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Abstract
In this paper, a quantum secure multi-party summation protocol is proposed based on some
properties of Grover’s search algorithm. In the protocol, each participant’s secret input is
encoded as a unitary operation on the travelling two-qubit state. With the help of a semi-
honest third party, all participants can simultaneously obtain the summation result without
disclosing their secret inputs. Only the preparation and measurement of single qubits are
required, which makes the proposed protocol feasible using current technology. At last, we
demonstrate the correctness and security of the protocol, which can resist various attacks
from both external attackers and internal participants.

Keywords Quantum secure multi-party summation · Grover’s search algorithm ·
Unambiguous state discrimination

1 Introduction

Quantum cryptography, which is regarded as the combination of quantum mechanics and
classical cryptography, has attracted a lot of attention since Bennett and Brassard presented
the first quantum key distribution protocol [1]. Different from the security of the classical
cryptography which is based on the assumption of computation complexity, that of quantum
cryptography relies on the quantum mechanics principles, e.g., no-cloning theorem, Heisen-
berg uncertainty principle, which make it unconditionally secure in theory. Consequently,
in the past decades, many scholars have studied it, and proposed a lot of branches of quan-
tum cryptography, such as quantum key distribution [1–3], quantum secret sharing [4–7],
quantum private query [8–11], quantum multi-party computation [12–14], and so on.

Secure multi-party summation, as a vital research point of secure multi-party computa-
tion, can be used to construct complex security protocols for other multi-party computation.
Thus, in the past few years, researchers have proposed a variety of quantum secure multi-
party summation protocols using different strategies. In 2006, Hillery et al. [15] proposed
the first multi-party summation protocol with the two-particle N -level entangled states,
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which can complete the summation of N participants in the voting process on the premise
of ensuring the anonymity of participants. In 2010, based on multi-particle entangled states,
Chen et al. [16] proposed another secure addition module 2. In 2016, Shi et al. [17] pro-
posed a new protocol based on the quantum Fourier transform, which utilized 2m−qubit
entangled state as information carrier. Afterwards, a few quantum secure multi-party sum-
mation [18–20] has been proposed, in which various properties of quantum mechanics are
exploited. However, these protocols encounter a problem in practical application, that is, it
is difficult to prepare the information carriers (multi-particle entangled states) with current
technology. To solve this problem, a novel quantum secure multi-party summation protocol
with qubits is proposed, in which some properties of Grover’s search algorithm is utilized.
In the protocol, two-qubit states are used as the information carriers that are transmitted
among the participants. For the signal particles, each participant encodes his secret input by
performing the encoding operations that are used to transform the initial state into the tar-
get state in Grover’s search algorithm. At last, according to the parity of the number of the
unitary operations, a semi-honest third party selects one of two mutually unbiased bases to
measure these single qubits. Based on the third party’s announcement, participants can get
the summation result of their secret inputs.

The rest of this paper is organized as follows. In Section 2, we introduce the essential
preliminaries briefly. Then, we use the properties of Grover’s search algorithm to design
a protocol of quantum secure multi-party summation and give an example in Section 3.
In Section 4, we demonstrate the proposed protocol is correct and secure. Finally, a brief
conclusion is given in Section 5.

2 Preliminaries

Let us start with describing some notations which are used in this paper. For conve-
nience, these notations are similar to Grover’s search algorithm [21]. In the algorithm, there
exists a data set with four items that is represented by a two-qubit state |ϕ̃uv〉 = (|0〉 +
(−1)v|1〉)(|0〉 + (−1)u|1〉), u, v ∈ {0, 1}. Evidently, |ϕ̃00〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉).
The target state is |ϕmn〉 = |mn〉, m, n ∈ {0, 1}. Two specific unitary operations are required
on |ϕ̃uv〉 to achieve the search task.

