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Abstract
In this paper, a multi-party quantum secret sharing protocol based on GHZ states
entanglement swapping and measurement is proposed. Firstly, we define the “character-
istic”, then, using the property that multiple groups of GHZ states swapping any particles
to keep the characteristics unchanged, a relationship between the characteristics of
measurement results, initial state characteristics and Pauli operator characteristics is
given, and the protocol is completed by utilizing this equation. In this scheme, the
quantum resources involved are only the n GHZ state particles distributed by Trent
transmitted in the quantum channel to the participants, and the other classical bit
resources are distributed in advance or generated by the participants themselves, which
improves the security of resource transmission. Furthermore, all participants only need to
make GHZ measurements and contribute their own sub-secrets, and can recover the
shared secret through a simple XOR formula. It is proud that the efficiency of the whole
scheme (i.e. 1/3n) has also reached the ideal situation.
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1 Introduction

As a branch of cryptography, Shamir [1] and Blakley [2] first proposed the classical secret
sharing (CSS) scheme in 1979. CSS is an important technology to ensure the security and
availability of confidential information. It has a typical application: the company manager has
a secret, and he doesn’t want any employees to know his secret completely. Therefore, he
divided his secret into many parts and let each employee know only one part. Only with the
cooperation of all the staff can his secret be completely restored. The security of CSS depends
on the complexity of large prime decomposition, and its research has become mature [3].
However, all CSS schemes assume of computational complexity, that is, security is
conditional.

With the development of quantum computers, especially the emergence of quantum
algorithms [4], the security of classical cryptography is facing severe challenges. Since Bennett
and brassard [5] first introduced quantum cryptography in 1984, classical secret sharing was
soon combined with quantum mechanics, and quantum secret sharing (QSS) was born. In
1999, Hillery et al. [6] proposed quantum secret sharing protocol for the first time. As one of
the earliest famous branches of quantum cryptography, this protocol has attracted extensive
attention. In the scheme, quantum states are used as the coding carrier of secret information, so
that all parties share a common secret, which can be restored only by the cooperation of all
parties. From the perspective of the types of shared secrets, QSS schemes can be divided into
two categories: shared quantum information [7] and shared classical information [8]. The
former is mainly realized by quantum operations such as quantum entanglement swapping and
quantum teleportation. The latter can show various characteristics in scheme design. The
security of these two protocols has been proved in theory. In 2003, Guo et al. [9] proposed a
non-entangled QSS protocol, which essentially encodes qubits directly. In 2004, Xiao et al.
[10] extended the QSS scheme of Hillery et al. [6] to multiple parties and used the optimal
measurement method to improve the efficiency. In 2005, Yan et al. [11] proved that A (t, m) -
(s, n) threshold QSS protocol is effective in the absence of channel based on Greenberger-
Horne-Zeilinger (GHZ) state.

Semi-quantum secret sharing (SQSS) is also an important research point, which is more in
line with the actual application. In 2010, Li et al. [12] proposed SQSS protocol based on two
GHZ-like states. In 2012, Wang et al. [13] proposed a SQSS scheme based on two particle
entangled states. In 2013, Li et al. [14] proposed a SQSS protocol using the state of tensor
product of two particles. In the same year, to improve the efficiency of key generation, Yang
and Hwang [15] desynchronized the measurement of the classical party. In 2015, Qin and Dai
[16] constructed a proactive QSS scheme. In the same year, Xie et al. [17] proposed a SQSS
protocol in which a quantum party can share specific messages with two classical parties.
However, Yin and Fu [18] pointed out in 2016 that the SQSS protocol of Xie et al. [17] would
suffer intercept-resend attacks from dishonest parties, and put forward corresponding improve-
ment protocols. In 2017, Gao et al. [19] found that Yin and Fu [18] analyzed the intercept-
resend attack of dishonest parties incorrectly, and the protocol does not meet the semi-quantum
conditions, so they made improvements accordingly. Later, Ye and Ye [20] proposed two
circular SQSS protocols based on single particle. The first protocol requires the classical party
to have measurement capability, and the second protocol does not.

