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Abstract
This paper presents a quantum image encryption algorithm based on Baker map and 2D
logistic map. The encrypted image is represented with NEQR model and the presented
scheme adopts the strategy of selective encryption. Given a threshold value T , when
C′

YX ≥ T (C′
YX < T ), the proposed scheme performsU⊕k(U⊕A) on quantum state |I ′〉. The

final ciphertext quantum image is obtained through performing nine times quantum Baker
map (QBM). The quantum circuits of encryption and decryption procedure are given. Mul-
tiple images were tested for security performance, including entropy, correlation coefficient
(CC), Number of Pixel Change Rate (NPCR) and the Unified Averaged Changed Intensity
(UACI). The best values of entropy, CC, NPCR and UACI are 7.9888, -0.0005, 99.58%,
33.17% respectively. Simulation results show that the proposed quantum image scheme has
good performance in the aspect of security. By comparison with other schemes, the main
indicators of the proposed scheme are roughly the same.

Keywords Quantum image encryption algorithm · NEQR · Baker map · 2D logistic map

1 Introduction

Feynman proposed the quantum computer model in 1982 [1]. The model uses the super-
position and entanglement properties of quantum mechanics to store, process and transmit
information. It has higher computing power compared to normal computers. Subsequently,
Shor and Grover proposed quantum prime factorization algorithm [2] and quantum search
algorithms [3] respectively. Therefore, the quantum computers began to appear in various
fields of computer science. Such as quantum cryptography [4–6], quantum communication
[7, 8], quantum image encryption and so on. Among them, quantum image encryption has
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become more and more important in recent years because it is more secure and efficient
than traditional image encryption [9].

However, the digital image is converted into a quantum image before performing the
quantum processing. Thus there are some quantum image representation methods are pro-
posed. In 2003 Bose proposed the Qubit Lattice representation method [10]. The image is
considered as a matrix and each qubit stores only one pixel. In 2010, a flexible represen-
tation of quantum images (FRQI) was proposed [11], an algorithm that represents color
information as an angle. For an image of size 2n × 2n, its horizontal and vertical coordi-
nates are expressed in n qubits. However, FRQI uses only one qubit to represent the color
information, so it is not easy to perform some complex color manipulation. To address this
problem, the novel enhanced quantum representation (NEQR) [12] was proposed in 2013.
The total number of qubits required in NEQR is q + 2n for a gray range 0 ∼ 2q − 1 image
with size of 2n×2n. Although it increases the use of qubits, it facilitates the handling of col-
ors. It has also become a more widely used image representation model in quantum image
processing. There are other quantum image representation models, such as the generalized
quantum image representation (GNEQR) model [36], FRQIM [38] by slightly modifying
FRQI, the normal arbitrary superposition state (NASS) model [13] and the multi-channel
quantum image (MCQI) model [38], which improve the efficiency of specific applications.

According to the characteristics and convenience of various quantum image represen-
tation methods, NEQR and its improved method GNEQR are often used for time domain
image encryption [15–17, 39], and FRQI and its improved method FRQIM are often used
for frequency domain image encryption [19, 20, 40, 41]. Time-domain image encryption
scheme generally encrypts images by scrambling pixel positions and changing pixel val-
ues. For example, in [15], a three-level quantum image encryption algorithm based on
Arnold transform and logistic mapping is proposed, which performs block-level permuta-
tion, bit-level permutation and pixel-level diffusion respectively. The key space is increased
by setting different block sizes as well as Arnold transform parameters. In 2019, Li et al.
proposed a block image encryption algorithm based on GNEQR [16]. It is not only applica-
ble to grey-scale and color images, but also can be used for rectangular images. The scheme
uses both geometric and bit-plane transformations to change the position and pixel val-
ues of the image. Frequency-domain encryption are more complicated than the encryption
algorithms over the time domain. Because they usually convert the image to the frequency
domain for encryption while maintaining permutation and diffusion operations. There are
some encryption schemes in frequency domain. For example, in [19], it proposes a quantum
image encryption algorithm based on Arnold permutation and wavelet transform, which
combines the time domain and frequency domain permutation to achieve good encryp-
tion results. The algorithm uses a modified FRQI model to represent the image. In [41],
it uses Fibonacci transform and geometric transform to scramble the position and dou-
ble random-phase encoding to encode the pixel information. There are some encryption
schemes that only disturb the frequency domain characteristics of the image. For example,
the algorithms in [18] use the double random phase encoding (DRPE) technique for quan-
tum image encryption in the Fourier transform domain. Then the paper [18] is improved
by Du, he makes the results of the double random phase coding as uniformly mixed as
possible in [20].

