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Abstract
Superadditivity relations characterize the distributions of coherence in multipartite quan-
tum systems. In this work, we investigate the superadditivity relations related to the l1-norm
of coherence Cl1 in multiqubit quantum systems. Tighter superadditivity inequalities based
on the α-th (α � 1) power of l1-norm of coherence are presented for multiqubit states
under certain conditions, which include the existing results as special cases. These superad-
ditivity relations give rise to finer characterization of the coherence distributions among the
subsystems of a multipartite system. A detailed example is presented.
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1 Introduction

The quantum nature of superposition, entanglement, and measurement are applicable to the
quantum information industry. Entanglement is a very unique feature of the quantum sci-
ences and plays a crucial role in quantum information processing. For example, in quantum
computing [1, 2]. Stemming from the principle of quantum superposition, quantum coher-
ence is another essential feature of quantum mechanics. It also plays an important role in
quantum information processing [3] such as secret sharing [4], quantum secure direct com-
munication [5], quantum key distribution [6], quantum teleportation [7, 8], quantum steering
[9], quantum metrology [10], thermodynamics [11, 12], and quantum biology [13]. As a
kind of physical resource, recently Baumgaratz et al. [14] proposed a rigorous framework
to quantify the coherence. Two intuitive and easily computable measures of coherence are
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identified, the l1-norm of coherence and the relative entropy of coherence. Following this
seminal work, various operational measures of quantum coherence have been proposed [15–
18]. Correspondingly, the dynamics of coherence [26], the distillation of coherence [27, 28]
and the relations between quantum coherence and quantum correlations [29–33] have been
extensively investigated.

The distribution of coherence in multipartite systems is one of the basic problems in the
resource theory of coherence. An interesting subject in the theory of coherence is the super-
additivity of coherence measures. A given coherence measure C is said to be superadditive
if

C(ρAB) � C(ρA) + C(ρB), (1)

for all bipartite density matrices ρAB of a finite-dimensional system with respect to a par-
ticular reference basis {|i〉A ⊗ |j〉B}, where ρA = trB(ρAB) and ρB = trA(ρAB) are the
reduced density matrices with respect to the basis {|i〉A} and {|j〉B}, respectively. How-
ever, not all coherence measures satisfy such superadditivity relations. The superadditivity
for bipartite quantum states based on the relative entropy of coherence has been verified
in [24]. Later, the superadditivity was generalized to the case of tripartite pure states [22].
A sufficient condition for the convex roof coherence measures to fulfill the superadditivity
relations was provided in [23]. In [19], it has been shown that the l1-norm of coherence Cl1

satisfies the superadditivity relations for all multiqubit states. Then the superadditivity of
the l1-norm of coherence Cl1 for multiqubit systems has been deeply studied [20, 21].

In this paper, we show that superadditivity inequalities related to the α-th (α � 1) power
of Cl1 for multiqubit systems can be further improved. A class of tighter superadditivity
inequalities in multiqubit systems based on the α-th(α � 1) power of l1-norm of coherence
Cl1 are presented with detailed examples.

2 Stronger Superadditivity Relations

We first recall some basic facts related to the l1-norm of coherence Cl1 . Let H denote a
discrete finite-dimensional complex vector space associated with a quantum subsystem. For
a quantum state ρ ∈ H, the l1-norm of coherence is given by the sum of the absolute values
of the off-diagonal entries of the state ρ [14],

Cl1(ρ) =
∑

i �=j

|ρij |. (2)

The superadditivity relations of the l1-norm of coherence in multiqubit systems has been
proved in [19].

Cl1(ρA1A2···An) � Cl1(ρA1) + Cl1(ρA2) + · · · + Cl1(ρAn). (3)

In [20], tighter superadditivity relations in multiqubit systems has been derived,

Cα
l1
(ρA1A2···An) � Cα

l1
(ρA1) + (2α − 1)Cα

l1
(ρA2) + · · · + (2α − 1)m−1Cα

l1
(ρAm)

+(2α − 1)m+1[Cα
l1
(ρAm+1) + · · · + Cα

l1
(ρAn−1)]

+(2α − 1)mCα
l1
(ρAn)

(4)
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for all α � 1 and n � 3, if for some m (1 � m � n − 2) Cl1(ρAj
) � Cl1(ρAj+1···An) for

j = m + 1, · · · , n − 1. Later, the relation (4) has been improved in [21],

Cα
l1
(ρA1A2···An) � Cα

l1
(ρA1) +

(
(1+k)α−1

kα

)
Cα

l1
(ρA2) + · · · +

(
(1+k)α−1

kα

)m−1
Cα

l1
(ρAm)

+
(

(1+k)α−1
kα

)m+1 [Cα
l1
(ρAm+1) + · · · + Cα

l1
(ρAn−1)]

+
(

(1+k)α−1
kα

)m

Cα
l1
(ρAn),

(5)
for all α � 1 and n � 3, conditioned that for a real number k (0 < k � 1),
Cl1(ρAi

) � 1
k
Cl1(ρAi+1···An) for i = 1, 2, · · · ,m, and Cl1(ρAj

) � 1
k
Cl1(ρAj+1···An) for

j = m + 1, · · · , n − 1, 1 � m � n − 2.
Improving the above results, we have the following theorems.