Uxy = I − 2|ϕxy〉〈ϕxy |, Vxy = 2|ϕ̃xy〉〈ϕ̃xy | − I, (1)

where x, y ∈ {0, 1}. The first unitary operation Uxy causes the phase of the state |xy〉 to flip
once, and its matrix is expressed as:

Uxy =

⎛

⎜

⎜

⎝

(−1)x̄ȳ

(−1)x̄y

(−1)xȳ

(−1)xy

⎞

⎟

⎟

⎠

, (2)

where x̄ = x ⊕ 1, ȳ = y ⊕ 1, the symbol ⊕ denotes bitwise Exclusive OR. The second one
Vxy causes the amplitude of the state |xy〉 to increase. Performing the above two unitary
operations on |ϕ̃uv〉, we can find

VuvUmn|ϕ̃uv〉 = |ϕmn〉. (3)

Here, since the global phase has no effect on the results, it can be ignored in this paper, i.e.,
±|ϕmn〉 = |ϕmn〉. The search target can be obtained by measuring with the basis MBZ =
{|0〉, |1〉}.
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Using the property depicted in (3), Hsu [22] has proposed a quantum secret sharing
protocol based on Grover’s search algorithm in 2003. In this protocol, only when two
participants combine their qubits and perform Vuv on their two-qubit state can they both
determine the state |ϕmn〉. Subsequently, researchers have carried out a series of researches
on quantum cryptographic protocols based on Grover’s search algorithm [23–26]. Then, we
further investigated the properties of these quantum states and operations, and drew some
interesting results, which can be used to design the proposed quantum secure multi-party
summation protocol.

Given two operators Ux1y1 and Ux2y2 , where x1, y1, x2, y2 ∈ {0, 1}. Clearly, these oper-
ators are commutative. That is, Ux2y2Ux1y1 = Ux1y1Ux2y2 . In addition, if x1 = x2 and
y1 = y2, we get Ux1y1Ux1y1 = I , i.e.,

Un
x1y1

= Un(mod 2)
x1y1

. (4)

Otherwise, we get
Ux2y2Ux1y1 = Xx1⊕x2,y1⊕y2 , (5)

where,

X00 =

⎛

⎜

⎜

⎝

1
1

1
1

⎞

⎟

⎟

⎠

, X01 =

⎛

⎜

⎜

⎝

1
1

−1
−1

⎞

⎟

⎟

⎠

,

X10 =

⎛

⎜

⎜

⎝

1
−1

1
−1

⎞

⎟

⎟

⎠

, X11 =

⎛

⎜

⎜

⎝

1
−1

−1
1

⎞

⎟

⎟

⎠

. (6)

So, we can obtain the result shown in (7) after these two operations on the quantum state
|ϕ̃uv〉.

Ux2y2Ux1y1 |ϕ̃uv〉 = |ϕ̃x1⊕x2⊕u,y1⊕y2⊕v〉. (7)

3 Quantum Secure Multi-Party Summation Protocol

Suppose that there is a semi-honest third party P0, who may misbehave on his own but
cannot conspire with anyone. There are N parties, Pi(i = 1, 2, · · · , N), who hold their own
secret input Di with length of 2n. That is, Di = (di,1, di,2, · · · , di,2n), di,j ∈ {0, 1}(j =
1, 2, · · · , 2n). All participants want to obtain the summation of their secret inputs shown
in (8), without revealing the genuine content of their secret inputs.

⊕N
i=1 Di = {⊕N

i=1di,1,⊕N
i=1di,2, · · · ,⊕N

i=1di,2n}, (8)

where ⊕N
i=1di,j = d1,j ⊕d2,j ⊕· · ·⊕dN,j . The detailed procedures of the proposed quantum

secure multi-party summation can be described as follows.

Step 1: P0 generates a random bit sequence S with length of 2n. According to this bit
sequence, he prepares an ordered sequence of two-qubit states Q1, i.e.,

S = (s1, s2, · · · , s2n) =⇒ Q1 = (|ϕ̃s1,s2〉, |ϕ̃s3,s4〉, · · · , |ϕ̃s2n−1,s2n
〉). (9)

To ensure the security of particle transmission, P0 prepares δ decoy particles which are randomly
in one of the four BB84 states, and inserts them into the sequence Q1 randomly to form a
new sequence ˜Q1. At last, P0 sends the particle sequence ˜Q1 to the next participant P1.
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Step 2: After confirming that P1 has received the sequence ˜Q1, P0 checks the security of
˜Q1’s transmission together with P1. To be specific, according to the positions of
decoy particles and their bases published by P0, P1 measures the corresponding
decoy particles and tells P0 the results. P0 calculates the error rate by comparing
the measurement results with the initial states of the decoy particles. If the error
rate exceeds the predetermined threshold, they restart the protocol. Otherwise,
they proceed to the next step.