In recent years, chaotic maps are often used to image encryption due to the features of
sensitivity to initial values, a period and pseudo randomness [37]. Therefore, we propose
a quantum image encryption method based on chaotic mapping and Fourier transform in
time-frequency domain. Considering that most encryption operations are performed in the
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time domain, we choose NEQR as the representation method of quantum images. We incor-
porate the idea of selective encryption [24] into it to equalize histogram of cipher image.
Selective encryption first to block the image. Then, different operations are performed on
the image block according to whether the correlation coefficient in the block is greater than
the threshold. The main advantages of this scheme as follows: (1) Associate the key with
the plain image. It can effectively resist chosen-plaintext attack. (2) Equalize histogram of
encrypted image. It can remarkably resist statistical attack. (3) The introduction of QFT
increases the complexity of the encryption scheme.

The remainder of this paper is organised as follows. Section 2 presents some pre-
liminary knowledges. The proposed encryption and decryption schemes are presented in
Section 3. Section 4 presents simulations and security evaluations of the scheme. Finally,
the conclusion is presented in Section 5.

2 Preliminary

Before introducing the background, we agree on some symbols in Table 1.

2.1 NEQR representation and quantum computationmodel

In [28], Zhang et al. presented the NEQR representation of quantum image. The digital
image I can be stored into a normalized superposition state |I 〉, that is, the proposed NEQR
model stores the gray-scale and position information of the image using the superposition
of the qubit sequences.

The NEQR model of a quantum image |I 〉 for a 2n × 2n image can be written as

|I 〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

|CYX〉|YX〉, (1)

where the gray-scale value of the corresponding pixel (Y,X) is

|CYX〉 = |C0
YXC1

YX · · · |Cq
YX〉 ∈ [0, 2q − 1], Ci

YX ∈ {0, 1}.
While the vertical position Y and horizontal position X are represented with qubits |YX〉.
Thus, in the representation of NEQR, a quantum image with the gray-scale 2q and position
information 2n × 2n consists of q + 2n qubits.

Next we introduce the quantum computation model. Quantum computation consists of a
series of quantum logic gates and measurement results. It can accepts superposition states
input and outputs corresponding superposition states. The special quantum computation
model is as follow

Uf : |x, 0〉 → |x, f (x) ⊕ 0〉, (2)

where f is any function and Uf is a unitary operator [31].

Table 1 Notation Convention
x

⊕
y binary x and y perform bitwise XOR

dec2bin(·) Convert from decimal to binary

bin2dec(·) Convert from binary to decimal
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2.2 Discrete Baker map (DBM) and quantumDBM

Baker mapping is a block scrambling method, and at the same time, selecting encryption
requires dividing the image into blocks. That’s why Baker mapping was chosen for scram-
bling. The classical Baker map B(x, y), which maps the unit square 0 ≤ x, y ≤ 1 onto
itself, is a special chaotic map in [29]. Classical Baker map B(x, y) is described as follows

B(x, y) =
{

(2x,
y
2 ), 0 ≤ x < 1/2

(2x − 1, y+1
2 ), 1/2 ≤ x ≤ 1,

(3)

where y ∈ [0, 1]. In other words, as shown in Fig. 1, the classical Baker map maps the left
rectangle of the square [0, 1

2 )×[0, 1) to rectangle [0, 1)×[0, 1
2 ), and it transforms the right

rectangle of the square [ 12 , 1) × [0, 1) to rectangle [0, 1) × [ 12 , 1).
The Baker map used for image encryption needs to be discretized because each image is

composed of discrete pixel values. The Baker map can be discretized in the following.
Assume ni |N(i = 1, · · · , k) and n1 + n2 + ... + nk = N,N ∈ Z+. The discrete Baker

Map is defined as follows. Firstly, it divides the image BN×N into N blocks, i.e.

