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Abstract
We study the decoherence process induced by a spin chain environment on a central spin
consisting of R spins and we apply it on the dynamics of quantum correlations (QCs) of
three interacting qubits. To see the impact of the initially prepared state of the spin chain
environment on the decoherence process, we assume the spin chain environment prepared in
two main ways, namely, either the ground state or the vacuum state in the momentum space.
We develop a general heuristic analysis when the spin chain environment is prepared in these
states, to understand the decoherence process against the physical parameters. We show
that the decoherence process is mainly determined by the choice of the initially prepared
state, the number of spins of the chain, the coupling strength, the anisotropy parameter and
the position from the quantum critical point. In fact, in the strong coupling regime, the
decoherence process does not appear for the environment prepared in the vacuum state and
it behaves oscillatory in the case of evolution from the ground state. On the other hand, in
the weak coupling regime and far from the quantum critical point, decoherence induced by
the ground state is weaker than that of the vacuum state. Finally, we show that QCs are
completely shielded from decoherence in the case of evolution from the W state and obey
the same dynamics as the decoherence factors for the GHZ state.

Keywords Entanglement · Quantum discord · Spin chains · Decoherence

1 Introduction

In the quantum world, every superposition of legal states is a legal state but when a system
interacts with its surroundings, all its superposed states are not treated equally. Indeed, the
result of this interaction is the single out of pointer states which remain stable during the
decoherence process, which is known as ein-selection [1]. The decoherence is then defined
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by Zurek as the destruction of quantum coherence between preferred states associated with
the observables monitored by the environment [1].

However, decoherence appears as the major obstacle to the conservation of quantum cor-
relations (QCs) in quantum information processing. Indeed, QCs are the degree of quantum
liaison among several systems. QCs appeared in the last decade of the 20th century from
the concept of entanglement introduced by Schrödinger in 1935 [2]. Besides, there are two
kinds of QCs measures: firstly, the quantumness of correlation such as concurrence, neg-
ativity, the entanglement of formation, and entanglement witness. What has mainly been
introduced in the last decade of the 20th century by Wooters [2]. Secondly, the quantumness
of correlation which measures the rest of QCs after a set of measurements [3].

So many recent works have investigated decoherence caused by an environmental XY
spin chain. These works can be separated into two sets: the former investigating the effect
of XY spin chain on non-interacting central spins system [4–6], and the latter, the effect of
XY spin chain on interacting central spins system [7–11].

Concerning decoherence process induced by XY spin chain on non-interacting central
spins, it has been established that, when the spin chain environment is prepared in the ground
state, the decay of QCs due to decoherence differs following the initial prepared state of
the central system, namely, a system of two and three qubits, in particular, in the case of a
three qubits system, it is showed that the W state is more robust against decoherence than
GHZ state [4, 5]. Also, in a multipartite system, when only one qubit interacts with its
surroundings, there is a sudden transition from classical to quantum decoherence [4, 6].

Concerning the decoherence process induced by XY spin chain on interacting central spins,
it has been established that when the spin chain environment is prepared in the ground state and
the two-qubit system in a separated one, the decoherence process is best enhanced at the
quantum critical point in the weak coupling case and can be reduced both by decreasing the
anisotropy of the chain and increasing the Dzyaloshinskii-Moriya (DM) interaction [7]. In
the case of evolution from the vacuum state, the disentanglement process is mainly determined
by the physical parameters and the initial states of the central spins system, but it can be broken
by introducing the Hamiltonian of the central spin system [8]. However, there is another
initial prepared state of the spin chain in the literature, called thermal state [10, 11, 18].

In this work, we consider a central spins system consisting of R spins coupled to another
spin chain environment. Each of them will be assumed to be prepared in two ways. We
generalize the heuristic analysis made in ref. [8, 12, 14, 15] for the spin chain’s decoher-
ence factors, to answer the following questions: How do the initial prepared states of the
spin chain affect the decoherence process? How do the initial prepared states of the sys-
tem affect the dynamics of QCs under such a decoherence process? How can the inevitable
process of degradation of QCs due to decoherence be reversed? We start in Section 2 by
introducing and diagonalizing the model and then we calculate the reduced density matrix
of R qubits and explicit expressions of decoherence factors. In Section 3, we generalize the
heuristic analysis of decoherence factors and also present numerical results for two of them.
In Section 4, we investigate the QCs for R = 3 and then present analytical and numerical
results. Finally, Section 5 is devoted to the conclusion.

2 Model

We model the spin chain environment by the one dimensional XY model:

Hλ
E = −

N∑

l=1

[ 1+γ
2 σx

l σ x
l+1 + 1−γ

2 σ
y
l σ

y

l+1
+λσz

l + D
(
σx

l σ
y

l+1 − σ
y
l σ x

l+1

)
]

, (1)

Page 2 of 1974   



Int J Theor Phys (2022) 61: 74

where N is the number of spin of the chain, γ its anisotropy parameter, λ the magni-
tude of the transverse magnetic field and D is the DM interaction which has important
effects on QCs [4, 7, 8, 19]. In addition, we assume the central spins, consisting of R spins,
transversally coupled to the chain:

HI = −
R∑

i=1

giσ
z
i ⊗

N∑

l=1

σz
l , (2)

where gi is the coupling strength between the ith spin of the central system and the spin
chain environment. The resulting Hamiltonian is therefore given by:

HEI = Hλ
E + HI ; (3)

with Hλ
E the extension of Hλ

E in the total Hilbert space. The canonical basis in the R-
dimensional Hilbert space {|i〉, 0 ≤ i ≤ R − 1} is the eigenvalue basis of the operator∑R

i=1 giσ
z
i . The eigenvalue of |i〉 = |i1i2...iR〉 (ij ∈ {0, 1}, ∀j ∈ [1, R]) is αi =∑R

j=1(−1)ij gj . So from the spectral theorem HEI can be written as:

HEI =
2R−1∑

k=0

|k〉〈k| ⊗ Hλk

E , (4)

where H
λk

E is obtained from Eq. 1 by substituting λ by λk = λ+αk . Hλk

E can be diagonalize
following the standard procedure. We introduce the Jordan-Wigner transformation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σx
l = ∏

s<l

(1 − 2c
†
s cs)(c

†
s + cs)

σ
y
l = −i

∏
s<l

(1 − 2c
†
s cs)(c

†
s − cs)

σ z
l = (1 − 2c

†
l cl)

, (5)

to map from spin model to one-dimensional spinless fermionic model :

Hλk

E = −
N∑

l=1

[
(1 + 2iD)c

†
l+1cl + (1 − 2iD)c

†
l cl+1

+γ
(
cl+1cl + c

†
l c

†
l+1

)
+ λk(1 − 2c

†
l cl)
]
, (6)

where c
†
l and cl are the creation and annihilation operators respectively. Now, we introduce

the inverse discrete Fourier transformation cl = 1√
N

∑L
j=−L dj e

2iπj l
N with L = (N − 1)/2,

to map from real space to momentum space:

Hλk

E = −
L∑

j=−L

[
− iγ sin 2πj

N
(d−j dj + d

†
−j d

†
j )

+
{

2(cos 2πj
N

− λk) + 4D sin 2πj
N

}
d

†
j dj

]
. (7)

The diagonalized form is obtained by introducing the Bogoliubov transformation:

bj,λk
= cos

(
θ

λk

j

2

)
dj − i sin

(
θ

λk

j

2

)
d

†
−j , (8)
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with

θ
λk

j = arctan

(
γ sin 2πj

N

λk − cos 2πj
N

)
, (9)

as given by:

Hλk

E =
L∑

j=−L

Λ
λk

j

(
b

†
j,λk

bj,λk
− 1

2

)
, (10)

where

Λ
λk

j = 2

(
ε
λk

j + 2D sin
2πj

N

)
, (11)

and ε
λk

j is defined as:

ε
λk

j =
√(

λk − cos
2πj

N

)2

+ γ 2 sin2 2πj

N
. (12)

In addition, the normal modes bj,λk
and bj,λ are related by:

bj,λk
=
(

cos ϑ
λk

j

)
bj,λ − i

(
sin ϑ

λk

j

)
b

†
−j,λ, (13)

where

ϑ
λk

j = θ
λk

j − θλ
j

2
. (14)

Let us assume that at t = 0 the central spins are completely disentangled from the spin
chain:

ρ(0) = ρS(0) ⊗ |ψE〉〈ψE |. (15)

The time evolution of the system is given by:

ρ(t) = U(t)ρ(0)U†(t), (16)

where
U(t) = exp(−iHEI t) (17)

By tracing the total density operator on the environmental degree of freedom, the density
operator of the system is obtained as:

ρS(t) =
2R−1∑

k,k′=0

Fkk′(t)〈φk|ρS(0)|φk′ 〉|φk〉〈φk′ |, (18)

where
Fkk′(t) = 〈ψE |Uλk′ †

E (t)U
λk

E (t)|ψE〉, (19)

where U
λk

E (t) = exp
(
−iHλk

E t
)

is the projected time evolution operator driven by Hλk

E and

Fkk′(t) is the so called decoherence factor [12, 14, 15]. Let us now derived the explicit
expression of decoherence factor following the initial prepared state of the spin chain.

The ground state can be chosen as:

|G〉λ =
L∏

j=1

(
cos

θλ
j

2
|0〉j |0〉−j + i sin

θλ
j

2
|1〉j |1〉−j

)
, (20)
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where, |1〉j and |0〉j represent respectively the single excitation and the vacuum of the j th

mode dj . When |ψE〉 = |G〉λ, the decoherence factor reads from Eqs. 19 and 20 as [12]:

|Fkk′ (t)|=
L∏

j=1

⎛

⎝
∣∣∣∣

sin(ϑ
λk

j ) sin(ϑ
λk′
j ) cos(ϑλk

j −ϑ
λk′
j ) × e

−i(Λ
λk
j −Λ

λ
k′

j )t −cos(ϑλk

j ) sin(ϑ
λk′
j ) sin(ϑ

λk

j −ϑ
λk′
j )e

i(Λ
λk
j +Λ

λ
k′

j )t

+ sin(ϑ
λk

j ) cos(ϑ
λk′
j ) sin(ϑ

λk

j −ϑ
λk′
j )e

−i(Λ
λk
j +Λ

λ
k′

j )t +cos(ϑλk

j ) cos(ϑ
λk′
j ) cos(ϑλk

j −ϑ
λk′
j )e

i(Λ
λk
j −Λ

λ
k′

j )t

∣∣∣∣

⎞

⎠ ,

(21)

or

|Fkk′ (t)|=
L∏

j=1

(
1 − 4 sin(2ϑ

λk

j ) sin(2ϑ
λk′
j ) sin2(ϑ

λk

j −ϑ
λk′
j ) sin2(Λ

λk

j t) sin2(Λ
λk′
j t)+2 sin(2ϑ

λk

j ) sin(2ϑ
λk′
j ) sin(Λ

λk

j t)