Up to now, QSS protocol has made great progress, and QSS protocols designed from
various angles emerge in endlessly. In 2018, Qin and Tso [21] proposed an efficient QSS
scheme based on special multi-dimensional GHZ state. In 2019, Kang et al. [22] proposed a
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continuous variable QSS scheme by using the Chinese Remainder Theorem. In 2020, Liu et al.
[23] proposed a QSS scheme with verifiable function. In the same year, Lai et al. [24]
proposed a high-capacity (2,3) threshold QSS scheme based on asymmetric Quantum lossy
channel. Subsequently, Sutradhar and Om [25] proposed an effective QSS scheme without
trusted participants.

Based on the theorem that the entanglement swapping characteristics of GHZ state particles
are invariant, an anonymously verifiable multi-party quantum secret sharing scheme is pro-
posed, in which the shared secret is classical information. The protocol conforms to the basic
principle of secret sharing. Any participant less than n cannot recover the secret alone. All
participants must cooperate and take their share before they can get the secret. Moreover, the
proposed scheme also meets the high standard of efficiency and security requirements, and can
complete the purpose of the experiment with less quantum resources.

The rest of the work is arranged as follows: Section 2 gives some preliminary preparations,
mainly several theorems quoted and deduced. Section 3 describes in detail the specific process
of how to share classical information with the help of quantum methods. Sections 4 provides
the security analysis of the protocol and sections 5 analyzes the efficiency. Finally, a summary
is given in section 6.

2 Preliminaries

2.1 GHZ State and Pauli Operation

There are eight three-particle entangled GHZ states, written as follows:

jΨ000〉 ¼ 1ffiffiffi
2

p j100〉þ j011〉
� �

; jΨ001〉 ¼ 1ffiffiffi
2

p j100〉−j011〉
� �

jΨ010〉 ¼ 1ffiffiffi
2

p j111〉þ j000〉
� �

; jΨ011〉 ¼ 1ffiffiffi
2

p j111〉−j000〉
� �

jΨ100〉 ¼ 1ffiffiffi
2

p j101〉þ j010〉
� �

; jΨ101〉 ¼ 1ffiffiffi
2

p j101〉−j010〉
� �

jΨ110〉 ¼ 1ffiffiffi
2

p j110〉þ j001〉
� �

; jΨ111〉 ¼ 1ffiffiffi
2

p j110〉−j001〉
� �

Furthermore, any GHZ state |Ψijk〉 can be rewritten as the following general formula:

Ψijk
�� � ¼ 1ffiffiffi

2
p 1jtj i þ −1ð Þk 0 j t

��� E� �

where i, j, k, t ∈ (0, 1), t = i ⊕ j and j ¼ j⊕1, t ¼ t⊕1 (i.e., a bar over a bit value indicates its
logical negation). In this paper, ⊕ represents XOR operation, and the classical bit string ijk is
regarded as the characteristic of GHZ state |Ψijk〉.

Next, we introduce four basic Pauli operators, as follows:

U000 ¼ I ¼ 0j i 0h j þ 1j i 1h j;U001 ¼ σz ¼ 0j i 0h j− 1j i 1h j
U110 ¼ σx ¼ 0j i 1h j þ 1j i 0h j;U111 ¼ iσy ¼ 0j i 1h j− 1j i 0h j

Similarly, the subscript k1k2k3 is regarded as the characteristic of the Pauli operator Uk1 k2 k3,
where k1, k2, k3 ∈ (0, 1).
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Here, the state change of |0〉 or |1〉 after being operated by each Pauli operator is given:

I 0j i ¼ 0j i; I 1j i ¼ 1j iσz 0j i ¼ 0j i;σz 1j i ¼ − 1j i
σx 0j i ¼ 1j i; I 1j i ¼ 0j iσy 0j i ¼ − 1j i;σz 1j i ¼ 0j i

2.2 Entanglement Swapping Theorem

Theorem 1. [26] For n GHZ states {(1, 2, 3), (4, 5, 6), …, (3n-2, 3n-1, 3n)}, after
entanglement swapping as Fig. 1, the possible measurement results and the initial states
always meet the following equation:

M1;2;3n⊕M4;5;3⊕…⊕M 3n−2;3n−1;3n−3 ¼ B1;2;3⊕B4;5;6⊕…⊕B3n−2;3n−1;3n ð1Þ
where Bijk and Mrst denote the characteristics of the initial states of the particles i, j and k, and
the possible measurement results of the particles r, s and t, respectively. This formula applies
when only one set of particles is exchanged.