Step 3: By deleting the decoy particles from Q̃1, P1 can get the sequence Q1. Then, P1
encodes his secret input D1 on the sequence Q1. Concretely, P1 generates a ran-
dom bit string m1 = {m1,1, m1,2, · · · , m1,n}. If m1,t = 0 (t = 1, 2, · · · , n),
the private data d1,2t−1, d1,2t is split to two parts, i.e., d1,2t−1 = x

1,2t−1
1 ⊕

x
1,2t−1
2 , d1,2t = y

1,2t
1 ⊕ y

1,2t
2 . Then, P1 performs U

x
1,2t−1
1 ,y

1,2t
1

U
x

1,2t−1
2 ,y

1,2t
2

on the

state |ϕ̃s2t−1,s2t
〉. Otherwise, P1 directly performs Ud1,2t−1,d1,2t

on |ϕ̃s2t−1,s2t
〉. The

encoded sequence is denoted as Q2. Finally, P1 randomly selects δ decoy particles
to insert into Q2, and sends the new sequence ˜Q2 to participant P2.

Step i + 2 (i = 2, 3, · · · , N): When Pi has received the quantum state sequence ˜Qi from
Pi−1, Pi−1 checks the security of the particle transmission with Pi ,which is sim-
ilar to Step 2. If the error rate exceeds the predetermined threshold, the protocol
is restarted. Otherwise, Pi performs the encoding operations similar to Step 3
and sends the particle sequence ˜Qi+1 to the next participant Pi+1. As for the last
participant PN , he sends the particle sequence ˜QN+1 to P0.

Step N + 3: When P0 has received the sequence ˜QN+1 from PN , he performs eavesdrop-
ping detection with PN . Then he gets QN+1 after removing the decoy particles
from ˜QN+1. Now, Pi (i = 1, 2, · · · , N) tells P0 the bit string mi . P0 calculates
Mt = m1,t ⊕ m2,t ⊕ · · · ⊕ mN,t (t = 1, 2, · · · , n). Then, P0 executes different
processes according to the value of Mt .

(1) When Mt = 0, P0 measures the corresponding particles with basis MBX = {|+〉, |−〉}
directly, and obtains the result |ϕ̃w2t−1,w2t

〉. P0 calculates the summation:

A2t−1 = w2t−1 ⊕ s2t−1, A2t = w2t ⊕ s2t . (10)

(2) When Mt = 1, P0 performs the unitary operation Vs2t−1,s2t
on the t-th two-qubit state.

Then he measures these states with basis MBZ , and obtains the result |ϕw2t−1,w2t
〉. P0

calculates the summation:

A2t−1 = w2t−1, A2t = w2t . (11)

Finally, P0 publishes the summation result A = (A1, A2, · · · , AN−1, AN). In this way, all
participants can obtain the summation of their secret inputs.

To illustrate our protocol more clearly, a three-party case (i.e., N = 3) is taken as an
example. For convenience, the eavesdropping detecting is ignored. In this case, there are
three participants P1, P2, and P3, who want to get the summation of their secret inputs with
length of 8 (i.e., n = 4), D1 = 01101101,D2 = 10100111,D3 = 11010010.

At first, P0 generates an ordered two-qubit state sequence Q1 = (|ϕ̃01〉, |ϕ̃01〉,
|ϕ̃11〉, |ϕ̃00〉), namely the bit string is S = 01011100. P1 (P2, P3) applies his encoding oper-
ations on the signal particles, according to his secret input D1 (D2,D3) and random bit
string m1 (m2,m3). The states are changed with the corresponding encoding operations,
which are depicted in Table 1.
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Table 1 Encoding operations on
the sequence

At the end of the protocol, P0 obtains states U11|ϕ̃10〉, U01|ϕ̃01〉, U10|ϕ̃11〉, |ϕ̃00〉. Accord-
ing to the value of mi declared by Pi , P0 can calculate M1 = 1,M2 = 1,M3 = 1,M4 = 0.
So he performs the operations V01 ⊗V01 ⊗V11 ⊗I to get the states |ϕ00〉, |ϕ01〉, |ϕ10〉, |ϕ̃00〉,
and measures these particles in the basis MBZ or MBX . Finally, P0 obtains the summation
of their secret inputs A = 00011000, and knows A = D1 ⊕ D2 ⊕ D3.