× sin(Λ
λk′
j t) cos(Λλk

j t−Λ
λk′
j t)−sin2(2ϑ

λk

j ) sin2(Λ
λk

j t) − sin2(2ϑ
λk′
j ) sin2(Λ

λk′
j t)

) 1
2

.

(22)

The vacuum state is given by:

|0E〉 = |0〉j=0 ⊗j>0 |0〉j |0〉−j . (23)

When, |ψE〉 = |0E〉, the decoherence factor reads [8, 15]:

|Fkk′ (t)|=
L∏

j=1

⎛

⎝
1−sin2(Λ

λk

j t) sin2(Λ
λk′
j t) sin2(θ

λk

j − θ
λk′
j )−

[
sin(Λ

λk

j t) cos(Λ
λk′
j t) sin(θ

λk

j )

− cos(Λλk

j t) sin(Λ
λk′
j t) sin(θ

λk′
j )
]2

⎞

⎠

1
2

.

(24)

3 Decoherence Process

Due to the huge difficulties to interpret the decoherence factors, we will derive a general
heuristic analysis in order to understand the behaviour of decoherence process at the quan-
tum critical point as well as far from the quantum critical point, in the weak and strong
coupling and for two initial prepared states of the environment.

3.1 Evolution from Ground State

1. Weak Coupling Case (gi � 1, ∀i ∈ [1, R ])
Let Kc be a cut off number, relatively small than N , and Fkk′ be its corresponding partial
product of the decoherence factor:

|Fkk′(t)|Kc =
Kc∏

j>0

Fj ≥ |Fkk′(t)|, (25)

then the associated partial sum is:

S(t) = ln |Fkk′(t)|Kc = ln
Kc∏

j>0

Fj =
Kc∑

j>0

ln Fj . (26)

When N is large enough compare to j one has from Eqs. 11 and 12:
{

ε
λk

j ≈ |1 − λk|
Λ

λk

j ≈ 2|1 − λk| + 4D
2πj
N

. (27)
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In addition, from Eqs. 9 and 14
⎧
⎪⎪⎨

⎪⎪⎩

sin θ
λk

j ≈ 2πjγ
N |λk−1|

cos θ
λk

j ≈ λk−1
|λk−1|

sin(ϑ
λk

j − ϑ
λk′
j ) ≈ − 2πjγ (λk′−λk)

N |(λk−1)(λk′−1)|

. (28)

in the third order of j
N

, the partial sum becomes:

S(t) ≈

1
2

Kc∑
j>0

ln

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 − 4π2j2γ 2α2
k sin2(Λ

λk
j t)

N2

− 8π2j2γ 2αkαk′ sin(Λ
λk
j t) sin(Λ

λ
k′

j t)

N2(λ−1)2|(λk−1)(λk′−1)|
× cos((Λλk

j − Λ
λk′
j )t)|(λ − 1)(λk − 1)|2

− 36π2j2γ 2α2
k′ sin2(Λ

λ
k′

j t)

N2 |(λk′ − 1)(λ − 1)|2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,
(29)

for short duration we have:

S(t) ≈ −2π2γ 2t2

(λ − 1)2

Kc∑

j>0

(
2j t

N

)2
⎡

⎣ αkΛ
λk

j

|λk − 1| − αk′Λ
λk′
j

|λk′ − 1|

⎤

⎦
2

. (30)

a. Near the Quantum Critical Point(λ → 1)

Near the quantum critical point, the partial sum becomes:

S(t) ≈ −2π2γ 2t2

(λ − 1)2

Kc∑

j>0

(
2j t

N

)2
⎡

⎣αkΛ
λk

j

|αk| − αk′Λ
λk′
j

|αk′ |

⎤

⎦
2

. (31)

In addition,Λλk

j ≈ 2|αk| + 4D
2πj
N

thus

S(t) ≈ −
(
τ

(1)

kk′ + τ
(2)

kk′
)

, (32)

with ⎧
⎨

⎩
τ

(1)

kk′ = 2γ 2(αk−αk′ )2

(λ−1)2 E(2)(Kc)

τ
(2)

kk′ = 8Dγ 2(αk−αk′ )
(λ−1)2

(
αk|αk | − αk′

|αk′ |
)

E(3)(Kc)
, (33)

and

E(i)(Kc) =
Kc∑

j>0

(
2πj

N

)i

. (34)

By maximising the decoherence factor by its partial product it becomes:

|Fkk′(t)| ≈ e
−
(
τ

(1)

kk′ +τ
(2)

kk′
)
t2

. (35)

This shows that near the quantum critical point, the decoherence process will appear expo-
nentially with the second power of time. In addition, E(2)(Kc) � E(3)(Kc) so Fkk′(t) is
mainly determined by τ

