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Abstract
Private set intersection(PSI) allows two parties to get all common elements of their pri-
vate sets without leaking any information about their sets. In this paper, we present a novel
PSI protocol which is based on quantum Fourier transform. Correctness analysis shows
that our protocol can get the result correctly. And the security of our protocol is also ana-
lyzed, it can resist most of outside attacks, such as Trojan horse attack, intercept-resend
attack, entanglement-and-measure attack, man-in-the-middle attack and so on. And it also
can overcome participant attacks.

Keywords Secure multiparty quantum computation · Private set intersection ·
Quantum fourier transform

1 Introduction

Protocols for private set intersection (PSI) allow two parties to compute the intersection
S1 ∩ S2 of their respective sets S1, S2 without disclosing anything about their sets [1]. PSI
is an important problem of secure multi-party computation(SMC) and has many practical
applications. It can be used to find the common customers of two companies directly [2] or
perform scientific investigation of two hospitals on their private patients data [3]. It can also
be used as a sub-protocol to perform privacy preserving data mining [4], to execute search
queries of the outsourced data [5] and to test whether two parties are close or not [6].

Because PSI has a wide application, many protocols have been proposed based on clas-
sical cryptography. In Ref. [1], Freedman, M.J. et al. presented PSI protocols based on
homomorphic encryption and balanced hashing. In Ref. [7], Wu et al. proposed a PSI
scheme based on oblivious transfer and universal hash function. In Ref. [8], Hazay, C., Lin-
dell, Y. constructed a PSI protocol based on secure pseudorandom function evaluations. In
Ref. [9], Liu, L., Cao, Z. investigated an efficient private matching protocol which can be
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used in some scenarios without strong security requirement. In Ref. [10], Kerschbaum, F.
presented a novel PSI protocol of malicious adversaries model based on Bloom filter and
homomorphic encryption. In Ref. [11], Shao, Z.Y., Yan, B. obtained a novel approach to
accomplish PSI, which used the public key encryption with keywords search.

Shor pointed out that SMC tasks can be performed more efficiently by models based
on quantum setting than classical setting [12]. Many researchers explored the special SMC
problems based on quantum cryptography Ref. [13–21]. But there are only few quantum
schemes for PSI and its variants. In Ref. [22], Shi, R.H. et al. proposed a novel quantum
scheme for PSI, which required O(n) computation and communication complexities. In
Ref. [23], Shi, R.H. et al. solved PSI cardinality problem using a quantum approach, which
can achieve an exponential reduction in communication complexity. In Ref. [24], Shi, R.H.
presented a novel quantum approach to solve PSI cardinality and private set union cardi-
nality problems based on the principle of quantum mechanics, which can resist well-known
quantum attacks. In this work, we use quantum Fourier transform approach to perform PSI.
Our scheme only needs orbital angular momentum(OAM) basis, so it will be more practical
than the schemes using multiple particles.

The structure of our paper is as follows: we introduce some preliminary in Section 2;
we propose a PSI protocol based on a coding scheme and quantum Fourier transform in
Section 3; and we analyze the correctness and security of our protocol in Section 4. A brief
discussion and a concluding summary are given in Section 5.

2 Preliminary

2.1 Quantum Fourier Transform

There are two bases, Z-basis and X-basis. Z-basis can be expressed as {|j〉 , j = −N,

..., 0, ..., N}, where N is a positive integer. X-basis can be expressed as {QFT |j〉 , j =
−N, ..., 0, ..., N}

Quantum Fourier transform performed on |j〉 in the Z basis can be described as

QFT |j〉 = 1√
2N+1

N∑

k=−N

ωjk |k〉(j = −N, ..., 0, ..., N), where ω = e
2πi

2N+1 . We have

ω2N+1 = e2πi = cos(2π) + i sin(2π) = 1 and
N∑

k=−N

ωk = ω−N (1−ω2N+1)
1−ω

= ω−N (1−1)
1−ω

= 0.

For Z basis, we can get

QFT 2(|j〉) = 1√
2N+1

N∑

k=−N

ωjk

(

1√
2N+1

−N∑

l=−N

ωkl |l〉
)

= 1
2N+1

N∑

k=−N

ωjk

(
−N∑

l=−N

ωkl |l〉
)

= 1
2N+1

N∑

k=−N

N∑

l=−N

ωk(j+l) |l〉

= 1
2N+1

N∑

k=−N

N∑

l=−N

ωk(j+l) |l〉

= 1
2N+1

N∑

k=−N

ωk(j−j) |−j〉 + 1
2N+1

N∑

k=−N

N∑

l=−N∧l �=−j

ωk(j+l) |l〉

= 1
2N+1

N∑

k=−N

1 × |−j〉 + 1
2N+1

N∑

l=−N∧l �=j

(0 × |l〉)
= |−j〉 .