4 Analysis of the Protocol

In this section, we first discuss the correctness of the proposed protocol. Then, the security
of this protocol is analyzed by considering the external attacks and some common internal
attacks.

4.1 Correctness

For a secure multi-party summation protocol, it is correct, which means that all partici-
pants can obtain the summation of their secret inputs without disclosing any secrets. In the
following, we will show the result of the protocol is the summation of their secret inputs.

Suppose one initial state of the signal particles is |ϕ̃s2t−1,s2t
〉, the encoding operation Uxy

has been performed r times in Steps 3 to N + 2, that is, Uxr ,yr Uxr−1,yr−1 · · · Ux2,y2Ux1,y1 ,
where xi, yi ∈ {0, 1}. According to the Step N+3, we know Mt = r (mod 2). So, after these
encoding operations, the signal particles are in the state |φ〉 = Uxr ,yr · · · Ux1,y1 |ϕ̃s2t−1,s2t

〉.
Due to the commutability of Uxy , we can get:

Uxr ,yr · · · Ux1,y1 = U00 · · ·U00
︸ ︷︷ ︸

r00

U01 · · ·U01
︸ ︷︷ ︸

r01

U10 · · ·U10
︸ ︷︷ ︸

r10

U11 · · ·U11
︸ ︷︷ ︸

r11

, (12)

where rxy is the frequency of Uxy , and r00 + r01 + r10 + r11 = r . Based on (4), we get
U

rxy
xi ,yi

= U
axy
xi ,yi

, where axy = rxy (mod 2). Thus, (12) can be abbreviated as:

Uxr ,yr Uxr−1,yr−1 · · ·Ux2,y2Ux1,y1 = U
a00
00 U

a01
01 U

a10
10 U

a11
11 . (13)

Obviously, if r is even, Mt = a00 ⊕ a01 ⊕ a10 ⊕ a11 = 0. Otherwise, Mt = a00 ⊕ a01 ⊕
a10 ⊕ a11 = 1. Next, we will discuss these two cases.

(1) Mt = 0, i.e., a00 ⊕ a01 ⊕ a10 ⊕ a11 = 0.

There are two different scenarios. One is a00 = a01 = a10 = a11 = 1 or 0. Due to the
property of U00U01U10U11 = I , we get the final state |φ〉 = |ϕ̃s2t−1,s2t

〉. The other is that
any two of a00, a01, a10, a11 are 1. Namely, there are two operations performed odd times
and two operations with even times. In terms of (5), we get

U
a00
00 U

a01
01 U

a10
10 U

a11
11 = (−1)a00Xa10⊕a11,a01⊕a11 . (14)
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To sum up, when a00 ⊕ a01 ⊕ a10 ⊕ a11 = 0, we get the final state |φ〉:
|φ〉 = (−1)a00Xa10⊕a11,a01⊕a11 |ϕ̃s2t−1,s2t

〉
= |ϕ̃a10⊕a11⊕s2t−1,a01⊕a11⊕s2t

〉. (15)

At the end of this protocol, we know, when Mt = 0, the unitary operation Uxy of the
t-th two-qubit state |ϕ̃s2t−1,s2t

〉 is even times. According to (15), we can obtain the result
|φ〉 = |ϕ̃w2t−1,w2t

〉, which is in {| + +〉, | − +〉, | + −〉, | − −〉}. Finally, P0 measures the
state with MBX to gain the summation. Clearly, in terms of (10) and (16), we know the
summation is Aj = ⊕N

i=1Di,j (j = 1, 2, · · · , 2n).

w2t−1 = a10 ⊕ a11 ⊕ s2t−1 = d1,2t−1 ⊕ d2,2t−1 ⊕ · · · ⊕ dN,2t−1 ⊕ s2t−1,

w2t = a01 ⊕ a11 ⊕ s2t = d1,2t ⊕ d2,2t ⊕ · · · ⊕ dN,2t ⊕ s2t . (16)

(2) Mt = 1, i.e., a00 ⊕ a01 ⊕ a10 ⊕ a11 = 1.

