �ab/g1 = 4, �ac/g1 = 3.5, �

áb́
/g1 = 3.7, �áć/g1 = 4.3, g2/g1 = 0.8,

ǵ1/g1 = 1.1 and ǵ2/g1 = 0.65: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ1/g1 = 2.75, λ2/g1 = 4,
λ3/g1 = 4.3, λ4/g1 = 3.25 and d ε = 0.1, λ1/g1 = 2.75, λ2/g1 = 4, λ3/g1 = 4.3, λ4/g1 = 3.25
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system. In a compound system consisting of two subsystems A and B, linear entropy is
described as follows [79],

SA(B)(t) = 1 − T r[ρ̂2
A(B)(t)], (16)

where subscripts A and B belong to subsystems of the quantum system after taking trace
from another one (ρ̂A(B)(t) = T rB(A)[ρ̂(t)]). In general, the range of the linear entropy (as
a parameter to evaluate the degree of purity of each system) for systems with dimensions
m × n, assuming that d = min(m, n), changes from zero (for a pure state) to d−1

d
(for a

state with maximum entanglement) [80–82].
This quantity for “atom 1” of our system is obtained as SA1(τ) = 1 − r2

11 − r2
22 − r2

33 −
2|r23|2 using (14). Without loss of generality, throughout the following plots all perturbation
parameters are taken equal (except for Fig. 9), i.e., ε1 = ..... = ε4 = ε. Also whenever we
write in the figure captions that λ is equal to a number, by this we mean that we assumed
all coefficients of the D-D interactions are equal, i.e., λ1 = λ2 = λ3 = λ4 = λ. It should
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(b) without D-D interaction and with CRTs.
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(d) with D-D interaction and CRTs.

Fig. 4 The linear entropy of “atom 1” for different values of atomic coherent angle α versus rescaled time
τ with ν1/g1 = 5, ν2/g1 = 4, �ab/g1 = 3, �ac/g1 = 2.75, �

áb́
/g1 = 4, �áć/g1 = 3.5, g2/g1 = 2,

ǵ1/g1 = 1.7 and ǵ2/g1 = 2.25: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ1/g1 = 3.75, λ2/g1 = 2.25,
λ3/g1 = 5, λ4/g1 = 2.75 and d ε = 0.1, λ1/g1 = 3.75, λ2/g1 = 2.25, λ3/g1 = 5, λ4/g1 = 2.75
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be noted that in all plotted figures in the continuation of the paper four different conditions
including,

(a) without D-D interaction and CRTs,
(b) without D-D interaction and with CRTs,
(c) with D-D interaction and without CRTs,
(d) with D-D interaction and CRTs,

are considered. Figures 2, 3, 4, 5 and 6 are plotted in the continuation for SA1(τ), i.e., the
linear entropy of “atom 1 ” versus rescaled time τ for different values of the atomic coher-
ence angles α = π/2, α = π/4 and α = π/6, which describes the amount of entanglement
of “atom 1 ” with the other components of the system. Note that we used the scaled (dimen-
sionless) time and all involved parameters like ǵ1, g2, ǵ2, ν1, ν2, ... are considered relative
to g1. As is expected, the numerical results shown by these plots refer to the fact that there is
no initial entanglement for α = π/2 in all cases in Figs. 2-6. In the event that for α = π/4
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(b) without D-D interaction and with CRTs.
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(c) with D-D interaction and without CRTs.
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(d) with D-D interaction and CRTs.

Fig. 5 The linear entropy of “atom 1” for different values of atomic coherent angle α versus rescaled time
τ with ν1/g1 = 3, ν2/g1 = 2, �ab/g1 = 1.4, �ac/g1 = 1.7, �

áb́
/g1 = 1.4, �áć/g1 = 1.7, g2/g1 = 1.2,

ǵ1/g1 = 1 and ǵ2/g1 = 1.2: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ/g1 = 2 and d ε = 0.1, λ/g1 = 2
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(b) without D-D interaction and with CRTs.
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(c) with D-D interaction and without CRTs.
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(d) with D-D interaction and CRTs.