(1)
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Then we can also get QFT 4(|j〉) = |j〉 [25].

3 Proposed Protocol

In this section we firstly give an informal definition of PSI and then present a PSI protocol
using quantum Fourier transform.

Definition 1 Private Set Intersection(PSI)—-There are two parties, Alice and Bob. Sup-
posed that U = {x1, x2, ..., xn} is a complete set. Alice inputs a private set SA ={
sA
1 , sA

2 , ..., sA
lA

}
and Bob inputs a private set SB =

{
sB
1 , sB

2 , ..., sB
lB

}
, where SA, SB ⊆ U .

With the help of a semi-honest third party Calvin, Alice and Bob can get the intersection
SA ∩ SB without leaking any information about their private sets.

Alice and Bob decode their private sets SA, SB into two 0 − 1 sequences CA =(
cA
1 , cA

2 , ..., cA
n

)
, CB = (

cB
1 , cB

2 , ..., cB
n

)
:

{
cA
i = 1, if xi ∈ SA

cA
i = 0, if xi /∈ SA

{
cB
i = 1, if xi ∈ SB

cB
i = 0, if xi /∈ SB

(2)

The detailed quantum PSI protocol is described as follows:

(1) Calvin prepares a particles sequence PC = (
pC
1 , pC

2 , ..., pC
n

)
and pC

i (i = 1, 2, ..., n)

is randomly chosen from {|−N〉 , ..., |−1〉 , |1〉 , ..., |N〉}. He also inserts lC particles
into PC for each particle in Z-basis and X-basis. After recording the insert positions
PoC , Calvin sends the sequence P ′

C of (n + lC) particles to Alice.
(2) After receiving P ′

C , Calvin announces PoC and measuring basis. Calvin and Alice
measure those insert particles and can find the existence of an eavesdropper. If there
are cheaters, the scheme will be aborted. Otherwise, Alice discards the insert photons
in P ′

C and continues the next step.
(3) Alice prepares two n-length strings RA = (

rA
1 , rA

2 , ..., rA
n+l

)
and HA =

(
hA
1 , hA

2 , ..., hA
n+l

)
, where rA

i (i = 1, ..., n) is randomly chosen from {0, 1} and

hA
i (i = 1, ..., n) is a random positive integer. Then she calculates pA

i = QFT cA
i ×2

QFT rA
i ×hA

i pC
i (i = 1, 2, ..., n). If rA

i = 0, rA
i ×hA

i = 0, then Alice performs no quan-
tum Fourier transform; If rA

i = 1, rA
i × hA

i = hA
i , then Alice performs hA

i quantum
Fourier transform. The new particles sequence is denoted by PA = (

pA
1 , pA

2 , ..., pA
n

)
.

Alice also inserts lA particles into PA for each particle inZ-basis andX-basis. After
recording the insert positions PoA, the sequence P ′

A of (n + lA) particles will be sent
to Bob.

(4) After receiving P ′
A, Alice announces PoA and measuring basis. Alice and Bob mea-

sure those insert particles to find the existence of an eavesdropper. If there is a cheater,
the scheme will be aborted. Otherwise, Bob discards the insert photons in P ′

A and
continues the next step.

(5) Bob prepares two (n)-length strings RB = (
rB
1 , rB

2 , ..., rB
n

)
and HB =

(
hB
1 , hB

2 , ..., hB
n

)
, where rB

i (i = 1, ..., n) is randomly chosen from {0, 1} and hB
i (i =

1, ..., n) is a random integer. Then he calculates pB
i = QFT cB

i ×2QFT rB
i ×hB

i pA
i (i =

1, 2, ..., n). If rB
i = 0, rB

i × hB
i = 0, then Bob performs no quantum Fourier trans-

form; If rB
i = 1, rB

i × hB
i = hB

i , then Bob performs hB
i quantum Fourier transform.

The new particles sequence is denoted by PB = (
pB
1 , pB

2 , ..., pB
n

)
.
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Bob also inserts lB particles into PB for each particle in Z-basis and X-basis. After
recording the insert positions PoB , he sends the sequence P ′

B of (n + lB) particles to
Calvin.