Theorem 1 Let k and δ be real numbers satisfying 0 < k � 1 and δ ≥ 1. For any n-
qubit (n � 3) quantum state ρA1A2···An such that, without loss of generality, Cl1(ρAi

) �
1
kδ Cl1(ρAi+1···An) for i = 1, 2, · · · ,m, and Cl1(ρAj

) � 1
kδ Cl1(ρAj+1···An) for j = m +

1, · · · , n − 1, 1 � m � n − 2, we have

Cα
l1
(ρA1A2···An) � Cα

l1
(ρA1) +

(
(1+kδ)α−1

kδα

)
Cα

l1
(ρA2) + · · · +

(
(1+kδ)α−1

kδα

)m−1
Cα

l1
(ρAm)

+
(

(1+kδ)α−1
kδα

)m+1 [Cα
l1
(ρAm+1) + · · · + Cα

l1
(ρAn−1)]

+
(

(1+kδ)α−1
kδα

)m

Cα
l1
(ρAn),

(6)
for all α � 1.

Proof Due to the superadditivity inequalityCl1(ρAB) � Cl1(ρA)+Cl1(ρB) for any 2⊗2n−1

bipartite states ρAB [20], and the inequality [25],

(1 + t)α � 1 + (1 + kδ)α − 1

kδα
tα,

where k and δ are any real numbers satisfying 0 < k � 1 and δ ≥ 1, 0 � t � kδ and α � 1,
we have

Cα
l1
(ρA1A2···An) � [Cl1(ρA1) + Cl1(ρA2···An)]α

= Cα
l1
(ρA1)

[
1 + Cl1 (ρA2 ···An )

Cl1 (ρA1 )

]α

� Cα
l1
(ρA1)

{
1 +

(
(1+kδ)α−1

kδα

) [
Cl1 (ρA2 ···An )

Cl1 (ρA1 )

]α}

= Cα
l1
(ρA1) +

(
(1+kδ)α−1

kδα

)
Cα

l1
(ρA2···An)

� Cα
l1
(ρA1) +

(
(1+kδ)α−1

kδα

)
Cα

l1
(ρA2) +

(
(1+kδ)α−1

kδα

)2
Cα

l1
(ρA3···An)

� · · ·
� Cα

l1
(ρA1) +

(
(1+kδ)α−1

kδα

)
Cα

l1
(ρA2) + · · · +

(
(1+kδ)α−1

kδα

)m−1
Cα

l1
(ρAm)

+
(

(1+kδ)α−1
kδα

)m

Cα
l1
(ρAm+1···An).

(7)
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Similarly, as Cl1(ρAj
) � 1

kδ Cl1(ρAj+1···An) for j = m + 1, · · · , n − 1, we get

Cα
l1
(ρAm+1···An) �

(
(1+kδ)α−1

kδα

)
Cα

l1
(ρAm+1) + Cα

l1
(ρAm+2···An)

�
(

(1+kδ)α−1
kδα

)
[Cα

l1
(ρAm+1) + · · · + Cα

l1
(ρAn−1)] + Cα

l1
(ρAn).

(8)

Combining (7) and (8) we obtain (6).

Remark 1 The Theorem 4 in [20] is the special case of k = 1 and δ = 1 of our Theorem 1.
Our Theorem 1 also includes the Theorem 1 given in [21] as a special case of δ = 1.

In Theorem 1 we have generally assumed that Cl1(ρAi
) � 1

kδ Cl1(ρAi+1···An) for i =
1, 2, · · · ,m, and Cl1(ρAj

) � 1
kδ Cl1(ρAj+1···An) for j = m + 1, · · · , n − 1, for some m

satisfying 1 � m � n − 2. In particular, if all Cl1(ρAi
) � 1

kδ Cl1(ρAi+1···An) for i =
1, 2, · · · , n − 2, i.e., m = n − 2, we have the following conclusion:

Theorem 2 If Cl1(ρAi
) � 1

kδ Cl1(ρAi+1···An) for all i = 1, 2, · · · , n − 2, then

Cα
l1
(ρA1A2···An) � Cα

l1
(ρA1) +

(
(1+kδ)α−1

kδα

)
Cα

l1
(ρA2) + · · · +

(
(1+kδ)α−1

kδα

)n−2
Cα

l1
(ρAn−1)

+
(

(1+kδ)α−1
kδα

)m+1 [Cα
l1
(ρAm+1) + · · · + Cα

l1
(ρAn−1)]

+
(

(1+kδ)α−1
kδα

)n−1
Cα

l1
(ρAn).