B11, · · · , B1n1 , B21, · · · , B2n2 , · · · , Bk1, · · · , Bknk

where Bij is a matrix of
N

ni

rows and ni columns, i = 1, · · · , k, j = 1, · · · , ni . Secondly,

it performs matrix vec operator [30] on Bij to obtain B1N×N , i.e.

B1N×N =

⎡

⎢⎢⎢⎢⎢⎢⎣

vecT (B11)
...

vecT (Bij )
...

vecT (Bknk
)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

B111
...

B1ij

...
B1knk

⎤

⎥⎥⎥⎥⎥⎥⎦
(4)

where B1ij is a matrix of 1 row and N columns. For example, let N = 4, n1 = 1, n2 =
2, n3 = 1, the discrete Baker Map is as shown in Fig. 2.

For an example with N = 4 in Fig. 2, we give a concrete quantum circuit of the quan-
tum Baker map. The quantum analogy of classical image BN×N is |I 〉, and its NEQR
representation is expressed as

|I 〉 = 1

4

(
|C0000〉|0000〉 + |C0100〉|0100〉 + |C1000〉|1000〉 + |C1100〉|1100〉 +
|C0001〉|0001〉 + |C0101〉|0101〉 + |C1001〉|1001〉 + |C1101〉|1101〉 +
|C0010〉|0010〉 + |C0110〉|0110〉 + |C1010〉|1010〉 + |C1110〉|1110〉 +
|C0011〉|0011〉 + |C0111〉|0111〉 + |C1011〉|1011〉 + |C1111〉|1111〉

)
.

Fig. 1 Baker Map

Page 4 of 1564   



Int J Theor Phys (2022) 61: 64

Fig. 2 Discrete Baker Map

Apply the quantum Baker map on quantum image |I 〉, and we obtain the new quantum
image |I ′〉. That is,
|I ′〉 = UQBM |I 〉 = 1

4

(
|C0000〉|0000〉 + |C0001〉|0100〉 + |C0010〉|1000〉 + |C0011〉|1100〉

+|C0100〉|0001〉 + |C0101〉|0101〉 + |C1000〉|1001〉 + |C1001〉|1101〉
+|C0110〉|0010〉 + |C0111〉|0110〉 + |C1010〉|1010〉 + |C1011〉|1110〉
+|C1100〉|0011〉 + |C1101〉|0111〉 + |C1110〉|1011〉 + |C1111〉|1111〉

)
,

and its quantum circuit is shown in Fig. 3.

2.3 2D Logistic Map

The 2D Logistic Map [32] is defined as follows
{

x1(n + 1) = μ1x1(n)(1 − x1(n)) + γ1x
2
2 (n)

x2(n + 1) = μ2x2(n)(1 − x2(n)) + γ2(x1(n) + x1(n)x2(n))
(5)

where x1(n), x2(n) ∈ (0, 1) and 2.75 < μ1 ≤ 3.4, 2.7 < μ2 ≤ 3.45, 0.15 < γ1 ≤ 0.21,
0.13 < γ2 ≤ 0.15. The 2D Logistic Map can ensure the keyspace larger and the encryption
system more complex since there are two quadratic terms in the 2D Logistic Map.

Fig. 3 Quantum circuit of QBM
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3 Quantum image encryption scheme

In this section, the quantum image encryption scheme based on Baker map, 2D logistic map
and quantum Fourier transform is presented in detail. The whole quantum image scheme
has three main parts including key generation, encryption process and decryption process.
More details can be introduced in the following subsections.