(1)

kk′ and then the DM interaction has a slightly effect on the decoher-
ence process in particular. These are consistent with the numerical result of exact expression
of decoherence factor in Fig. 1(a). As E(2)(Kc) and E(3)(Kc) are inversely proportional to
N and consequently to τ

(1)

kk′ and τ
(2)

kk′ , then, this implies that, the higher the number of spins
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Fig. 1 Decoherence factor against time and DM interaction. Panel (a) is plotted for the environment prepared
in the ground state and panel (b) in the vacuum state. N=400, g=0.05, γ = 0.5, and λ = 1

in the chain the faster the decoherence process. This result is consistent with the numerical
result of Fig. 2(a). The results of [12, 14] can be derived from those obtained here by set-
ting k = 1 and k′ = 3. On the other hand, when γ → 0 then τ1, τ2 → 0 and as a result
|Fkk′(t)| → 1 therefore, the XX model will not affect the central spins system when the
system is weakly coupled to the environment at the quantum critical point.

b. Far the Quantum Critical Point(λ � 1)

When we are relatively far from the quantum critical point such that

|λk − 1| ≈ |λ − 1|, ∀k (36)
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Fig. 2 Decoherence factor against time for many values of spin number. Panel (a) is plotted for environment
prepared in the ground state and panel (b) for in the vacuum state. D=0, g=0.05, γ = 0.5, and λ = 1
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namely, as gi → 0 then
gi � |λ − 1| (37)

Thus the partial sum at the third power of j
N

becomes

S(t) ≈ −
(
τ

(1)

kk′ + τ
(2)′
kk′
)

, (38)

with

τ
(2)′
kk′ = 8Dγ 2(αk′ − αk)

2

(λ − 1)2
E(3)(Kc). (39)

By maximising the decoherence factor by its partial product it comes that

|Fkk′(t)| ≈ e
−
(
τ

(1)

kk′ +τ
(2)′
kk′
)
t2

. (40)

By comparing τ
(2)

kk′ and τ
(2)′
kk′ it comes that: far from the quantum critical point the deco-

herence process is weaker than at the quantum critical point, this is consistent with the
numerical result of ref. [12]. We relate this to the fact that strong magnetic field disturbed
the spin chain, such that far from the quantum critical point, the coherence of the spins of
the environment becomes weak, contrary at the quantum critical point where the coherence
of the spins of the environment is maximal and they collaborate very well. The result is
the vanishing coherence of the central spins system; which is consistent with the numer-
ical result of Fig. 3(a) where the exact expression of decoherence factor is plotted. We
have also the same results for D and N as in the case of quantum critical point. In addi-

tion, as τ
(2)

kk′ � τ
(2)′
kk′ , the farther the quantum critical point, the weaker is the effect of DM

interaction on decoherence process.

3.1.1 Strong Coupling Case.

When gi � 1 ∀i then λk → αk(+∞) thus,
{

tan θ
λk

j → 0+if αk > 0

tan θ
λk

j → 0− if αk < 0
, (41)
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Fig. 3 Decoherence factor against time for different magnetics fields. Panel (a) is plotted for environment
prepared in the ground state and panel (b) for in the vacuum state. D=1, N =400, g=0.05, and γ = 0.1
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therefore, {
θ

λk

j → 0 if αk > 0

θ
λk

j → π if αk < 0
. (42)

a. When αk > 0 and αk ′ < 0 or αk < 0 and αk ′ > 0

As the result for the two sets are the same and from the symmetry of the decoherence factor,
we will derive the heuristic analysis from the first set. Here we have

{
θ

λk

j ≈ 0 , θ
λk′
j ≈ π

ϑ
λk

j − ϑ
λk′
j ≈ −π

2

, (43)

with these approximations, the decoherence factor becomes as follow [14, 16],

|Fkk′(t)| ≈
∏

j>0

| cos2
θλ
j

2
e
i(Λkk′

j )t + sin2
θλ
j

2
e
−i(Λkk′

j )t |

=
∏

j>0

| cos((Λjkk′)t) + i sin((Λjkk′)t) cos
θλ
j

2
|

≈ e
−(S2

kk′ t2)

2 | cos((Λkk′)t)|N
2 (44)

where Λkk′ is given by:

Λkk′ = 1

L

∑

j>0

(Λ
λk

j + Λ
λk′
j )

≈ 2

L

∑[(
α2

k + γ 2 sin2 2πj

N

) 1
2

+
(

α2
k′ + γ 2 sin2 2πj

N

) 1
2 + 4D sin

(
2πj

N

)]

≈ 2(|αk| + |αk′ |) + γ 2

2

(
1

|αk| + 1

|αk′ |
)

(45)

In addition,

S2
N =

∑

j>0

sin2(θλ
j )δ2

j , (46)

with δj representing the deviation of Λjkk′ from its mean values:

δj = Λjkk′ − Λkk′ , (47)

and

Λkk′ = Λk
j + Λk′

j

≈ 2 (|αk| + |αk′ |) + γ 2
(

1

|αk| + 1

|αk′ |
)

sin2
(

2/pij

N

)

+8D sin

(
2πj

N

)
(48)
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then

δj ≈ 8D sin

(
2πj

N

)
− γ 2

2

(
1

|αk| + 1

|αk′ |
)

cos

(
4πj

N

)
. (49)

