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Abstract
A pure multi-qubit state is called absolutely maximally entangled if all reduced states
obtained by tracing out at least half of the particles are maximally mixed. Recently,
Felix Huber proved that the absolutely maximally seven-qubit entangled state does not
exist. In this letter, we investigate the relation of reduced density matrix and the local
unitary transformation invariants of four- and eight-qubit entangled states. Using some con-
straint conditions, for four- and eight-qubit states, we can prove that absolutely maximally
entangled states do not exist.
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1 Introduction

Quantum entanglement is one of the most fascinating features in quantum physics, with
numerous applications in quantum information and computation [1–6]. Maximally entan-
gled states have been shown to be a resource for a variety of quantum information theoretic
tasks. Therefore, the research of maximally entangled states has attracted a great deal of
attention, especially absolutely maximally entangled (AME) states [7–16]. Then there is a
fundamental question: which states are maximally entangled. In the case of 2 qubits, it is
known that Bell states are maximally entangled with respect to any measures of entangle-
ment [1]. Note that GHZ-like states are highly entangled, but even more entangled are AME
states [10, 17], which are maximally entangled in every bipartition of the system.

The study of AME states has become an intensive area of research along the recent
years due to both theoretical foundations and practical applications. Especially, with devel-
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opment and applications of optical quantum computing [18–20], it is possible to build
entangle states base on photon. An n-qubit pure state |ψ〉 is a k-uniform state provided
that all of its reductions to k-qubits are maximally mixed [16]. It is known that the inte-
ger number k cannot exceed n/2. Particularly interesting are those n-qubit states which are
[n/2]-uniform states. Such states are also called absolutely maximally entangled (AME)
states. For instance, Bell states and GHZ states are AME states for bipartite and three partite
systems respectively.

It is well known that absolutely maximally entangled (AME) states exist only for special
values of n (n=2,3,5,6) [9, 21]. Recently, Felix Huber, et al. [21] has proved that there is no
AME state for seven qubits. In this note we will give some expressions for four- and eight-
qubit states. Furthermore, we prove that AME states for four- and eight-qubit states do not
exist via simple constraint condition. We hope this method can be used to demonstrate the
more qubits AME states inexistence.

2 The Constraint Condition of Four- and Eight-qubit States

2.1 The Constraint Condition of Four -qubit State

For the wave function of a four-qubit pure state,

|ψ〉1234 = a0|0000〉 + a1|0001〉 + a2|0010〉 + a3|0011〉
+a4|0100〉 + a5|0101〉 + a6|0110〉 + a7|0111〉
+a8|1000〉 + a9|1001〉 + a10|1010〉 + a11|1011〉
+a12|1100〉 + a13|1101〉 + a14|1110〉 + a15|1111〉 (1)

Then we have density matrix

ρ1234 = |ψ〉12341234〈ψ | (2)

The corresponding reduced density matrix can be shown as [14, 15]

T rijklρ
2
ijkl = 1

16
+ 1

16
(
∑

u

Tu +
∑

u�=v

Tuv +
∑

u�=v �=w

Tuvw +
∑

i �=j �=k �=l

Tijkl) (3)

where

Ti = 〈ψ |σ̂ix |ψ〉2 + 〈ψ |σ̂iy |ψ〉2 + 〈ψ |σ̂iz|ψ〉2 (4)

Tij = 〈ψ |σ̂ix σ̂jx |ψ〉2 + 〈ψ |σ̂ix σ̂jy |ψ〉2 + 〈ψ |σ̂ix σ̂jz|ψ〉2
+〈ψ |σ̂iy σ̂jx |ψ〉2 + 〈ψ |σ̂iy σ̂jy |ψ〉2 + 〈ψ |σ̂iy σ̂jz|ψ〉2
+〈ψ |σ̂izσ̂jx |ψ〉2 + 〈ψ |σ̂izσ̂jy |ψ〉2 + 〈ψ |σ̂izσ̂jz|ψ〉2 (5)

Tijk = 〈ψ |σ̂ix σ̂jx σ̂kx |ψ〉2 + 〈ψ |σ̂ix σ̂jx σ̂ky |ψ〉2 + 〈ψ |σ̂ix σ̂jx σ̂kz|ψ〉2
+〈ψ |σ̂ix σ̂jy σ̂kx |ψ〉2 + 〈ψ |σ̂ix σ̂jy σ̂ky |ψ〉2 + 〈ψ |σ̂ix σ̂jy σ̂kz|ψ〉2
+ . . .

+〈ψ |σ̂izσ̂jzσ̂kx |ψ〉2 + 〈ψ |σ̂izσ̂jzσ̂ky |ψ〉2 + 〈ψ |σ̂izσ̂jzσ̂kz|ψ〉2 (6)
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Tijkl = 〈ψ |σ̂ix σ̂jx σ̂kx σ̂lx |ψ〉2 + 〈ψ |σ̂ix σ̂jx σ̂kx σ̂ly |ψ〉2 + 〈ψ |σ̂ix σ̂jx σ̂kx σ̂lz|ψ〉2
+〈ψ |σ̂ix σ̂jx σ̂ky σ̂lx |ψ〉2 + 〈ψ |σ̂ix σ̂jx σ̂ky σ̂ly |ψ〉2 + 〈ψ |σ̂ix σ̂jx σ̂ky σ̂lz|ψ〉2
+ . . .