Fig. 6 The linear entropy of “atom 1” for different values of atomic coherent angle α versus rescaled time
τ with ν1/g1 = 10, ν2/g1 = 15, �ab/g1 = 9, �ac/g1 = 13, �

áb́
/g1 = 10, �áć/g1 = 15, g2/g1 = 0.9,

ǵ1/g1 = 1.15 and ǵ2/g1 = 0.95: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ1/g1 = 5, λ2/g1 = 7.5,
λ3/g1 = 6.3, λ4/g1 = 9 and d ε = 0.1, λ1/g1 = 5, λ2/g1 = 7.5, λ3/g1 = 6.3, λ4/g1 = 9

and α = π/6, the entanglement is well visible at the beginning of the interaction (the lin-
ear entropy for α = π/4 (α = π/6) is about 0.625 (0.4)). In more detail, regarding Fig. 2,
the degree of entanglement never reaches zero for different atomic coherences α with the
passage of time unless at a few moments of time in Figs. 2a and b. In addition, quasi-stable
value (even though not high) of entanglement may be achieved for α = π/6. Looking at
Fig. 2, we find that the typical CR phenomena is accessible for all values of α unless the case
α = π/6. But, by comparing the subspecies of this figure, it can be seen that the number,
as well as the pattern of CRs increase in the presence of D-D interaction and CRTs, gener-
ally. In Fig. 3, typical CR phenomenon is visible only for α = π/2 in all subspecies (a)-(d)
with some changes in their patterns. Also, the quasi-stability of entanglement (ignoring the
small fluctuations) in this figure can be achieved for α = π/4 and α = π/6. Taking a look
on the results of Fig. 4 shows that typical CR phenomenon occurs only in the absence of
D-D interaction, therefore, it seems that D-D interaction destroys the CR phenomenon and
thus the entanglement experiences irregular fluctuations. Also, for α = π/2, in the absence
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(b) without D-D interaction and with CRTs.
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(c) with D-D interaction and without CRTs.
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(d) with D-D interaction and CRTs.

Fig. 7 The linear entropy of “atom 1+atom 2” for different values of atomic coherent angle α versus rescaled
time τ with ν1/g1 = 0.7, ν2/g1 = 0.5, �ab/g1 = 0.2, �ac/g1 = 0.3, �

áb́
/g1 = 0.15, �áć/g1 = 0.25,

g2/g1 = 0.5, ǵ1/g1 = 0.3 and ǵ2/g1 = 0.7: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ1/g1 = 0.4,
λ2/g1 = 0.7, λ3/g1 = 0.6, λ4/g1 = 0.45 and d ε = 0.1, λ1/g1 = 0.4, λ2/g1 = 0.7, λ3/g1 = 0.6,
λ4/g1 = 0.45

of both mentioned effects (CRTs and D-D interaction), the degree of entanglement tends to
zero after some finite intervals of time. Also, in the absence of D-D interaction, the entan-
glement has reached a relatively good stability in case of α = π/6 (see subspecies 4c and
d). Figure 5, indicates that the entanglement experiences only irregular fluctuations in vari-
ous atomic coherence angles α. Of course, regardless of the small-amplitude of fluctuations
in case of α = π/6, we achieved the relative stability for entanglement in this figure. The
results obtained from Fig. 6 show that, in the absence of D-D interaction but in the pres-
ence or absence of CRTs, the transparent patterns of CR phenomenon is well accessible for
α = π/2; also, the quantum state of the system is located in a completely stable state for
α = π/4 and α = π/6. In the event that in the presence of D-D interaction, we can only
see regular fluctuations with small amplitude (for α = π/4, π/6) and irregular fluctuations
(for α = π/2). It should be noted that in this figure for α = π/2, the death and then birth
of entanglement happen in all given plots, irrespective of the presence or absence of D-D
interaction and CRTs.
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(b) without D-D interaction and with CRTs.
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(c) with D-D interaction and without CRTs.
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(d) with D-D interaction and CRTs.

Fig. 8 The linear entropy of “atom 1+atom 2” for different values of atomic coherent angle α versus rescaled
time τ with ν1/g1 = 5, ν2/g1 = 7, �ab/g1 = 4, �ac/g1 = 6, �

áb́
/g1 = 3.5, �áć/g1 = 5, g2/g1 = 1.5,

ǵ1/g1 = 2 and ǵ2/g1 = 1.75: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ1/g1 = 3, λ2/g1 = 2,
λ3/g1 = 2.25, λ4/g1 = 2.75 and d ε = 0.1, λ1/g1 = 3, λ2/g1 = 2, λ3/g1 = 2.25, λ4/g1 = 2.75

The next goal in this study is to calculate the linear entropy of atoms 1, 2; SA1A2(τ) =
1 − T r[ρ̂2