Theorem 2. [26] For n GHZ states {(1, 2, 3), (4, 5, 6), …, (3n-2, 3n-1, 3n)}, after
entanglement swapping as Fig. 2, the possible measurement results and the initial states
always meet the following equation:

M1;3n−1;3n⊕M 4;2;3⊕…⊕M3n−2;3n−4;3n−3 ¼ B1;2;3⊕B4;5;6⊕…⊕B3n−2;3n−1;3n ð2Þ
where Bijk and Mrst denote the characteristics of the initial states of the particles i, j and k, and
the possible measurement results of the particles r, s and t, respectively. This formula applies
when two sets of particles are exchanged.

Theorem 3. If we perform any Pauli operator Uk1 k2 k3 on any particle in any GHZ state

|Ψijk〉123, the characteristic B
0
123 of transformed particles 1, 2 and 3 always satisfies the

following equation:

B
0
123 ¼ k1k2k3⊕B123 ð3Þ

Proof. Suppose we apply any Pauli operator Uk1 k2 k3 to the first particle of GHZ state
|Ψijk〉123, we will get,

Uk1k2k3 Ψijk
�� �

123
¼ Uk1k2k3

1ffiffiffi
2

p 1jtj i þ −1ð Þk 0 j t
��� E� �

123

Fig. 1 Entanglement swapping of a group of particles in n GHZ states
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When k1 = k2 = 0, there will be:

Uk1k2k3 Ψijk
�� �

123
¼ 1ffiffiffi

2
p −1ð Þk3 1jtj i þ −1ð Þk 0 j t

��� E� �
123

¼ 1ffiffiffi
2

p −1ð Þk3 1jtj i þ −1ð Þk⊕k3 0 j t
��� E� �� �

123
¼ −1ð Þk3 Ψij k⊕k3ð Þ

�� �
123

So B
0
123 ¼ ij k⊕k3ð Þ ¼ k1 k2 k3⊕ijk, that is, B

0
123 ¼ k1 k2 k3⊕B123.When k1 = k2 = 1, there

will be:

Uk1k2k3 Ψijk
�� �

123
¼ 1ffiffiffi

2
p 0jtj i þ −1ð Þk −1ð Þk3 1 j t

��� E� �
123

¼ 1ffiffiffi
2

p 0jtj i þ −1ð Þk⊕k3 1 j t
��� E� �

123
¼ Ψ

i j k⊕k3ð Þ

����
�

123

So B
0
123 ¼ i j k⊕k3ð Þ ¼ i⊕1ð Þ j⊕1ð Þ k⊕k3ð Þ ¼ k1 k2 k3⊕ijk, that is, B

0
123 ¼ k1 k2 k3⊕B123.

After verification, the result of applying any Pauli operator Uk1 k2 k3 to the second or third
particle is the same as the above conclusion, which will not be repeated here. Therefore, we
can conclude that no matter which Pauli operator is executed on which particle, it satisfies Eq.
(3).

Theorem 4. For n GHZ states {(1, 2, 3), (4, 5, 6),…, (3n-2, 3n-1, 3n)}, If we perform Pauli
operator Uk3i−2 k3i−1 k3i on any particle of the i-th GHZ state (3i,3i + 1,3i + 2) or (3i-2,3i-
1,3i), the measurement results after entanglement swapping (as shown in Fig. 3) have the
following relationship with the initial state:

⊕n
i¼1M3i;3iþ1;3iþ2 ¼ ⊕n

i¼1M3i−1;3i;3iþ1 ¼ ⊕n
i¼1B3i−2;3i−1;3i

� 	
⊕ ⊕n

i¼1k3i−2k3i−1k3i
� 	 ð4Þ

Where M3i, 3i + 1, 3i + 2 and M3i − 1, 3i, 3i + 1 represents the characteristics of particles (3i,3i +
1,3i + 2) and (3i-1,3i,3i + 1) measurement results, respectively, B3i − 2, 3i − 1, 3i is the
characteristics of the initial state particle (3i-2,3i-1,3i), and k3i − 2k3i − 1k3i denotes the
characteristics of Pauli operator Uk3i−2 k3i−1 k3i.