In this configuration, the decoherence process exhibits an oscillatory Gaussian envelope
with the period

P = π

(
2 (|αk| + |αk′ |) + γ 2

2

(
1

|αk| + 1

|αk′ |
))−1

, (50)

and width

W =
{(

γ 4

4

(
1

|αk| + 1

|αk′ |
)2

+ 64D2

)
N

}− 1
2

. (51)

It is important to note that W represents also the decoherence time. In addition, strong
DM interaction will enhance the decoherence process by increasing the envelope width as
shown in the numerical result of exact expression in Fig. 4(a). As |Fkk′(t)| is independent of
λ, the decoherence process is independent of the position from the quantum critical point.
The results of [12, 14] can be derived from those obtained here by setting k = 1 and k′ = 3.

b. When αk > 0 and αk ′ > 0 or αk < 0 and αk ′ < 0

As the result for the two sets are the same because of the symmetry of the decoherence
factor, we will derive the heuristic analysis from the first set. In this case we have:

{
θ

λk

j = θ
λk′
j → 0

ϑ
λk

j − ϑ
λk′
j → 0

, (52)

thus the same argumentation as the previous one gives

Λkk′ = 1

L

∑

j>0

(
Λ

λk

j − Λ
λk′
j

)

≈ 2 (|αk| − |αk′ |) + γ 2

2

(
1

|αk| − 1

|αk′ |
)

(53)

and

Λkk′ ≈ 2 (|αk| − |αk′ |) + γ 2
(

1

|αk| − 1

|αk′ |
)

sin2
(

2/pij

N

)
, (54)

then
δj ≈ 0 ⇒ S2

N ≈ 0, (55)

therefore
|Fkk′(t)| ≈ | cos((Λkk′)t)|N

2 . (56)

In this situation, the decoherence process exhibits an oscillatory behaviour with the period

P = π

(
2 (|αk| − |αk′ |) + γ 2

2

(
1

|αk| − 1

|αk′ |
))−1

. (57)

This is consistent with the numerical result of Fig. 5. As |Fkk′(t)| is independent to D and λ,
the DM interaction has no effect on the decoherence process and the decoherence process is
independent to the position from the quantum critical point. This is consistent with numeri-
cal results of Fig. 5(b). In addition, as for larger N, |Fkk′(t)| is small, we can conclude that
the higher the number of spin in the chain, the faster the decoherence process.
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Fig. 4 Decoherence factors against time and DM interaction in the ground state (upper panels) and corre-
sponding contour plot (lower panels). (a) is plotted for αkαk′ < 0 and (b) for αkαk′ > 0. N=400, g=500,
γ = 0.5, and λ = 1.1
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Fig. 5 Decoherence factors against time in ground state for αkαk′ > 0. D=0.5, N =400, and λ = 1
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3.2 Evolution from Vacuum State

Strong Coupling Case.

When gi � 1 ∀i we have λk → αk(+∞) , thus it comes that:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ sin
(

2πj
N

)

λk−cos
(

2πj
N

) → 0+ if αk > 0

γ sin
(

2πj
N

)

λk−cos
(

2πj
N

) → 0− if αk < 0

. (58)

Therefore, {
θ

λk

j = 0 if αk > 0

θ
λk

j = π if αk < 0
. (59)

Thus, from Eq. 24 it comes that:

|Fkk′(t)| ≈ 1. (60)

Therefore, when the spin chain is prepared in the vacuum state and is strongly coupled to the
central spins, decoherence process is independent from the physical parameters especially
on the position from the quantum critical point, and will not hold. Thus the central spins
will conserve their quantum coherences. This result is consistent with the particular one of
the literature [8] and also with the numerical result of the exact expression of decoherence
factor.

3.2.1 Weak Coupling Case (g � 1)

Here, the same argumentation as what have been done in the case of evolution from the
ground state gives the following partial sum:

S(t) = −1

2

∑

j>0

ln

(
1 −

(
2πjγ (λk′ − λk)

N |(λk′ − 1)(λk − 1)|
)2

× sin2(Λ
λk

j t) sin2(Λ
λk′
j t) −

(
2πjγ

N

)2

×
⎡

⎣ sin(Λ
λk

j t) cos(Λ
λk′
j t)

|(λk − 1)| − sin(Λ
λk′
j t) cos(Λλk

j t)

|(λk′ − 1)|

⎤

⎦
2 )

(61)

As for small x, ln(1 + x) ≈ x, we have in the short time limit and at the seventh order
of the product of t and j

N

S(t) = −1

2

∑

j>0

(
16t4(αk′ − αk)

2
(

2πjγ

N

)2

+16(tDγ )2
(

2πjγ

N

)4 [ 1

|λk − 1| − 1

|λk′ − 1|
]2

+64Dγ 2t4(αk′ − αk)
2
(

2πjγ

N

)3 [ 1

|λk − 1| + 1

|λk′ − 1|
])

(62)
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3.2.2 a. Near the Quantum Critical Point