(9)
It is easily verified that our bound (9) is larger than the one from (5),

Cα
l1
(ρA1) + (1+kδ)α−1

kδα Cα
l1
(ρA2) +

(
(1+kδ)α−1

kδα

)2

Cα
l1
(ρA3) ≥ Cα

l1
(ρA1) + (1+k)α−1

kα Cα
l1
(ρA2)

+
(

(1+k)α−1
kα

)2

Cα
l1
(ρA3)

for α ≥ 1. As an example, let us consider the following three-qubit state,

|�A1A2A3〉 = |0〉 + |1〉√
2

⊗ |0〉 ⊗ |0〉 + 3|1〉√
10

.

For |�A1A2A3〉 we have Cl1(ρA1) = 1, Cl1(ρA2) = 0, Cl1(ρA3) = 3
5 , Cl1(ρA2A3) = 3

5 .

Hence, we can choose δ = 2 and k = 4
5 . We have the lower bound of (9),

y1 ≡ Cα
l1
(ρA1 )+ (1 + kδ)α − 1

kδα
Cα

l1
(ρA2 )+

(
(1 + kδ)α − 1

kδα

)2

Cα
l1
(ρA3 ) = 1+[(41

25
)α −1]2(375

256
)α .

While the lower bound of (5) is given by

y2≡Cα
l1
(ρA1)+

(1 + k)α−1

kα
Cα

l1
(ρA2)+

(
(1 + k)α − 1

kα

)2

Cα
l1
(ρA3)=1+[(9

5
)α−1]2(15

16
)α .

Figure 1 shows that our result is indeed tighter than the one given in [21].

Inequality (6) can be further generalized to the following theorem, with a similar proof
to (6).
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Fig. 1 The l1-norm of coherence Cl1 with respect to α: the solid line is for y1 and the dashed line for y2 from
the result in [21]

Theorem 3 Let k, δ and β be real numbers with 0 < k � 1 and δ, β � 1. For any
n-qubit quantum state such that C

β
l1
(ρAi

) � 1
kδ C

β
l1
(ρAi+1···An) for i = 1, 2, · · · ,m, and

C
β
l1
(ρAj

) � 1
kδ C

β
l1
(ρAj+1···An) for j = m+1, · · · , n−1, 1 � m � n−2 and n � 3, we have

C
αβ
l1

(ρA1A2···An) �C
αβ
l1

(ρA1)+
(

(1+kδ)α−1
kδα

)
C

αβ
l1

(ρA2) + · · · +
(

(1+kδ)α−1
kδα

)m−1
C

αβ
l1

(ρAm)

+
(

(1+kδ)α−1
kδα

)m+1 [Cαβ
l1

(ρAm+1) + · · · + C
αβ
l1

(ρAn−1)]
+

(
(1+kδ)α−1

kδα

)m

C
αβ
l1

(ρAn)

(10)
for all α � 1.

Remark 2 Theorem 3 reduces to Theorem 1 when β = 1. In particular, when m = n − 2
Theorem 3 gives rise to a simpler stronger superadditivity relation:

Theorem 4 If Cβ
l1
(ρAi

) � 1
kδ C

β
l1
(ρAi+1···An) for all i = 1, 2, · · · , n − 2, we have

C
αβ
l1

(ρA1A2···An) �C
αβ
l1

(ρA1)+
(

(1+kδ)α−1
kδα

)
C

αβ
l1

(ρA2)+ · · · +
(

(1+kδ)α−1
kδα

)n−2
C

αβ
l1

(ρAn−1)

+
(

(1+kδ)α−1
kδα

)n−1
C

αβ
l1

(ρAn)

(11)
for all α � 1.

Note that not all coherence measures satisfy a superadditivity relation like the inequality
(1) for all quantum states. The method used in Theorem 4 can be applied to derive tighter
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superadditivity inequalities for the α-th (α � 1) power of coherence measures satisfying the
superadditivity relation.

3 Conclusion

Superadditivity relation is a fundamental property with respect to multipartite quantum sys-
tems. In this paper, we have focused on the distributions of quantum coherence characterized
by the superadditivity relations. We have proposed a class of tighter superadditivity inequal-
ities related to the α-th (α � 1) power of the l1-norm coherence Cl1 for multiqubit systems.
These new inequalities give rise to finer characterizations for the coherence distribution.
Our results provide better understanding of multipartite coherence and may highlight related
researches on other quantum coherence measures.
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