Proof. From Theorems 1 and 2, we can get,

M 1;2;3n⊕M4;5;3⊕…⊕M3n−2;3n−1;3n−3
¼ M1;3n−1;3n⊕M 4;2;3⊕…⊕M3n−2;3n−4;3n−3

¼ B
0
1;2;3⊕B

0
4;5;6⊕…⊕B

0
3n−2;3n−1;3n

Fig. 2 Entanglement swapping of two groups of particles in n GHZ states
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In addition, by Theorem 3, there are the following equations,

B
0
3i−2;3i−1;3i ¼ k3i−2k3i−1k3i⊕B3i−2;3i−1;3i

Therefore,⊕n
i¼1M 3i;3iþ1;3iþ2 ¼ ⊕n

i¼1M3i−1;3i;3iþ1 ¼ ⊕n
i¼1B3i−2;3i−1;3i

� 	
⊕ ⊕n

i¼1k3i−2
�

k3i−1 k3ig
is established.

The black solid line represents the entanglement between the initial three particles, and both
GM and red dotted box represent GHZ measurement.

3 The Proposed Protocol

Suppose Trent has a secret S to be shared among n participants: p1, p2,…, pn. For convenience,
we only consider the case where the shared secret is 3-bit. In addition, we assume that Trent
verified the identity of the participant pi for i = 1, 2, …, n in advance and distributed a 3-bit
subkey Ki face-to-face for each authenticated pi. Then, Trent computed the XOR result of all
subkeys, that is, K ¼ ⊕n

i¼1Ki.
Next, we will introduce the protocol in detail.

Step 1. Trent prepared n GHZ states, in which each GHZ state was randomly in one of
eight states, and then disrupted the particles of all GHZ states. Currently, there are 3n
particles in disorder. Next, for i = 1, 2, …, n, Trent randomly selects three particles and
sends them to pi through the quantum channel. That is, each participant has three particles
in the disordered n GHZ states at random.
Step 2. Each participant pi (i = 1, 2, …, n) randomly prepares a 3-bit sub-secret Si as its
private secret and computes Qi = Si ⊕ Ki. It should be noted here that when the first two
bits of Qi are different, pi needs to replace them with the same two bits, i.e. 00 or 11.
Furthermore, pi applies the Pauli operator UQi

on any one of the three received particles,
and then performs GHZ measurement on the three particles.
Step 3. All participants p1, p2, …, pn publish their measurement results
Mp1 ;Mp2 ;…;Mpn , where Mpi represents the characteristics of the measurement results
of participant pi.
Step 4. We specify M ¼ ⊕n

i¼1Mpi , B ¼ ⊕n
i¼1Bi, where Bi denotes the characteristics of

the i-th initial GHZ state after the Pauli operator is executed. Next, Trent computes T =
M ⊕ B ⊕ S ⊕ K and declares the value of T.
Step 5.When n participants p1, p2,…, pn need to obtain Trent’s secret S, first, all of them
need to contribute their private secret Si. Through Theorem 4, we can infer that the
characteristics of n GHZ measurement results, the characteristics of the initial GHZ state
after the application of n Pauli operator and the characteristics of n Pauli operator meet the
following relations:

⊕n
i¼1Mpi

� 	 ¼ ⊕n
i¼1Bi

� 	
⊕ ⊕n

i¼1Qi

� 	

  Page 6 of 1376



Int J Theor Phys (2022) 61: 76

Consequently, we can get the shared secret S:

S ¼ T⊕M⊕B⊕K ¼ T⊕ ⊕n
i¼1Qi

� 	
⊕K

¼ T⊕ ⊕n
i¼1 Si⊕Kið Þ� 	

⊕K ¼ T⊕ ⊕n
i¼1Si

� 	 ð5Þ

Example. Suppose there are three users: p1, p2 and p3. Each user has three particles distributed
by Trent, as shown in Fig. 4, p1, p2 and p3 hold particles (1, 4, 9), (3, 7, 6) and (2, 5, 8),
respectively. The Pauli operators UQ1

, UQ2
and UQ3

of the three users are applied to particles
4, 7 and 2 respectively.

The black solid line represents the entanglement between the initial three particles, and the
red dotted box denotes the GHZ measurement.

Fig. 3 Entanglement swapping of n GHZ state particles after applying n Pauli operators
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From Theorem 3, we can obtain the following equations:

B
0
123 ¼ Q3⊕B123 ¼ S3⊕K3ð Þ⊕B123

B
0
456 ¼ Q1⊕B456 ¼ S1⊕K1ð Þ⊕B456

B
0
789 ¼ Q2⊕B789 ¼ S2⊕K2ð Þ⊕B789

Besides, by Theorems 1 and 2, we can get,

Mp1⊕Mp2⊕Mp3 ¼ B
0
456⊕B

0
789⊕B

0
123

¼ S1⊕K1ð Þ⊕B456f g⊕ S2⊕K2ð Þ⊕B789f g⊕ S3⊕K3ð Þ⊕B123f g
¼ S1⊕S2⊕S3f g⊕ K1⊕K2⊕K3f g⊕ B123⊕B456⊕B789f g

¼ ⊕3
i¼1Si

� 	
⊕ ⊕3

i¼1Ki
� 	

⊕ ⊕3
i B3i−2;3i−1;3i

� 	 ð6Þ

From Eq. (6), we get,

⊕3
i¼1Si

� 	
⊕T ¼ ⊕3

i¼1Si
� 	

⊕S⊕K⊕M⊕B
¼ ⊕3

i¼1Si
� 	

⊕S⊕K⊕ ⊕3
i¼1Si

� 	
⊕ ⊕3

i¼1Ki
� 	 ¼ S

As can be seen, only authenticated participants with a subkey (i.e. Ki) can recover the secret
through Eq. (5). But the protocol needs to ensure that the subkey is not disclosed, that is, it can
realize anonymous authentication through different Ki of each participant.

Fig. 4 Distribute three GHZ state particles to three participants
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4 Security Analysis

This section analyzes the security of the proposed protocol. We discuss two aspects: external
attacks and participant attacks. For external attack, we mainly consider interception-measure
attack and entangle-measure attack. The following is a detailed analysis.

4.1 External Attack

(1) Intercept-Measure Attack

Firstly, the external attacker can perform intercept-measure attacks. We assume that the
external attacker Eve can intercept three particles assigned to any participant, then he directly
measures the three particles in GHZ basis, and finally sends them back to the participant. If the
attacker Eve successfully implements this attack, he will obtain the measurement state of the
three particles distributed to the participant pi. Furthermore, since the characteristic Mpi of the
measurement results of the participants is public, Eve can easily infer Qi. However, Qi = Si ⊕
Ki, where Si is randomly selected by the user pi, and Ki is pi‘s absolutely secure private key.
Therefore, even though Eve can obtainQi, he still cannot obtain any relevant information about

Si or Ki. That is, Eve cannot get any private information about K and ⊕n
i¼1Si

� 	
. Without

relevant information about K and ⊕n
i¼1Si

� 	
, it is obvious that Eve cannot know the secret S

shared by Trent to the participants, because T = S ⊕ K ⊕ M ⊕ B and S ¼ ⊕n
i¼1Si

� 	
⊕T .

Therefore, this attack is completely infeasible for the proposed quantum secret sharing
protocol.