There are two scenarios to consider as well. On the one hand, only one of a00, a01, a10, a11
is 1. That is, only one of the four operations performs odd, (13) can be rewritten as
U

a00
00 U

a01
01 U

a10
10 U

a11
11 = Ua10⊕a11,a01⊕a11 . On the other hand, any three of a00, a01, a10, a11

are 1. That is, three of the four operations perform odd, (13) can be rewritten as
U

a00
00 U

a01
01 U

a10
10 U

a11
11 = −Ua10⊕a11,a01⊕a11 .

Overall, when a00 ⊕ a01 ⊕ a10 ⊕ a11 = 1, the encoding operation sequence of Uxy can
be abbreviated as:

U
a00
00 U

a01
01 U

a10
10 U

a11
11 = ±Ua10⊕a11,a01⊕a11 . (17)

In our protocol, when Mt = 1, P0 has to perform operation Vs2t−1,s2t
on the quantum state

|ϕ̃s2t−1,s2t
〉 in Step N + 3. According to the Grover’s search algorithm, the following results

are obtained:

|φ〉 = ±Vs2t−1,s2t
Ua10⊕a11,a01⊕a11 |ϕ̃s2t−1,s2t

〉 = |ϕa10⊕a11,a01⊕a11〉. (18)

Contrast with Mt = 0, the unitary operation Uxy of the t-th two-qubit state |ϕ̃s2t−1,s2t
〉

is odd. According to (18), We obtain the result |φ〉 = |ϕw2t−1,w2t
〉, which is in

{|00〉, |01〉, |10〉, |11〉}. Finally, P0 measures the state with MBZ to gain the summa-
tion. Evidently, from (11) and (19), we know the summation is Aj = ⊕N

i=1Di,j (j =
1, 2, · · · , 2n).

w2t−1 = a10 ⊕ a11 = d1,2t−1 ⊕ d2,2t−1 ⊕ · · · ⊕ dN,2t−1,

w2t = a01 ⊕ a11 = d1,2t ⊕ d2,2t ⊕ · · · ⊕ dN,2t . (19)

Consequently, taking the above two circumstances into consideration, the protocol we
proposed is correct.

4.2 Security

In a quantum secure multi-party summation protocol, the participants are not all honest,
which means their attacks should be considered. Moreover, since the participant takes part
in the execution of the protocol, he generally has more powerful than Eve. Thus, in addition
to the external attacks, the security of the proposed protocol under three common internal
attacks, which are performed by different dishonest participants respectively, are analyzed
in this section.
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4.2.1 External Attack

Suppose there is an external attacker, Eve, whose goal is to steal the secret information of
one participant Pi (i = 1, 2, · · · , N). According to the publicly available messages mi and
Ai , Eve has no access to any information about Di . So she has to attack the travelling par-
ticle sequence ˜Qi+1, which is sent from Pi to Pi+1. This attack can be intercept-resend
attack, measurement-resend attack and entanglement-measurement attack, etc. However, in
our protocol, some decoy particles are added, and these particles are randomly in one of the
four BB84 states. Clearly, the method of eavesdropping detection with decoy particles is
derived from the BB84 protocol, which has proved to be unconditionally security in theory.
That is, as long as Eve tries to attack the travelling particles in the process of particle trans-
mission, it will be detected because she does not know the positions and measurement bases
of these decoy particles. Therefore, the proposed protocol is secure against this external
attack.

4.2.2 A Dishonest Participant’s Attack

N participants Pi (i = 1, 2, · · · , N) play the same roles in the proposed protocol. So,
without loss of generality, we can assume that the participant Pi is dishonest, denoting as
P ∗

i , who tries to steal the secret input of Pi+1. He can send a false particle sequence F to
Pi+1. Pi+1 performs the encoding operation on F according to his secret input, then adds δ

decoy particles and gets the particle string ˜F . After that, Pi+1 sends it to Pi+2. At this point,
P ∗

i attacks this particle sequence ˜F to distinguish the encoding operations. However, since
he does not know the locations of the decoy particles, his attack behavior will inevitably
introduce errors as Eve, which will be inevitably discovered by the eavesdropping detec-
tion process between Pi+1 and Pi+2. Thus, such an attack would be null and void for our
protocol.