A1A2
(τ)] by using of (15), in order to investigate the degree of entanglement of the

two atoms with two field modes (see Figs. 7, 8, 9 and 10). Given that the atomic states and
the vacuum field in the initial separable states of the system (|ψ(0)〉), result in the fact that
there exists no entanglement at τ = 0. In addition, in these figures, we can see the death and
then birth of entanglement during the time for α = π/6 (except in Fig. 7). Also, in none
of these Figs. 7-10 stability or even nearly stable entanglement can be achieved. Moreover,
the highest (lowest) value of entanglement generally corresponds to α = π/2 (α = π/6).
The latter overall conclusion can never be extracted from the Figs. 2-6. In more detail, in
Fig. 7, the entanglement shows irregular oscillations in all cases. In Fig. 8, in the presence
and absence of CRTs as well as in the absence of D-D interaction, typical CR patterns are
available for all atomic coherence angles α. But, this is not the case in the presence of both
effects together or only in the presence of D-D interaction. At a glance, Figs. 9 and 10 are
generally similar, wherein the entanglement experiences different irregular fluctuations for
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(b) without D-D interaction and with CRTs.
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(c) with D-D interaction and without CRTs.
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(d) with D-D interaction and CRTs.

Fig. 9 The linear entropy of “atom 1+atom 2” for different values of atomic coherent angle α versus rescaled
time τ with ν1/g1 = 0.1, ν2/g1 = 0.15, �ab/g1 = 0.2, �ac/g1 = 0.17, �

áb́
/g1 = 0.25, �áć/g1 = 0.31,

g2/g1 = 0.7, ǵ1/g1 = 0.57 and ǵ2/g1 = 0.66: a ε = 0, λ = 0; b ε1 = ε2 = 0.05, ε3 = ε4 = 0.1, λ = 0;
c ε = 0, λ1/g1 = 0.3, λ2/g1 = 0.35, λ3/g1 = 0.16, λ4/g1 = 0.23 and d ε1 = ε2 = 0.05, ε3 = ε4 = 0.1,
λ1/g1 = 0.3, λ2/g1 = 0.35, λ3/g1 = 0.16, λ4/g1 = 0.23

all considered atomic coherence angles α. In addition, in Fig. 10, in the absence of both
D-D interaction and CRTs (for α = π/6) as well as in the presence of only CRTs (for
α = π/4, π/6), the entanglement experiences fluctuations with small amplitude about zero
(see subspecies 10a and b).

4 Summary and Conclusions

In summary, we introduced a system containing the interaction between two qutrits with
a two-mode quantized field in the presence of D-D interaction between the atoms, while
CRTs are also taken into account, particularly. It is well-known that these terms cannot be
ignored in the strong atom-field coupling regimes. We should mention that while a lot of
papers deal with atom-field interaction by JCM or Tavis-Cummings model, as we found
there exist only very few articles in this field that pay attention to interaction between two
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(b) without D-D interaction and with CRTs.
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(c) with D-D interaction and without CRTs.
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(d) with D-D interaction and CRTs.

Fig. 10 The linear entropy of “atom 1+atom 2” for different values of atomic coherent angle α versus rescaled
time τ with ν1/g1 = 10, ν2/g1 = 15, �ab/g1 = 9, �ac/g1 = 13, �

áb́
/g1 = 10, �áć/g1 = 15, g2/g1 = 3,

ǵ1/g1 = 2.5 and ǵ2/g1 = 3.25: a ε = 0, λ = 0; b ε = 0.1, λ = 0; c ε = 0, λ1/g1 = 5, λ2/g1 = 7.5,
λ3/g1 = 6.3, λ4/g1 = 9 and d ε = 0.1, λ1/g1 = 5, λ2/g1 = 7.5, λ3/g1 = 6.3, λ4/g1 = 9