(2) Entangle-Measure Attack

External attackers can also perform more complex attacks, namely entangle-measure attacks.
Suppose that the external attacker Eve intercepts the particles assigned to the participants and
prepares ancillary particles for each intercepted particle. Eve first entangles the ancillary
particles with the intercepted particles through the local unitary operator, and finally extracts
some useful information by measuring the ancillary particles. For example, as shown in Fig. 5,
the attacker Eve intercepts six particles 1, 2, 3, 4, 5, 6 transmitted through the quantum
channel, where (1, 2, 3) and (4, 5, 6) are two pairs of entangled GHZ state particles, and
executes CNOT gate operators for particle pairs (1,a1), (2,a2), (3,a3), (4,a4), (5,a5) and (6,a6),
where a1, a2, a3, a4, a5 and a6 are six ancillary particles prepared by Eve for the target particles.

Fig. 5 The entangle-measure attack
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Finally, Eve sends the intercepted particles back to the corresponding participants. Here, for
simplicity, we omit the Pauli operators and assume that the corresponding participants directly
perform GHZ-basis measurements on particles (1,2,6) and (3,4,5), respectively. Without losing
generality, we assume that the initial states of GHZ state particles (1, 2, 3) and (4, 5, 6) are
Ψ000j i123 ¼ 1ffiffi

2
p 100j i þ 011j ið Þ 123, Ψ010j i456 ¼ 1ffiffi

2
p 111j i þ 000j ið Þ 456, and the initial states

of all ancillary particles are |0〉.
Next, we start to execute the CNOT gate operators, and then we can get:

CNOT 1; a1½ �CNOT 2; a2½ �CNOT 3; a3½ � jΨ000〉123⊗j0〉a1⊗j0〉a2⊗j0〉a3
� �

¼ CNOT 1; a1½ �CNOT 2; a2½ �CNOT 3; a3½ � 1ffiffiffi
2

p j100〉þ j011〉
� �

123
⊗j0〉a1⊗j0〉a2⊗j0〉a3


 �

¼ 1ffiffiffi
2

p j100100〉þ j011011〉
� �

123a1a2a3

CNOT 4; a4½ �CNOT 5; a5½ �CNOT 6; a6½ � jΨ010〉456⊗j0〉a4⊗j0〉a5⊗j0〉a6
� �

¼ CNOT 4; a4½ �CNOT 5; a5½ �CNOT 6; a6½ � 1ffiffiffi
2

p j111〉þ j000〉
� �

456
⊗j0〉a4⊗j0〉a5⊗j0〉a6


 �

¼ 1ffiffiffi
2

p j111111〉þ j000000〉
� �

456a4a5a6

Due to the randomness of the measurement, if the measurement results of particles (1, 2, 6) and
(3, 4, 5) are Ψ100j i126 ¼ 1ffiffi

2
p 101j i þ 010j ið Þ 126 and Ψ110j i345 ¼ 1ffiffi

2
p 110j i þ 001j ið Þ 345, the

following results will be obtained:

〈Ψ100 123⊗〈Ψ110

��� ���
345

⊗
1ffiffiffi
2

p j100100〉þ j011011〉
� �

123a1a2a3
⊗

1ffiffiffi
2

p j111111〉þ j000000〉
� �

456a4a5a6

¼ 1ffiffiffi
2

p 〈101j þ 〈010j
� �

126⊗
1ffiffiffi
2

p 〈110j þ 〈001j
� �

345⊗
1ffiffiffi
2

p j100100〉þ j011011〉
� �

123a1a2a3

⊗
1ffiffiffi
2

p j111111〉þ j000000〉
� �

456a4a5a6
¼ 1

4
j100111〉þ j011000〉

� �
a1a2a3a4a5a6

Obviously, the state of possible measurement results of ancillary particles (1, 2, 6) and (3, 4, 5)

are Ψ100j ia1
n

a2 a6 ; Ψ000j ia3 a4 a5g or Ψ101j ia1
n

a2 a6 ; Ψ001j ia3 a4 a5g. This means that the

attacker Eve can infer the XOR result of the measurement results of n participants, i.e.
⊕n

i¼1Mpi , by measuring ancillary particles on the GHZ basis. However, ⊕n
i¼1Mpi is originally

public, so Eve does not obtain substantive information. In fact, he still can’t get K and⊕n
i¼1Si,

so he never learns about the shared secret S. According to the above, our quantum secret
sharing protocol can resist the entangle-measure attack.