+〈ψ |σ̂izσ̂jzσ̂kzσ̂lx |ψ〉2 + 〈ψ |σ̂izσ̂jzσ̂kzσ̂ly |ψ〉2
+〈ψ |σ̂izσ̂jzσ̂kzσ̂lz|ψ〉2 (7)

It is obvious that such invariants satisfy Ti ≥ 0, Tij ≥ 0, Tijk ≥ 0, Tijkl ≥ 0.
Let

C1 = T1 + T2 + T3 + T4, C2 = T12 + T13 + T14 + T23 + T24 + T34,

C3 = T123 + T124 + T134 + T234, C4 = T1234. (8)

Therefore, we have C1 ≥ 0, C2 ≥ 0, C3 ≥ 0, C4 ≥ 0.
For four-qubit pure state, it is well know that T rρ2

1234 = 1. Then, (3) can be written

1 = 1

16
+ 1

16
(C1 + C2 + C3 + C4) (9)

Further, it is known that [22]

trρ1234ρ̃1234 = 1

16
+ 1

16
(−C1 + C2 − C3 + C4) (10)

and

ρ̃ijkl = σ⊗4
2 ρT σ⊗4

2 (11)

For four-qubit pure state, it is well know that

trρ2
123 = trρ2

4 ; trρ2
124 = trρ2

3 ; trρ2
134 = trρ2

2 ; trρ2
234 = trρ2

1 , (12)

Using

T riρ
2
i = 1

2
+ 1

2
Ti, i = 1, 2, 3, 4.

T rij ρ
2
ij = 1

4
+ 1

4
(Ti + Tj + Tij ), ij = 12, 13, 14, 23, 24, 34.

T rijkρ
2
ijk = 1

8
+ 1

8
(Ti + Tj + Tk + Tij + Tik + Tjk + Tijk),

ijk = 123, 124, 134, 234. (13)

Then, we have

1

8
+ 1

8
(T1 + T2 + T3 + T12 + T13 + T23 + T123) = 1

2
+ 1

2
T4,

1

8
+ 1

8
(T1 + T2 + T4 + T12 + T14 + T24 + T124) = 1

2
+ 1

2
T3,

1

8
+ 1

8
(T1 + T3 + T4 + T13 + T14 + T34 + T134) = 1

2
+ 1

2
T2,

1

8
+ 1

8
(T2 + T3 + T4 + T23 + T24 + T34 + T234) = 1

2
+ 1

2
T1 (14)

From (14), we can obtain

C3 = 12 + C1 − 2C2 (15)

From (10–15), we can also obtain a relation

4trρ1234ρ̃1234 = −2 − C1 + C2 (16)
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On the other hand, it is well know that T rAρ2
A = 1/2nA for every subsystem A if multi-

qubit states is a absolutely maximally entangled (AME) state, where nA = [n/2]. The
marginal density matrix ρA = T rĀ|ψ〉〈ψ | is the reduced matrix after partial trace operation
over the complementary subsystem Ā is implemented. For four-qubit pure states, nA =
2, T rAρ2

A = 1/4.
Therefore, if four-qubit pure state is an absolutely maximally entangled (AME) state, it

must have

T rij ρ
2
ij = 1

4
, ij = 12, 13, . . . , 34 (17)

Compare with (13), we know it must be C1 = 0, C2 = 0.
Then from (16) we have 4trρ1234ρ̃1234 = −2. But from Ref [22], we know that

4trρ1234ρ̃1234 ≥ 0.
It is contradiction. Therefore, there is no absolutely maximally entangled state of four-

qubit state.

2.2 The Constraint Condition of Eight- qubit State

For the wave function of a eight-qubit pure state,

|ψ〉12345678 = a0|00000000〉 + a1|00000001〉 + a2|00000010〉
+ . . .

+a253|11111101〉 + a254|11111110〉 + a255|11111111〉 (18)

Then we have density matrix ρ12345678 = |ψ〉1234567812345678〈ψ |
Similarly, we have

1 = 1

256
+ 1

256
(C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8) (19)

trρ12345678ρ̃12345678 =
1

256
+ 1

256
(−C1 + C2 − C3 + C4 − C5 + C6 − C7 + C8) (20)

Using trρ2
12345 = trρ2

678; trρ2
123456 = trρ2

78; trρ2
1234567 = trρ2

8 , etc, we have

16trρ12345678ρ̃12345678 = −26 − 9C1 − C2 + C3 + C4 (21)

It is known that absolutely maximally entangled state, it must be C1 = 0, C2 = 0, C3 =
0, C4 = 0.

Thus, from (21), we know that left 4trρ12345678ρ̃12345678 ≥ 0, but right −26 − 9C1 −
C2 + C3 + C4 = −26.

It is a contradiction. Therefore, there is no absolutely maximally entangled state of eight-
qubit state.

3 Conclusions

In summary, we investigate the relation between the reduced density matrix and the local
unitary (LU) transformation invariants of four- qubit and eight-qubit states. For four- and
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eight-qubit states, we obtain some constraint conditions. By using these constraint condi-
tions, we can prove that absolutely maximally entangled four- qubit and eight-qubit states
do not exist. In the following, we will try to demonstrate whether more qubits exist when
k-body reduced density are maximally mixed for k < [n/2]. We believe this constraint con-
dition can play an important role in determining whether absolutely maximally entangled
exist.
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