3.1 Key generation

Let the original classical image with size 28×28 be denoted as I . We use 2D logistic map to
generate pseudo-random numbers with good cryptographic characteristics as the key. The
specific steps are as follows.

Step 1. Caculate offset
a) Apply the discrete Baker map B(x, y) on classical image I , then it obtains a new

image I ′ denoted as I ′ = B1N×N through equation (4).
b) Let B111 = (b11, · · · , b1N) be a vector from B1N×N , where b1k ∈ [0, 255], k =

1, · · · , N . Apply operation dec2bin(·) on b1k of B111, and it has dec2bin(b1k) = (b1k)2 =
(ek1, · · · , ekl)

T , where ekl ∈ {0, 1} and l = 1, · · · , 8. Thus we obtain a 8×N binary matrix
BM = ((b11)

T
2 , · · · , (b1N)T2 ).

c) Perform bitwise XOR operation on each row of BM, i.e., αl = ⊕N
k=1 ekl, αl ∈

0, 1, l = 1, . . . , 8. Then, it obtains E = (α1, · · · , α8)
T .

d) Perform bin2dec(·) operation on E, and it obtains bin2dec(E) = E10 = α7 × 27 +
· · · + α1 × 20 and denotes E10 as the offset ∈ [0, 255].

For example, let N = 8, the above calculation process of offset is shown in Fig. 4.
Step 2. Update the initial values of the 2D logistic map.
Suppose the initial values of the 2D logistic map are x1(0)′, x2(0)′. The offset that is

obtain in Step 1 will be mapped to (0, 1) by equation δ(s, offset). The δ(s, offset) is defined
as follows

δ(s, offset) = 
10
s × offset

257
� × 10−s , offset ∈ [0, 255] (6)

where symbol 
·� is a floor function and s is a given value. In this paper, we convention
s = 4.

Fig. 4 Block binary XOR
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Add the result of δ(s, offset) to x1(0)′, x2(0)′, and obtain the modified initial values
x1(0), x2(0) i.e., {

x1(0) = {
x1(0)′ + δ(s, offset)

}

x2(0) = {
x2(0)′ + δ(s, offset)

} (7)

where x1(0)′, x2(0)′ are given initial values and {x} is the fractional part of x.
Step 3. Generate key
Modified initial values will be used to generate the key. Substituting x1(0), x2(0) into

equation (5), the equation yields two chaotic sequences x1 = (x1(1), · · · , x1(N/2)) and
x2 = (x2(1), · · · , x2(N/2)). The chaotic sequences x1, x2 are mapped to [1, 255] using the
equation as follows

g(u) = f loor(255u) + 1 (8)

where u ∈ (x1(1), · · · , x1(N/2), x2(1), · · · , x2(N/2)).
The mapped values g(u) are considered as

k =
(
g(x1(1)), . . . , g(x1(N/2)), · · · , g(x2(1)), . . . , g(x2(N/2))

)
.

It shorted by k = (k1, . . . , kN ).
Finally, after performing the dec2bin(·) function on k, we obtain the classical informa-

tion k2 = dec2bin(k1) ⊕ · · · ⊕ dec2bin(kN) as the encryption key.

3.2 Encryption process

Alice and Bob secretly transmit image information using quantum technology. The encryp-
tion process involves the following steps.

Step 1. Let CY ′X′ be the corresponding discrete pixel values of image I ′. Alice calcu-
lates A = f loor( 1

N2

∑
Y ′,X′ CY ′X′) from I ′ and selects a random number T ∈ [0, 255].

Alice sends the binary sequence (k2, dec2bin(A)) to Bob through quantum key distribution
protocol such as BB84 protocol.