The black solid line represents the entanglement relationship, and the red dotted box
denotes GHZ measurement.

4.2 Participant Attack

We assume that there are any dishonest participants with n-1 or less than n-1 who want to
recover secret S through illegal conspiracy. However, all quantum resources used and all
subkeys distributed are privately generated by Trent, and each sub-secret Si is randomly
selected by each participant. Obviously, any dishonest participant with n-1 or less than n-1
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cannot obtain the values of K and ⊕n
i¼1Si, that is, they cannot obtain secret S by collusion.

Therefore, our protocol can resist participant attack.

4.3 Others

In addition, the initial subkey Ki distributed by Trent in advance can ensure the authenticity of
GHZ state particles distributed by Trent, because only Trent knows the value of K (i.e.
⊕n

i¼1Ki). Of course, Trent can also assign a group of particles to each participant instead of
three particles, so that Trent and participants can select some particles to jointly check the
security of quantum channels [27]. Moreover, we can also use decoy photon detection
technology [28] to check eavesdropping on quantum channels. Besides, participants can
privately exchange particles before executing Pauli operators, to avoid distributing known
GHZ states to designated participants. Consequently, the attacker Eve (even Trent) cannot
infer the private operator executed by the participant only from its public measurement results.

Our QSS protocol has the following advantages:

(1) Particles are randomly distributed, and each participant does not know whose particles
are entangled with the particles he holds.

(2) Anonymous authentication can be provided.
(3) All subkeys Ki and sub-secrets Si do not need to be transmitted through any classical or

quantum channel.
(4) The operator performed by each participant is completely independent of its sub-secret or

subkey. That is, no attacker or eavesdropper can obtain any private information about
single subkey or single sub-secret.

(5) The attacker cannot obtain any private information about K and ⊕n
i¼1Si, and he has no

information about the shared secret S. Hence, the proposed secret sharing protocol is
unconditionally secure.

5 Efficiency Analysis

Now let us discuss the efficiency of our protocol. According to [29], some efficiency factors
can be defined as the following formula, which can be used to obtain the efficiency of quantum
communication protocols.

η ¼ bs
qt þ bt

Where bs is the bit length of the shared secret, and qt is the total number of quantum resources
utilized, and bt represents the number of classical bits used in the protocol. In this scheme, the
length of secret S to be shared by Trent is 3-bit, so bs is 3; The quantum resources utilized in
the protocol are only n GHZ state particles distributed by Trent at the beginning, so qt is 3n;
Before the start of the protocol, Trent distributed a 3-bit subkey Ki to each participant, after the
start of the protocol, each participant randomly generated a 3-bit sub-secret Si, so bt is 6n. It can
be concluded that the efficiency of our protocol is η ¼ bs

qtþbt
¼ 1

3n.

In Table 1, we also show comparisons with several similar typical protocols in many
aspects.
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6 Conclusion

Firstly, we quote the theorem that the entanglement swapping characteristics of GHZ state are
invariant. Through the existing theorems, we deduce two new theorems: one is the relationship
between the characteristics of initial GHZ state, the characteristics of initial state after
executing Pauli operator and the characteristics of Pauli operator; The other is the relationship
among the characteristics after swapping measurement, initial state characteristics and Pauli
operator characteristics. By the transformation relationship between equations and the nature
of XOR operation, all honest participants obtain the final shared secret. This scheme has many
advantages, such as particle randomness, anonymous authentication, unconditional security
and so on. The security analysis and efficiency analysis show that it cannot only resist most
attacks and ensure that the shared secret is not leaked, but also has ideal efficiency. Therefore,
under the existing quantum technology conditions, our multi-party quantum secret sharing
protocol is completely feasible. In the future, we will combine our derived formulas with
machine learning, such as quantum neural structure search, quantum intelligent program
synthesis and other fields.
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