three-level atoms and a two-mode field, even without CRTs [23, 26]. Anyway, to reach the
goal of the paper, by solving the time-dependent Schrödinger equation, we obtained the
corresponding density matrix in order to evaluate the entanglement (via the calculation of
linear entropy) of different components of the considered system. Keeping in mind that
Rabi model is guaranteed under the condition of strong atom-field coupling, it can be seen
that the Figs. 2, 3, 4, 5, 8 and 10 are drawn under conditions of ultra-strong, Figs. 7 and 9
using deep-strong and Fig. 6 under strong coupling (our mentioned classification is based
on Ref. [83, 84]). Generally, there exists more or less entanglement in different parts of
the system which can be tuned by choosing appropriate parameters in the system. In par-
ticular, the most favorable observations of the results are accessibly of the stability or at
least quasi-stability of the entanglement, and also death and then sudden birth of entangle-
ment which both can be appeared by tuning the parameters involve in the model interaction.
As a marginal result, one may refer to the CR phenomenon in the entanglement dynam-
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ics of entanglement available in some cases. In particular, the effect of CRTs can be seen
in the change of the CR patterns, for instance, as may be seen in some cases the number
of CRs or typical CRs have been changed in the considered time interval in the presented
plots. This fact clearly shows that at each moment of time the degree of entanglement is
changed in the absence and presence of CRTs. In fact, since the main goal of this paper
is the investigation of the influences of CRTs on the entanglement properties, we end this
conclusion section with mentioning that, at first glance on the plots a and b in all fig-
ures it may seem that there is no critical difference between the presented plots (and so
CRTs do not effectively change the entropy). However, an exact inspection on the details
of our numerical results show that at some moments of time, a significant difference of
the calculated linear entropy between the presence and absence of CRTs can be observed,
which asserts that such terms are not generally ignorable in the atom-field interacting
systems.

Appendix A

In this appendix we present the coupled differential equations obtained from solving the
time-dependent Schrödinger equation which are as follow,

2ig1

π
ẏ1(τ) = 2

3
(ν1 + ν2)y1(τ) + 1

3
(�ab + �ac + �

áb́
+ �áć)y1(τ) + g1(1 − ε2

1)y2(τ)

+g2(1 − ε2
2)y5(τ) + ǵ1(1 − ε2

3)y6(τ) + ǵ2(1 − ε2
4)y9(τ),

2ig1

π
ẏ2(τ) = (ν1 + 1

3
ν2)y2(τ) + 1

3
(�ac − 2�ab + �

áb́
+ �áć)y2(τ) − (2ε1g1 − ε3ǵ1)y2(τ)

+g1(1 − ε2
1)y1(τ) + √

2ǵ1(1 − 2ε2
3)y17(τ) + ǵ2(1 − ε2

4 − ε2
3

2
)y12(τ) + λ1y6(τ) + λ2y8(τ),

2ig1

π
ẏ3(τ) = 4

3
ν2y3(τ) + 1

3
(�ac − 2�ab + �

áb́
+ �áć)y3(τ) − (ε1g1 − ε4ǵ2)y3(τ)

+√
2ǵ2(1 − 2ε2

4)y15(τ) + ǵ1(1 − ε2
3 − ε2

4

2
)y10(τ) + λ1y7(τ) + λ2y9(τ),

2ig1

π
ẏ4(τ) = 4

3
ν1y4(τ) + 1

3
(�ab − 2�ac + �

áb́
+ �áć)y4(τ) − (ε2g2 − ε3ǵ1)y4(τ)

+√
2ǵ1(1 − 2ε2

3)y18(τ) + ǵ2(1 − ε2
4 − ε2

3

2
)y11(τ) + λ3y6(τ) + λ4y8(τ),

2ig1

π
ẏ5(τ) = (ν2 + 1

3
ν1)y5(τ) + 1

3
(�ab − 2�ac + �

áb́
+ �áć)y5(τ) − (2ε2g2 − ε4ǵ2)y5(τ)

+g2(1 − ε2
2)y1(τ) + √

2ǵ2(1 − 2ε2
4)y16(τ) + ǵ1(1 − ε2

3 − ε2
4

2
)y13(τ) + λ3y7(τ) + λ4y9(τ),

2ig1
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3
ν2)y6(τ) + 1

3
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+ǵ1(1 − ε2
3)y1(τ) + √
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1)y17(τ) + g2(1 − ε2
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1

2
)y13(τ) + λ1y2(τ) + λ3y4(τ),

2ig1

π
ẏ7(τ) = 4

3
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3
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áb́
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2g2(1 − 2ε2
2)y16(τ) + g1(1 − ε2

1 − ε2
2

2
)y12(τ) + λ2y3(τ) + λ4y5(τ),

2ig1

π
ẏ10(τ) = (ν2 + 1

3
ν1)y10(τ) + 1

3
(�ac − 2�ab − 2�

áb́
+ �áć)y10(τ) − 2(ε1g1 + ε3ǵ1)y10(τ)