4.2.3 Multiple Dishonest Participants’ Collusion Attack

In this attack, there are two or more participants who cooperate to steal secret inputs of
honest participants. At first, a special case is considered, which N −1 participants conspire.
Obviously, they can infer the secret input of the remaining honest participant based on the
summation result published by P0. Similarly, if N − k participants conspire, they can easily
get the summation of other k participants’ secret inputs. Therefore, these situations are
trivial. Now, we will discuss some non-trivial cases. For example, in a four-party protocol,
P1 and P3 are dishonest participants, who are denoted as P ∗

1 and P ∗
3 , they clearly have easy

access to the summation of P2 and P4. The key point is whether they are able to eavesdrop
the information about P2’s or P4’s secret input. Obviously, P ∗

1 and P ∗
3 conspire to steal P2’s

secret input more easily than P4’s. Thus, the case, in which, P ∗
1 and P ∗

3 conspire to attack
P2, is discussed as follows.

First of all, let us consider a simple attack strategy. P ∗
1 receives the quantum state sent

by P0, then he chooses the basis MBX to obtain the initial state, and infers the classical bit
sequence S. Then the secret input of P ∗

1 is encoded into the particle sequence ˜Q2 and sent
to P2. P2 receives the particle sequence and checks the security of the transmission. The
sequence ˜Q3 is obtained after the corresponding encoding operations and the addition of
the decoy particles. P ∗

3 detects eavesdropping with P2, discarding the decoy particles to get
Q3. After that, he performs the operation Vs2t−1,s2t

according to the classical bit sequence
S, and measures with MBZ or MBX . However, P2 will announce whether the secret is not
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Table 2 Encoding operations for
different secret inputs input encoding operation

not split (m2,t = 1) split (m2,t = 0)

00 U00 U00U00, U01U01, U10U10, U11U11

01 U01 U00U01, U10U11

10 U10 U00U10, U01U11

11 U11 U00U11, U10U01

split (m2,t = 1) or split (m2,t = 0) until P0 receive the sequence ˜Q5. Therefore, even they
know the correct sequence S, they cannot infer the parity of the encoding operations by
all participants. Namely, they cannot know whether the odd or even numbers of operations
Uxy are carried out in the process of the protocol. Therefore, the correct measurement basis
cannot be selected to get the correct results. Moreover, even they know Mt = ⊕imi,t , they
cannot know whether the m1,t and m4,t are 0 or 1, but only the summation of them.

Next, let us consider a more general attack strategy. P ∗
1 intercepts the signal particles,

and sends a pseudo-particle sequence ˜Q∗
2. Each pair of particles in ˜Q∗

2 is:

|α〉 = |00〉|u00〉 + |01〉|u01〉 + |10〉|u10〉 + |11〉|u11〉. (20)

P ∗
1 continues to execute the protocol and sends ˜Q∗

2 to P2. P2 continues Step 2, splits the
secret input or not according to m2,t , encodes them into ˜Q∗

2 to get a new particle string ˜Q∗
3.

At last, he sends it to P ∗
3 . P ∗

3 and P2 pass the eavesdropping detection, then P ∗
3 measures

the particle sequence and distinguishes what kind of encoding operations P2 has carried out.
Because the operations carried out in the encoding process are Uxy , which are determined by
the secret inputs, there are different operations for different secret inputs shown in Table 2.
P2’s different operations on quantum state |α〉 result in different quantum states, as shown
in Table 3.