(6) After receiving P ′
B , Bob announces PoB and and measuring basis. Bob and Calvin

measure those insert particles to find the existence of an eavesdropper. If there is a
cheater, the scheme will be aborted. Otherwise, Calvin discards the insert photons in
P ′

B and continues the next step.
(7) Alice and Bob compute hC

i = 4 − (
((

rA
i × hA

i

) + (
rB
i × hB

i

))
mod 4)(i = 1, ..., n)

and send hC
1 , ..., hC

n to Calvin.

Calvin calculates pC′
i = QFT hC

i pB
i (i = 1, 2, ..., n) and measures it using

{|−N〉 , ..., |0〉 , ..., |N〉}. If the measurement result of pC′
i is the same as pC

i , Calvin
know that cA

i = cB
i ; Otherwise, Calvin knows that cA

i �= cB
i . Calvin get SA ∩ SB .

4 Analysis

4.1 Correctness Analysis

In this section, we verify the correctness of the protocol by taking a concrete example.
In our protocol, Alice performs rA

i × hA
i quantum Fourier transform on pC

i in step (3);
Bob performs rB

i ×hB
i quantum Fourier transform on pC

i in step(3); Calvin performs hC
i =

4 − (((rA
i × hA

i ) + (rB
i × hB

i )) mod 4) quantum Fourier transform on pC
i in step(7). In

Section 2, we know that the particle pC
i will not change if it has been performed on four

quantum Fourier transforms. So Alice, Bob and Calvin have no effects on pC
i .

Then the particle pC′
i (i = 1, 2, ..., n) in step (7) is written as follows:

pC′
i = QFT hC

i QFT cB
i ×2QFT rB

i ×hB
i QFT cA

i ×2QFT rA
i ×hA

i pC
i

= QFT hC
i +rB

i ×hB
i +rA

i ×hA
i QFT

(
cB
i +cA

i

)×2pC
i

= QFT 4kQFT
(
cB
i +cA

i

)×2pC
i

= QFT
(
cB
i +cA

i

)×2pC
i (3)

Alice and Bob perform
(
cA
i + cB

i

)×2 quantum Fourier transform on pC
i . If c

A
i = cB

i = 0
or cA

i = cB
i = 1, Alice and Bob will perform zero or four quantum Fourier transform on

pC
i and the particle pC

i will not change. If cA
i = 1, cB

i = 0 or cA
i = 0, cB

i = 1, Alice and
Bob will perform two quantum Fourier transform on pC

i and the particle pC
i will change.

When Calvin measures pC
i , he can know whether cA

i , cB
i are equal or not by comparing the

measurement result and the original particle. Alice and Bob discard l results which are used
to protect U and determine SA ∩ SB .

We give an example throughout the protocol to proof the correctness of our protocol.
Supposed that U = {3, 4, 12} and OAM basis is {|−2〉 , |−1〉 , |0〉 , |1〉 , |2〉}. Alice has a pri-
vate set SA = {3, 12} and Bob has a private set SB = {4, 12}, and their 0-1 codes are (1,0,1)
and (0,1,1) respectively. The random strings chosen by Alice are RA = (1, 0, 0),HA =
(4, 2, 2). The random strings chosen by Bob are RB = (0, 1, 0),HB = (2, 1, 5). Calvin
prepares a particles sequence PC = (

pC
1 , pC

2 , pC
3

) = (|2〉 , |−2〉 , |2〉).
According to RA,HA and the 0 − 1 code of Alice, Alice performs four quan-

tum Fourier transform on pC
1 firstly, then performs two quantum Fourier transform on
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pC
1 , pC

3 . The new particles sequence generated by Alice is PA = (
pA
1 , pA

2 , pA
3

) =
(QFT 6 |2〉 , |−2〉 ,QFT 2 |2〉).

Similarly, according to RB, HB and the 0 − 1 code of Bob, Bob performs one quan-
tum Fourier transform on pA

2 firstly, then performs two quantum Fourier transform on
pA
2 , pA

3 . The new particles sequence generated by Bob is PB = (
pB
1 , pB

2 , pB
3

) =
(QFT 6 |2〉 ,QFT 3 |−2〉 ,QFT 4 |2〉).

According to HC = (4, 3, 0), Calvin performs three quantum Fourier transform on
pB
2 , performs four quantum Fourier transform on pB

1 , performs no quantum Fourier

transform on pB
3 . The new particles sequence of Calvin is P ′

C =
(
pC′
1 , pC′

2 , pC′
3

)
=

(QFT 10 |2〉 ,QFT 6 |−2〉 ,QFT 4 |2〉) = (|−2〉 , |2〉 , |2〉). Calvin compares PC and P ′
C .