+g1(1 − ε2
1 − ε2

2

2
)y7(τ) + ǵ1(1 − ε2

3 − ε2
4

2
)y3(τ),

2ig1

π
ẏ11(τ) = (ν1 + 1

3
ν2)y11(τ) + 1

3
(�ab − 2�ac + �

áb́
− 2�áć)y11(τ) − 2(ε2g2 + ε4ǵ2)y11(τ)

+g2(1 − ε2
2 − ε2

1

2
)y8(τ) + ǵ2(1 − ε2

4 − ε2
3

2
)y4(τ),

2ig1

π
ẏ12(τ) = 2

3
(ν1 + ν2)y12(τ) + 1

3
(�ac − 2�ab + �

áb́
− 2�áć)y12(τ) − 2(ε1g1 + ε4ǵ2)y12(τ)

+g1(1 − ε2
1 − ε2

2

2
)y9(τ) + ǵ2(1 − ε2

4 − ε2
3

2
)y2(τ),

2ig1

π
ẏ13(τ) = 2

3
(ν1 + ν2)y13(τ) + 1

3
(�ab − 2�ac − 2�

áb́
+ �áć)y13(τ) − 2(ε2g2 + ε3ǵ1)y13(τ)

+g2(1 − ε2
2 − ε2

1

2
)y6(τ) + ǵ1(1 − ε2

3 − ε2
4

2
)y5(τ),

2ig1

π
ẏ14(τ) = (

5

3
ν1 − 1

3
ν2)y14(τ) + 1

3
(�ac − 2�ab + �

áb́
− 2�áć)y14(τ) − (3ε1g1 + ε4ǵ2)y14(τ)

+√
2g1(1 − 2ε2

1)y8(τ),
2ig1

π
ẏ15(τ) = (

5

3
ν2 − 1

3
ν1)y15(τ) + 1

3
(�ac − 2�ab + �

áb́
− 2�áć)y15(τ) − (ε1g1 + 3ε4ǵ2)y15(τ)

+√
2ǵ2(1 − 2ε2

4)y3(τ),
2ig1

π
ẏ16(τ) = 4

3
ν2y16(τ) + 1

3
(�ab − 2�ac + �

áb́
− 2�áć)y16(τ) − 3(ε2g2 + ε4ǵ2)y16(τ)

+√
2ǵ2(1 − 2ε2

4)y5(τ) + √
2g2(1 − 2ε2

2)y9(τ),
2ig1

π
ẏ17(τ) = 4

3
ν1y17(τ) + 1

3
(�ac − 2�ab − 2�

áb́
+ �áć)y17(τ) − 3(ε1g1 + ε3ǵ1)y17(τ)

+√
2ǵ1(1 − 2ε2

3)y2(τ) + √
2g1(1 − 2ε2

1)y6(τ),
2ig1

π
ẏ18(τ) = (

5

3
ν1 − 1

3
ν2)y18(τ) + 1

3
(�ab − 2�ac − 2�

áb́
+ �áć)y18(τ) − (ε2g2 + 3ε3ǵ1)y18(τ)

+√
2ǵ1(1 − 2ε2

3)y4(τ),
2ig1

π
ẏ19(τ) = (

5

3
ν2 − 1

3
ν1)y19(τ) + 1

3
(�ab − 2�ac − 2�

áb́
+ �áć)y19(τ) − (3ε2g2 + ε3ǵ1)y19(τ)

+√
2g2(1 − 2ε2

2)y7(τ),
2ig1

π
ẏ20(τ) = − 2

3
ν1y20(τ) + 1

3
(�ac − 2�ab − 2�

áb́
+ �áć)y20(τ) − (ε1g1 + ε3ǵ1)y20(τ),

2ig1

π
ẏ21(τ) = − 2

3
ν2y21(τ) + 1

3
(�ab − 2�ac + �

áb́
− 2�áć)y21(τ) − (ε2g2 + ε4ǵ2)y21(τ).
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Appendix B

The nonzero matrix elements of (14) are defined as follow,

r11 = |y1(τ)|2 + |y6(τ)|2 + |y7(τ)|2 + |y8(τ)|2 + |y9(τ)|2,
r22 = |y2(τ)|2 + |y3(τ)|2 + |y10(τ)|2 + |y12(τ)|2 + |y14(τ)|2 + |y15(τ)|2

+|y17(τ)|2 + |y20(τ)|2,
r33 = |y4(τ)|2 + |y5(τ)|2 + |y11(τ)|2 + |y13(τ)|2 + |y16(τ)|2 + |y18(τ)|2

+|y19(τ)|2 + |y21(τ)|2,
r23 = y2(τ)y∗

4 (τ) + y3(τ)y∗
5 (τ) + y10(τ)y∗

13(τ) + y12(τ)y∗
11(τ)

+y15(τ)y∗
16(τ) + y17(τ)y∗

18(τ).