In the vicinity of the quantum critical point, by maximising the decoherence factor by its
partial product it comes that:

|Fkk′(t)| ≈ e
−
(
τ

′′(1)

kk′ +τ
′′(2)

kk′
)
t4

e
−
(
τ

′′(3)

kk′
)
t2

(63)

where: ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ
′′(1)

kk′ = 8γ 2(αk′ − αk)
2E

(2)
Kc

τ
′′(2)

kk′ = 32Dγ 2(αk′ − αk)
2E

(3)
Kc

[
1

|αk | + 1
|αk′ |
]

τ
′′(3)

kk′ = 8D2γ 2E
(4)
Kc

[
1

|αk | − 1
|αk′ |
]2

. (64)

Therefore, in the case of evolution from vacuum state, at the quantum critical point, as

E(2)(Kc) � E(3)(Kc) and E(2)(Kc) � E(4)(Kc) so Fkk′(t) is mainly determined by τ
′′(1)

kk′
and the DM interaction has a slightly effect on decoherence process; what is consistent
with the numerical result of Fig. 1(b). In addition, as E(2)(Kc), E(3)(Kc) and E(4)(Kc)

are proportional to N therefore, the greater the number of spins in the chain the faster the
decoherence process, this is also consistent with the numerical result of the exact expression
in Fig. 2(b). By comparing Fig. 2(a) and (b), it comes that the spin chain prepared in the
ground state is more sensitive to the variation of the number of spins in the chain than the

one prepared in the vacuum state. When γ → 0, then τ
′′(1)

kk′ , τ
′′(2)

kk′ , τ
′′(3)

kk′ → 0 and as a result
|Fkk′(t)| → 1, hence the XX model will not affect the central spins system when the system
is weakly coupled to the environment at the quantum critical point. In addition, when t � j

N

then,

|Fkk′(t)| ≈ e
−
(
τ

′′(3)

kk′
)
t2

, (65)

hence, decoherence process appears exponentially with the second power of time and are
slower that the one induced when the environment is prepared in the ground state. On the
other hand, when t � j

N
then,

|Fkk′(t)| ≈ e
−
(
τ

′′(1)

kk′ +τ
′′(2)

kk′
)
t4

. (66)

The decoherence process will exponentially appear with the fourth power of time contrary
to the case of spin chain prepare in ground state, where it appears exponentially with second
power of time. The same result was obtained when k = 1 and k′ = 3, by Sunetal. [15] and
Hu [8].

b. Far the Quantum Critical Point (λ � 1)

When we are not near the quantum critical point, that is relatively far from the quantum
critical point such that the following relation holds:

|λ − 1| � g, (67)

then,
1

|λk − 1| ≈ 1

|λ − 1| . (68)
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Thus, by maximising the decoherence factor by its partial product we have

|Fkk′(t)| ≈ e
−
(
τ

′′(1)

kk′ +τ
′′′(2)

kk′
)
t4

, (69)

where:

τ
′′′(2)

kk′ = 64Dγ 2(αk′ − αk)
2E

(3)
Kc

|λ − 1| . (70)

Therefore, as far from the quantum critical point |λ−1|
gi

� 1, then the farther the quantum
critical point, the weaker the decoherence process. Once more, we relate this to the fact
that strong magnetic field disturbed the spin chain, such that far from the quantum critical
point, the coherence of the spins of the environment becomes weak, contrary at the quantum
critical point where the coherence of the spins of the environment is maximal and they
collaborate very well. The result is the vanishing coherence of the central spins system;
which is consistent with the numerical result of Fig. 3(b) where the exact expression of
decoherence factor is plotted. We have also the same results about D and N as in the case at

quantum critical point. In addition, as τ
′′(2)

kk′ � τ
′′′(2)

kk′ , the farther the quantum critical point,
the stronger is the effect of DM interaction on decoherence process.

4 Applications: Quantum Correlations Dynamics

We are here going to investigate the QCs dynamics measure by the tripartite Negativity
and the Genuine Tripartite Quantum Discord (GTQD) of three interacting qubits under the
previous decoherence process. In particular, we set R to three and model the interaction
between the three-qubit system as the XXZ Heisenberg model with DM interaction:

HS = J

2

[
σx

1 σx
2 + σ

y

1 σ
y

2 + Δσz
1 σz

2 + σx
1 σx

3 + σ
y

1 σ
y

3 + Δσz
1 σz

3

+σx
2 σx

3 + σ
y

2 σ
y

3 + Δσz
2 σz

3 + M
(
σx

1 σ
y

2 − σ
y

1 σx
2 + σ

y

1 σx
3

−σx
1 σ

y

3 + σx
2 σ

y

3 − σ
y

2 σx
3

)]+ B
(
σz

1 + σz
2 + σz

3

)
, (71)

where J is the coupling constant between spins of central system, Δ the anisotropy param-
eter in the z-direction and M the z-component of the DM interaction. The Hamiltonian of
the total system can be written as:

H = HS + HEI , (72)

where HS is the extension of HS in the total Hilbert space. The Diagonalization of HS gives
the following eigen energies:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0 = 3λ + 3JΔ
2

E1 = −J − JM
√

3 + λ − JΔ
2

E2 = −J + JM
√

3 + λ − JΔ
2

E3 = 2J − λ − JΔ
2

E4 = 2J + λ − JΔ
2

E5 = −J + JM
√

3 − λ − JΔ
2

E6 = −J − JM
√

3 − λ − JΔ
2

E7 = −3λ + 3JΔ
2

. (73)
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From which the corresponding eigenstates are:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|φ0〉 = |000〉
|φ1〉 = 1√