Step 2. Initialization of the quantum state.
After performing the quantum Baker map (QBM) on I , and Alice obtains quantum image

with size 28 × 28 denoted as |I ′〉, and its NEQR representation is expressed as

|I ′〉 = |T 〉UQBM |I 〉

= 1

2n

2n−1∑

Y ′=0

2n−1∑

X′=0

|CY ′X′ 〉|Y ′X′〉

= 1

2n

2n−1∑

Y=0

2n−1∑

X=0

|CY ′X′ 〉|y′
0y

′
1 · · · y′

n−1〉|x′
0x

′
1 · · · x′

n−1〉.

Step 3. Alice computes CY ′X′ − T and stores the result on a auxiliary qubit |0〉a . If
CY ′X′ ≥ T (CY ′X′ < T ), the auxiliary qubit |0〉a = |1〉(|0〉a = |0〉).

Step 4. If |0〉a = |1〉(|0〉a = |0〉), then Alice performs the unitary operation U⊕k(U⊕A)

on quantum states |I ′〉 and sequentially performs quantum Fourier transform (QFT) on it.
Step 5. Alice iterates the quantum Baker Map (QBM) nine times and obtains cipher

image |C〉 = |0〉a |T 〉|C′
YX〉|YX〉. After at least nine iterations, the original adjacent pix-

els will be distributed to the entire scrambled image [29]. That’s the reason for the nine
iterations of QBM.

The flowchart of the proposed quantum image encryption is demonstrated in Fig. 5, and
the corresponding quantum circuit in Fig. 6.
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Fig. 5 Encryption process

Note that the unitary operation U denotes as an inverse quantum adder operation in
Fig. 6.

3.3 Decryption process

Step 1. Iterate discrete inverse quantum Baker Map (IQBM) on the entire cipher image |C〉
ten times, and the transformed image is still denoted as |C〉.

Step 2. Bob performs the inverse quantum Fourier transform (IQFT) on |C〉.
Step 3. Bob applies the control unitary operation C − U on plain image. If the control

qubit is |1〉(|0〉), then the C − U is equivalent to C − U⊕k(C − U⊕A).

Fig. 6 Quantum circuit of encryption process
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Step 4. Bob performs the inverse quantum Baker Map (IQBM) and obtains plain image I .
The flowchart of quantum image decryption is demonstrated in Fig. 7, and the corre-

sponding quantum circuit in Fig. 8.
Note that the unitary operation U−1 denotes as the quantum adder operation in Fig. 8.

4 Simulation Results

The experiments are performed on MATLAB R2018a. We use 256 × 256 images Camera-
man, Peppers, Baboon, Lake and Lena to test the security performance of the encryption
scheme. The security performance indicators include visual inspection, keyspace, entropy,
encryption quality, histogram and differential analysis. The key of the encryption scheme is
composed of (n1, · · · , nk; x1(0), x2(0), μ1, μ2, γ1, γ2). Set the key to (64, 32, 4, 8, 4, 16,
32, 64, 16, 16; 0.5, 0.5, 3, 3, 0.2, 0.14) during the experiment.

4.1 Visual Inspection

In evaluating the ciphered image, visual inspection is the easiest and most remarkable factor.
The five original images and their corresponding encrypted images are shown in Fig. 9,
there is a big difference between the original images and the ciphers. Thus the proposed
scheme can hide the main information of the original images.

4.2 Keyspace

In the permutation stage, the key relies on the width (height) of the image to be encrypted
due to the scrambling phenomenon of the chaotic Baker map. Thus, the keyspace of size

Fig. 7 Decryption process
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Fig. 8 Quantum circuit of decryption process

256×256 is equal to 1063 [23]. In the substitution stage, every parameter of the logistic map
is a double precision number [23]. Thus, the keyspace in this stage is 1014 × 1014 × 1014 ×
1014 × 1014 × 1014 = 1084. Such a large keyspace is enough to resist brute-force attacks.