Also, the nonzero matrix elements of (15) are defined as follow,

z11 = |y1(τ)|2, z22 = |y2(τ)|2 + |y3(τ)|2, z33 = |y4(τ)|2 + |y5(τ)|2,
z44 = |y6(τ)|2 + |y7(τ)|2, z66 = |y10(τ)|2 + |y17(τ)|2 + |y20(τ)|2,
z55 = |y8(τ)|2 + |y9(τ)|2, z77 = |y11(τ)|2 + |y16(τ)|2 + |y21(τ)|2,
z88 = |y12(τ)|2 + |y14(τ)|2 + |y15(τ)|2, z99 = |y13(τ)|2 + |y18(τ)|2 + |y19(τ)|2,
z23 = y2(τ)y∗

4 (τ) + y3(τ)y∗
5 (τ), z25 = y2(τ)y∗

8 (τ) + y3(τ)y∗
9 (τ), z17 = y1(τ)y∗

21(τ),
z24 = y2(τ)y∗

6 (τ) + y3(τ)y∗
7 (τ), z16 = y1(τ)y∗

20(τ), z34 = y4(τ)y∗
6 (τ) + y5(τ)y∗

7 (τ),
z35 = y4(τ)y∗

8 (τ) + y5(τ)y∗
9 (τ), z45 = y6(τ)y∗

8 (τ) + y7(τ)y∗
9 (τ),

z67 = y10(τ)y∗
11(τ) + y20(τ)y∗

21(τ), z68 = y10(τ)y∗
12(τ) + y17(τ)y∗

14(τ),
z78 = y11(τ)y∗

12(τ) + y16(τ)y∗
15(τ), z69 = y10(τ)y∗

13(τ) + y17(τ)y∗
18(τ),

z79 = y11(τ)y∗
13(τ) + y16(τ)y∗

19(τ), z89 = y12(τ)y∗
13(τ) + y14(τ)y∗

18(τ) + y15(t)y
∗
19(τ).
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4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895

(1993)
5. Sehati, N., Tavassoly, M.K.: Quantum Inf. Process. 16, 193 (2017)
6. Kim, Y.H., Kulik, S.P., Shih, Y.: Phys. Rev. Lett. 86, 1370 (2001)
7. Hu, C.Y., Rarity, J.G.: Phys. Rev. B 83, 115303 (2011)
8. Tavassoly, M.K., Pakniat, R., Zandi, M.H.: Appl. Phys. B 124, 64 (2018)
9. Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: Eur. Phys. J. Plus 132, 531 (2017)

10. Pakniat, R., Zandi, M.H., Tavassoly, M.K.: Eur. Phys. J. Plus 132, 3 (2017)
11. Muralidharan, S., Prasanta, K.P.: Phys. Rev. A 77, 032321 (2008)
12. Farahmand, Y., Heidarnezhad, Z., Heidarnezhad, F., Muminov, K.K., Hoosseinirad, S.Z.: Orient J.

Chem. 30, 821 (2014)
13. Bennett, C.H., Stephen, J.W.: Phys. Rev. Lett. 69, 2881 (1992)
14. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 84, 4729 (2000)
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71. Bužek, V.: Phys. Rev. A 39, 3196 (1989)
72. Faghihi, M.J.: vol. 227 (2021)
73. Sudarshan, E.C.G.: Int. J. Theor. Phys. 32, 1069 (1993)
74. Zait, R.A.: Phys. Lett. A 319, 461 (2003)
75. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)
76. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

Int J Theor Phys (2022) 61: 147  Page 20 of 21147



77. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)
78. Akhtarshenas, S.J., Farsi, M.: Phys. Scr. 75, 608 (2007)
79. Angelo, R.M., Furuya, K., Nemes, M.C., Pellegrino, G.Q.: Phys. Rev. A 64, 043801 (2001)
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