3
(ei π

6 |000〉 + ei 5π
6 |010〉 + ei 9π

6 |100〉)
|φ2〉 = 1√

3
(ei 5π

6 |001〉 + ei π
6 |010〉 + ei 9π

6 |100〉)
|φ3〉 = 1√

3
(|011〉 + |101〉 + |110〉)

|φ4〉 = 1√
3
(|001〉 + |010〉 + |100〉)

|φ5〉 = 1√
3
(ei 5π

6 |011〉 + ei π
6 |101〉 + ei 9π

6 |110〉)
|φ6〉 = 1√

3
(ei π

6 |011〉 + ei 5π
6 |101〉 + ei 9π

6 |110〉)
|φ7〉 = |111〉

. (74)

We obtain the commutation relations

[HS, g(σ z
1 + σz

2 + σz
3 )] = 0, (75)

and

[HS,HEI ] = 0. (76)

From Eqs. 4, 73 and 75 HEI reads as follow:

HEI =
7∑

k=0

|φk〉〈φk| ⊗ Hλk

E . (77)

So the density operator of the central spin is now given by:

ρS(t) =
7∑

k,k′=0

e−i(Ek−Ek′ )tFkk′(t)〈φk|ρS(0)|φk′ 〉|φk〉〈φk′ |. (78)

Let us assume the three-qubit system initially prepared in a state composed of a W and
GHZ state, namely,

|ψS(0)〉 = a|GHZ〉 +
√

1 − a2|W 〉, (79)

where, a ∈ {0, 1}, |GHZ〉 = 1√
2
(|000〉 + |111〉), |W 〉 = 1√

3
(|001〉 + |010〉 + |100〉). So

the time dependent density matrix can be written as follow:

ρS(t) = 1

3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3a2

2 0 0 0 0 0 0 3ε

0 1 − a2 1 − a2 0 1 − a2 0 0 0
0 1 − a2 1 − a2 0 1 − a2 0 0 0
0 0 0 0 0 0 0 0
0 1 − a2 1 − a2 0 1 − a2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3ε∗ 0 0 0 0 0 0 3a2

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (80)

where ε = a2

2 F07e
−i(E0−E4)t

We use the tripartite Negativity as the measure of Entanglement of the three-qubit
system. The tripartite Negativity is define as [13]:

N (3)(ρABC(t)) = 3
√
NA−BCNB−ACNC−AB, (81)
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which represents the geometric mean of the bipartite negativity NI−JK . As our state is
symmetric, all the bipartite negativity are equal. Thus the tripartite negativity N (3) reduces
to the bipartite negativity of any bipartition of our system, namely [13]:

N (3)(ρABC(t))

= NC−AB

=
7∑

i=0

|ai(ρ
TC

ABC(t))| − 1 (82)

where ρ
TC

ABC(t) is the partial transpose of the density matrix with respect to the subsys-

tem C, and ai(ρ
TC

ABC(t)) are the eigenvalues of ρ
TC

ABC(t). After calculation, the tripartite
Negativity reads as:

N (3)(ρABC(t)) = −a2 + 2

6
+
√

a4

4
+ 8

(
1 − a2

3

)2

+
√

a4|F07|2 +
(

1 − a2

3

)2

(83)

The GTQD, D(3)(ρ), is used as a measure of Quantum Discord. It is given by [13]:

D(3)(ρABC) = T 3(ρABC) − J 3(ρABC), (84)

where T 3(ρ) is the genuine total correlations and J 3(ρ) is the genuine classical correlation.
As the state is symmetric we have:

{
T 3(ρABC) = S(ρC) + S(ρAB) − S(ρC)

J 3(ρABC) = S(ρC) − S(ρC|AB)
, (85)

where S(ρ) = −T r(ρ log(ρ)) is the Von Neumann entropy and S(ρC|AB) =
minEAB

ij

∑2
i,j=1 pijS(ρC|EAB

ij
) is the quantum conditional entropy. After a tedious calcula-

tion following the method described in ref. [17], the GTQD reads as follows:

D(3)(ρABC(t)) =
(a

2
(1 − |F07|)

)
log (1 − |F07|)

+
(a

2
(1 + |F07|)

)
log (1 + |F07|) − a

2

−2 + a2

6
log

(
2 + a2

6

)
− 2(1 − a2)

3
log

(
2

3

)
(86)

When the system is prepared in the W state, namely, when a = 0 the QCs read as:
{

N (3)(ρABC(t)) = 2
√

2
3

D(3)(ρABC(t)) = log 3 − 2
3

. (87)

As the QCs are conserved here, the coherence between pointer states are conserved, this
implies that the W state is already a pointer state of the spin chain as apparatus following
the quantum measurement theory [1].Therefore the system is not subjected to any einselec-
tion rule and there will be no transfer of information from the system to the spin chain. This
is consistent with the result of Yanetal [4] if their parameters are set as δ = 0 and cy =
−cx = −cz = 1, namely by preparing their two-qubit system in |ψ〉 = 1