4.3 Entropy

Entropy is an unpredictability measurement of structural characteristics for a cipher image
x. The formula is defined as [22]

E(x) = −
2N−1∑

i=0

P(xi) log2 P(xi) (9)

where N is the number of bits for the pixel value xi . In this paper, let N = 8. P(xi) is
the proportion of pixel value xi ∈ [0, 255] in the encrypted image x. To attach high-level
security, the entropy E(x) should be close to 8. The entropy values of the cipher image
corresponding to Cameraman, Peppers, Baboon, Lake and Lena are 7.983, 7.9854, 7.9812,
7.9888 and 7.9812 respectively as shown in Table 2. It shows that the proposed scheme has
the unpredictability of structural characteristics.

Fig. 9 Encryption result. a: original Cameraman. b: original Peppers. c: original Baboon. d: cipher Lake. e:
cipher Lena. f: cipher Cameraman. g: cipher Peppers. h:cipher Baboon. i:cipher Lake. j:cipher Lena
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Table 2 Entropy of encrypted
images Image Entropy

Cameraman 7.983

Peppers 7.9854

Baboon 7.9812

Lake 7.9888

Lena 7.9812

4.4 Encryption Quality

In this section, correlation coefficient(CC), histogram deviation(HD), and irregular devia-
tion(ID) have been calculated to evaluate the encryption quality.

CC is used to evaluate the correlation between plain image and cipher image. The value
of CC is [−1, 1]. If the absolute value of CC equals to 1 that means the two images are the
same. Thus, the lower absolute value of CC is, the better. The CC is measured by [22]

CC(x, y) =
∑N

i=1(xi − E(x))(yi − E(y))
√∑N

i=1(xi − E(x))2
√∑N

i=1(yi − E(y))2
(10)

where E(x) = 1
N

∑N
i=1 xi , N defines the pixel count in the image, and x, y are the pixel

values of the plain image and encrypted image respectively.
The histogram deviation(HD) calculates the gap between the histogram of the original

image and the histogram of the encrypted image and it can be defined as [22]

HD =
∑255

i=0 |h1(i) − h2(i)|
W × H

(11)

where W (Width) and H (Height) are the size of the image, and h1(i), h2(i) define the his-
togram of original image and enciphered image at value i respectively. The higher the HD
value is, the better.

The histogram of an ideal encrypted image should keep each pixel level containing the
same pixels. For example, for a 512× 512 encrypted image, each pixel level should contain
512 × 512/256 = 1024 pixels. The irregular deviation(ID) measures the gap between the
histogram of the cipher image and the histogram of the ideal encrypted image. The equation
is [22]

ID =
∑255

i=0(|h(i) − M|)
W × H

(12)

Table 3 CC, HD and ID of
encrypted images Image CC HD ID

Cameramen 0.0025 1.008 0.1074

Peppers -0.0005 0.6144 0.1074

Baboon -0.0024 0.8303 0.1350

Lake -0.0020 0.9616 0.1035

Lena -0.0061 0.6735 0.1413
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Fig. 10 Histograms of original images and cipher images. a: original Cameraman. b: original Peppers. c:
original Baboon. d: cipher Lake. e: cipher Lena. f: cipher Cameraman. g: cipher Peppers. h:cipher Baboon.
i:cipher Lake. j:cipher Lena

where h(i) is enciphered image histogram at value i, and M is the average of an ideal
enciphered image histogram. Given an image of size 256×256, M is set to 256. The smaller
the ID value, the histogram of the encrypted image is closer to the histogram of the ideal
encrypted image. Thus, the target is to attach the lower value of ID.

As shown in Table 3, the CC value of the encrypted Cameramen, Peppers, Baboon, Lake,
Lena are 0.0025, -0.0005, -0.0024, -0.002 and -0.0061 respectively. It shows that the plain
images and cipher images with a low correlation. The mean of HD is 0.8175. It shows that
the difference between plain images and cipher images encrypted by the proposed scheme
is large. The histograms of the cipher images are close to ideal histogram due to the ID
values of five encrypted images are near to 0.1.