He can knows that only the 5th particle is equal and others particles are not. Alice and Bob
know SA ∩ SB = {12}.

4.2 Security Analysis

Firstly, we show that the outside attack is invalid to our protocol. Secondly, we show that
Alice and Bob can not get any information about the private information of each other.

4.2.1 Outside Attack

In this protocol, the outside eavesdroppers can attack the quantum channel and get particles
sequences of Alice, Bob and Calvin in step (1)(3)(5). In order to resist outside attacks,
there are some checking particles inserted by Alice, Bob and Calvin. The intercept-resend
attack, the measurement-resend attack, entanglement- measure attack and the denial-of-
service (DOS) attack can be detected with nonzero probability during the security checking
process in step (2)(4)(6).

Outside eavesdroppers can also adopt some special attacks, such as the delay pho-
ton Trojan horse attack, the invisible photon eavesdropping (IPE) Trojan horse attack, the
photon-number-splitting (PNS) attack. In order to defeat delay-photon Trojan horse attack,
we can use a photon-number splitter. In order to defeat IPE attack, we can insert filters in
front of their devices to filter out the photon signal with an illegitimate wavelength. In order
to defeat PNS attack, we can use the technology of beam splitters to split the sampling
signals and judge whether these received photons are single photons or multiple photons.

In step (7)(8), Alice, Bob and Calvin need to transfer some classical information, which
is not relevant to the private sets SA, SB . Therefore, outside eavesdropper cannot deduce the
private sets SA, SB from these classical information..

So we can say the protocol is security under the outside attack.

4.2.2 Participant Attack

The term “participant attack”, which emphasizes that the attacks from dishonest users are
generally more powerful and should be paid more attention to, is first proposed by Gao
et al. in Ref. [26] and has attracted much attention in the cryptanalysis of quantum cryp-
tography [27–33]. We analyze the possibility of three parties, Alice, Bob and Calvin, to get
information about SA, SB in our protocol.

Case 1: Alice wants to learn Bob’s private set SB =
{
sB
1 , sB

2 , ..., sB
lB

}
.
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In our protocol, Alice only gets a particles sequence PC = (
pC
1 , pC

2 , ..., pC
n

)
, which is

randomly chosen by Calvin. These particles didn’t have any secret information about the
Bob’s input SB . So for Alice, all possible attacks which she can perform with the present
technology can not help her to eavesdrop Bob’s secret set.

Case 2: Bob wants to learn Alice’s private set SA =
{
sA
1 , sA

2 , ..., sA
lA

}
.

In our protocol, Bob’s legal resource in his hand is the sequence PA = (
pA
1 , pA

2 , ..., pA
n

)
,

where pA
i = QFT cA

i ×2QFT rA
i ×hA

i pC
i (i = 1, 2, ..., n) and cA

i is related to Alice’s private
set. Bob’s eavesdropping is carried out by an unitary operation ÛAB , which acts on pA

i =
|j〉A and an ancillary particle |0〉B . Using the similar analysis in [34], the effect of Bob’s
attack can be described using the following equations:

ÛAB |j〉A |0〉B = √
ηj |j〉A |φ(j)〉B + √

1 − ηj |V (j)〉AB . (4)

where |V (j)〉AB is a vector orthogonal to |j〉A |φ(j)〉B .
In order to pass the eavesdropping checking, it can easily deduce ηj = 1. After perform

ÛAB , the particle pA
i (i = 1, 2, ..., n + l) in PA should be in the following state:

ÛABpA
i |0〉B

= ÛABQFT cA
i ×2QFT rA

i ×hA
i |j〉A |0〉B

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1√

2N+1

)2+hA
i

−N∑

k1=−N

−N∑

k2=−N

...
−N∑

k
(2+hA

i
)
=−N

ω
jk1+k1k2+...+k

1+hA
i

k
2+hA

i

∣
∣
∣k2+hA

i

〉

A
|φ(j)〉B

(
cA
i = 1, rA

i = 1
)

(
1√

2N+1

)hA
i

−N∑

k1=−N

−N∑

k2=−N

...
−N∑

k
(hA

i
)
=−N

ω
jk1+k1k2+...+k

hA
i

−1
k
hA
i

∣
∣
∣khA

i

〉

A
|φ(j)〉B

(
cA
i = 0, rA

i = 1
)

(
1√

2N+1

)2 −N∑

k1=−N

−N∑

k2=−N

ωjk1+k1k2 |k2〉A |φ(j)〉B
(
cA
i = 1, rA

i = 0
)

|j〉A |φ(j)〉B
(
cA
i = 0, rA

i = 0
)

(5)

It implies that Bob cannot get any secret information about Alice’s private set, because
he cannot extract out the global phase information from the partial qubits of the entangled
quantum systems with the subscripts A and B. In fact, any local unitary operator on the
partial qubits cannot fully disentangle the entanglement of the composite system unless it
directly measures them.