2 (|01〉 + |10〉). In
addition, it is also consistent with the result of Guo et al. when the environment is prepared
in the thermal state and QCs measured by the lower bound of concurrence and bipartite
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quantum discord [5].Therefore, in the spin chain induced decohence process, the form of
pointer states are independent with respect to the preparation way of both the system and the
spin chain, what is consistent with our intuition. Furthermore, from the symmetric nature
among those pointer states it comes that, the general form of the pointer states are parametric
defined (in terms of number of qubits subjected to the measurement) by the environmental
spin chain. The parametric pointer state associated to the work of Yanetal (namely, |ψ〉 men-
tioned above) and the present work is |ψ〉 = 1√

N

∑N−1
i=0 |2i〉. Another one can be obtained

from the previous one by complementing the binary expression of each basic state, namely,
|ψ ′〉 = 1√

N

∑N−1
i=0 |2N − 1 − 2i〉. In this way, a new perspective appears to the conservation

of information in quantum information processing. Indeed, one can conserve the informa-
tion in an arbitrary large multipartite system, by preparing it into its associate state with
respect to a generic pointer state of the surrounding.

When the system is prepared in the GHZ state, namely, when a = 1 the QCs read as:
⎧
⎨

⎩

N (3)(ρABC(t)) = |F07(t)|
D(3)(ρABC) = 1+|F07|

2 log(1 + |F07|)
+ 1−|F07|

2 log (1 − |F07|)
. (88)

These expressions are similar to the ones obtained by Yanetal [4] in the case of two-qubit
initially prepared in |ψ〉 = 1

2 (|00〉 + |11〉) and the spin chain environment in the ground
state. We obtain their result for uniformly system-environment coupling strength by substi-
tuting g by 2

3g. In addition it is similar to the one obtained in ref. [5] when their spin chain
environment is prepared in the thermal state. From the similitude among those results, it
comes that, given an environment, at least for the spin chain environment, the form of the
QCs of a system embedded inside, namely its qualitative behaviour, does not change when
we set up the number of qubits if the preparation of the system is done in such a manner to
conserve the symmetry among its components.

Fig. 6 QCs against time for different magnetics fields. Panels (a) and (c) are plotted for environment prepared
in the ground state while panels (b) and (d) in the vacuum state. D=0.5, N =400, g= 0.05, a=1 (GHZ state),and
γ =0.4
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Fig. 7 QCs against time for different magnetics fields . Panels (a) and (c) are plotted for environment pre-
pared in the ground state while panels (b) and (d) in the vacuum state. D=0.5, N =400, a=1 (GHZ state), and
γ =0.4

Let us note that, when |F07(t)| → 1 then D(3)(ρABC(t)), N (3)(ρABC(t)) → 1 and
when |F07(t)| → 0 then D(3)(ρABC(t)), N (3)(ρABC(t)) → 0. Therefore, from the heuristic
analysis of Section 3, it comes that, the QCs will vanish in a very short time under many
conditions as indicated by the numerical results of Fig. 6(a) and (b). But the QCs can be
robust in presence of the strong magnetic field, Fig. 6(c),(d) and conserved in the case of
evolution from vacuum state strongly coupled to the system Fig. 7(d) or by choosing the
spin chain to be the XX model. Figure 7 shows that the dynamic of QCs when the spin
chain evolving from the ground state in presence of very strong magnetic field is equivalent
to its dynamic when the spin chain evolves from the vacuum state strongly coupled to the
central spins. From analytical and numerical results it comes that Tripartite Negativity is
more robust that GTQD.

5 Conclusion

We have studied the decoherence process induced by a spin chain environment on a central
spin consisting of R spins and we have applied the results on the dynamics of QCs of
three interacting qubits. To see the impact of the initial prepared state of the spin chain
environment on the decoherence process, we have assumed the spin chain environment
prepared in the two main ways, namely, either the ground state or the vacuum state in the
momentum space. Besides, to investigate the effect of initial central spins prepared state
on the survival of QCs, we have made a parametric computation of tripartite negativity and
GTQD for the central spins prepared in either the GHZ or the W state which are the well
known (experimentally and theoretically) tripartite entangled states.

About decoherence process, we have shown that in the weak coupling regime at the
quantum critical point, the decoherence process appears exponentially in a short time limit,
with the second power of time for evolution from the ground state and four power for evo-
lution from the vacuum state. Also, in the case of evolution from the vacuum state strongly
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coupled to the central system, the spin chain environment will not induce any decoherence
process while it behaves oscillatory or as an oscillatory Gaussian envelop for the spin chain
prepared in the ground state. In the weak coupling regime with the strong magnetic field,
the evolution from the ground state induces slight decoherence so that the information con-
tent by the central spins system will be more robust far from the quantum critical point than
at the quantum critical point where the decoherence appeared exponentially.

About QCs, we have shown that in the case of evolution from W state QCs remain
constant independently to the environment prepared state. We have related this to the eins-
election rule introduced by Zurek. However, in the case of evolution from GHZ state, QCs
obey to same dynamics as one of the decoherence factors and thus vanish in a short time
limit in many conditions.

From the decoherence behavior investigated in Section 3 and the expressions of QCs
obtained in Section 4, it comes that the degradation of QCs due to decoherence can be
reverse in presence of the strong magnetic field, in the case of evolution from vacuum
state strongly coupled to the system, by choosing the spin chain to be the XX model or by
preparing the system in the W state.
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