4.5 Histogram Analysis

The histograms of the plain images and cipher images are shown in Fig. 10. It proves that
the histograms of the cipher images are different from the plain one. The cipher images
have a uniformed histogram due to change the pixel value in time domain, which can resist
statistical attacks better. The proposed scheme hides the histogram features well.

4.6 Differential Analysis

In order to resist differential attacks, a good encryption scheme should be sensitive to small
changes in the key. There are two parameters used for differential analysis, namely Number

Table 4 NPCR and UACI of
encrypted images Image NPCR(%) UACI(%)

Cameramen 92.65 30.73

Peppers 99.58 33.17

Baboon 90.59 29.80

Lake 92.13 30.17

Lena 92.49 28.70
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Table 5 The estimated entropy
and others results of the proposed
scheme and the related schemes
in [15, 33–35]

Scheme Entropy CC NPCR UACI

Proposed 7.9854 -0.0005 99.58 33.17

[33] 7.9993 -0.0085 · · · · · ·
[34] 7.9973 0.0153 99.5300 33.5291

[15] 7.9969 -0.0062 · · · · · ·
[35] 7.9993 -0.0005 99.6213 33.4925

of Pixel Change Rate (NPCR) and the Unified Averaged Changed Intensity (UACI),
described as follows [22]

NPCR =
∑

i,j D(i, j)

W × H
× 100%, (13)

UACI = 1

W × H

⎡

⎣
∑

i,j

E1(i, j) − E2(i, j)

255

⎤

⎦ × 100% (14)

where E1 and E2 are two different cipher images of size W × H . If the pixel values of E1
and E2 at position (i, j) are different, that is, E1(i, j) �= E2(i, j), then D(i, j) = 1. There
will be a big gap between E1 and E2 if the values of NPCR and UACI are big and it shows
that the proposed scheme is sensitive to key. The original key is used to encrypt the original
image to obtain cipher image E1. After that we exchange the position of the key n2 and n3,
and keep other parameters unchanged. Then, the changed key is used to encrypt the original
image to obtain cipher image E2.

The results of NPCR and UACI are shown in Table 4. We observe that the values of
NPCR are above 90%. For a 256 gray level image, the expected UACI value is 33% and the
UACI value of the Peppers is 33.17%. It means our scheme can resist differential attacks
well.

4.7 Comparative Analysis

To verify the safety of the proposed scheme, various experiments have been carried out to
compare the security based on entropy, CC, NPCR and UACI.

The comparative study between the proposed quantum image encryption scheme and
other similar quantum image encryption schemes is performed based on the image Peppers.
The values of entropy, CC, NPCR and UACI are listed in Table 5 for the proposed and other
schemes in [15, 33–35]. One can see that the image encrypted by the proposed scheme has
the lowest CC value, that is, the correlation of the encrypted image is the lowest. In addi-
tion, the results of the experiment indicate that the other key indicators are approximately
comparable to those of other scheme.

5 Conclusion

This paper proposed an image encryption scheme based on QFT and two chaotic maps. The
proposed cryptographic system use the selecting encryption method to equalize histogram.
If C′

YX ≥ T (C′
YX < T ), it performs U⊕k(U⊕A) transformation, where the k and A are

associated with the plain image. Then use QFT to transform the image to the frequency
domain. Finally, we use a QBM to scramble the entire image. From the simulation results,
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the keyspace of two chaotic maps is enough to resist brute-force attacks. The mean values
of CC, HD and ID are 0.0027, 0.8175, 0,1189, which have been demonstrated the security
of the proposed scheme. Change the pixel values in the time domain makes the histogram
uniform. The key related to the plain image can effectively resist plaintext attacks. The
values of NRCR are all above 90%, and the highest is 99.58%. The values of UACI are all
around 30%, and the highest is 33.17%. That shows the proposed scheme is sensitive to key.
However, this scheme still has some shortcomings, that is, the histogram of the encrypted
image is not balanced enough. In the future, the encryption scheme can be optimized to
obtain a more evenly distributed histogram.
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doi:10.1007/s10773-022-04979-1.
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