Obviously, in order to distinguish the operations of P2, we need to distinguish the above
encoded quantum states. However, this is impossible, since we have found some interest-
ing relationship between the encoded quantum states. Performing the encoding operation
U10U11 for 01 to get |α0

01〉, we find that

|α0
01〉 = |α0

00〉 − |α1
00〉 − |α1

01〉 or − |α0
01〉 = |α0

00〉 − |α1
10〉 − |α1

11〉. (21)

Table 3 Effects of different encoding operations on the pseudo-particle sequence

input encoding operation quantum state

00 U00 |α1
00〉 = −|00〉|u00〉 + |01〉|u01〉 + |10〉|u10〉 + |11〉|u11〉

U00U00, U01U01, U10U10, U11U11 |α0
00〉 = |00〉|u00〉 + |01〉|u01〉 + |10〉|u10〉 + |11〉|u11〉

01 U01 |α1
01〉 = |00〉|u00〉 − |01〉|u01〉 + |10〉|u10〉 + |11〉|u11〉

U10U11(−U00U01) |α0
01〉 = |00〉|u00〉 + |01〉|u01〉 − |10〉|u10〉 − |11〉|u11〉

10 U10 |α1
10〉 = |00〉|u00〉 + |01〉|u01〉 − |10〉|u10〉 + |11〉|u11〉

U01U11(−U00U10) |α0
10〉 = |00〉|u00〉 − |01〉|u01〉 + |10〉|u10〉 − |11〉|u11〉

11 U11 |α1
11〉 = |00〉|u00〉 + |01〉|u01〉 + |10〉|u10〉 − |11〉|u11〉

U10U01(−U00U11) |α0
11〉 = |00〉|u00〉 − |01〉|u01〉 − |10〉|u10〉 + |11〉|u11〉
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In addition, we also find that

|α0
10〉 = |α0

00〉 − |α1
00〉 − |α1

10〉 or − |α0
10〉 = |α0

00〉 − |α1
01〉 − |α1

11〉,
|α0

11〉 = |α0
00〉 − |α1

00〉 − |α1
11〉 or − |α0

11〉 = |α0
00〉 − |α1

01〉 − |α1
10〉. (22)

Apparently, the quantum states obtained by different secret inputs after different encod-
ing operations are linearly correlated. The necessary and sufficient condition for a config-
uration proposed by Chefles and Barnett [27] to be deterministically distinguished is linear
independent, so the quantum states after these operations cannot be deterministically distin-
guished. Therefore, even P ∗

1 and P ∗
3 collusive attack P2, P2’s secret input cannot be judged

since the quantum states after operations are linearly correlated.
Thus, these participants’ attacks are failure in the protocol.

4.2.4 The Semi-Honest Third Party’s Attack

Since the third party P0 is semi-honest, he also attempts to obtain a participant Pi’s secret
input. Furthermore, the role of P0 in the protocol is different from other participants, he
needs to prepare the initial states and send them to the next participant P1. However, he is
semi-honest, he cannot conspire with others. To be convenient, suppose P0 wants to get the
information of P1’s secret input. Since the encoding of secret input is realized by operation
Uxy , P0 must know what kind of operation that P1 has carried out. Then P0 will intercept
the particles ˜Q2 emitted by P1, but in the eavesdropping detection between P1 and P2, he
will be detected as Eve as well. So the protocol is safe for such attack.

From the above analyses, it is shown that the protocol is secure against both external and
internal attacks, which means no one can access a participant’s secret input without being
detected.

5 Conclusion

In Grover’s search algorithm, a product state of two qubits can be converted to a special tar-
get state through applying two specific unitary operations. Moreover, if the unitary operation
is executed one more time, the target state will become another superposition state. Obvi-
ously, since these states are non-orthogonal, they cannot be perfect discriminated. Based
on it, a new quantum secure multi-party summation with qubits is proposed in this paper.
At first, two qubits, the initial state of the Grover’s search algorithm, are prepared by a
semi-honest third party who may misbehave on his own but cannot conspire with other par-
ticipants. Then, the signal particles are transmitted among all participants who respectively
performs the unitary operations representing their secret inputs. Finally, according to the
parity of the number of the encoding operations, the third party measures the traveling parti-
cles in different bases and obtains the summation. In this way, all participants achieve secure
summation task with the aid of this semi-honest third party. By discussing the case under
external attacks and some common internal attacks, it is shown that the proposed protocol
is secure, which is based on some results of Grover’s search algorithm and quantum state
discrimination. In addition, instead of multi-particle entangled states, only qubits are used
as the information carriers, which makes the proposed protocol more feasible using current
technology.
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