Case 3: Calvin wants to learn Alice’s and Bob’s private sets SA =
{
sA
1 , sA

2 , ..., sA
lA

}
,

SB =
{
sB
1 , sB

2 , ..., sB
lB

}
.

In our protocol, Calvin can get PB = (
pB
1 , pB

2 , ..., pB
n+l

)
, where pB

i = QFT cB
i ×2

QFT rB
i ×hB

i QFT cA
i ×2QFT rA

i ×hA
i |j〉C (i = 1, 2, ..., n) and cB

i , cA
i is related to Alice’s and

Bob’s private sets.
Calvin calculates pC′

i = QFT 4−(
((

rA
i ×hA

i

)+(
rB
i ×hB

i

))
mod 4)+rB

i ×hB
i +rA

i ×hA
i QFT cB

i ×2

QFT cA
i ×2 |j〉C (i = 1, 2, ..., n).

Calvin measures pC′
i : If the measuring result is |j〉C , he cannot determine cA

i = cB
i = 1

or cA
i = cB

i = 0; If the measuring result is |−j〉C , he cannot determine cA
i = 1, cB

i = 0 or

cA
i = 0, cB

i = 1. The maximal probability of correct messages guessed by Calvin is
(
1
2

)n

,

where n is the length of Alice’s and Bob’s 0− 1 codes. Alice and Bob can insert some extra
codes to obtain higher security.

2079International Journal of Theoretical Physics  (2021) 60:2074–2083



Ta
bl
e
1

T
he

co
m
pa
ri
so
n
of

R
ef
.[
22
–2
4]

an
d
ou
r
pr
ot
oc
ol

Sc
he
m
e

R
ef
.[
22
]

R
ef
.[
23
]

R
ef
.[
24
]

O
ur

pr
ot
oc
ol

Q
ua
nt
um

re
so
ur
ce

n
en
co
de
d
st
at
es

| 0〉
+|

c i
〉

√ 2
si
ng
le
ph
ot
on
s

E
R
P
pa
ir
s

n
si
ng
le
ph
ot
on
s

Q
ua
nt
um

m
ea
su
re
m
en
t

vo
n
N
eu
m
an
n
m
ea
su
re
m
en
t

si
ng
le
-p
ho
to
n
pr
oj
ec
tiv

e
m
ea
su
re
m
en
t

B
el
l-
ba
se

m
ea
su
re
m
en
t

O
A
M

ba
si
s
m
ea
su
re
m
en
t

Q
ua
nt
um

te
ch
no
lo
gy

us
ed

U
0
an
d

U
S

si
ng
le
-p
ho
to
n
op
er
at
or

si
ng
le
-p
ar
tic
le
op
er
at
or
s

Q
FT

O
ut
pu
t

A
∩B

| A
∩B

|
| A

∩B
| a
nd

| A
∪B

|
A

∩B

2080 International Journal of Theoretical Physics  (2021) 60:2074–2083



4.3 Comparison of our Protocol with Previous Studies

In this sub-section, we will take a simple comparison between the a scheme in Ref. [22–24]
and our scheme, which are used to solve private set intersection problem. With the help of
the third party(TP), the comparison result(s) can be known from the following six aspects:
the cost of quantum resource, quantum measurement and quantum technology used. The
details of differences between our protocol and related studies Ref. [22–24] are shown in
Table 1.

Obviously, we can very easily find that our scheme has the remarkable advantages of
consuming fewer quantum resources. Our protocol is easy to implement and it only needs
simple quantum technology QFT.

5 Discussion and Conclusions

In summary, we put forward a novel quantum solution for PSI problem. After perform-
ing quantum Fourier transform on particles randomly chosen by Calvin, Alice and Bob
privately get all common elements of their respective sets. Our protocol can resist var-
ious outside attacks, such as disturbance attack, Trojan horse attack, intercept-resend
attack, entanglement-and-measure attack and man-in-the-middle attack. It can also avoid
the problem of information leakage with acceptable efficiency.
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