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Abstract
The thermal entanglement in the two-qubit Ising spin chain in the presence of the
Dzyaloshinski-Moriya(DM) anisotropic antisymmetric interaction in a nonuniform mag-
netic field is investigated. The influences of the DM coupling constant D, the temperature
T , the uniform external magnetic field B and the nonuniform magnetic field h on the ther-
mal entanglement measured by the concurrence C are studied in detail. The results show
that both the increasing T and |B| decrease the C, but the increasing D develops the C,
and D can also heighten the values of the threshold magnetic field |Bt | and the temperature
Tt above which the thermal entanglement vanishes. And for a definite D, the increasing T

makes the |Bt | become bigger as well. By comparison, before and after the critical temper-
ature Tc, the h has different effects on C. Within a certain temperature range, the increasing
h makes the C rise firstly and then fall. What’s more, as the h increases, the key temper-
ature Tk at which the C reaches the maximum value increases. As a result, the thermal
entanglement can be controlled by adjusting the values of B, h, D and T in various terrible
environment, such as in strong external magnetic field, or high temperature environment,
which will be useful in the research of quantum information in solid systems.

Keywords Thermal entanglement · Ising spin chain · DM-interaction · Nonuniform
magnetic field

1 Introduction

It is known that entanglement is a fundamental feature of the quantum mechanics, and it
plays an important role for many kinds of applications, such as quantum information [1],

� Li-Yuan Huang
lyhuang@xujc.com

1 School of Information Science and Technology, Xiamen University Tan Kah Kee College,
Zhangzhou 363105, China

Published online: 24 September 2021

International Journal of Theoretical Physics (2021) 60:4023–4029

http://crossmark.crossref.org/dialog/?doi=10.1007/s10773-020-04686-9&domain=pdf
http://orcid.org/0000-0002-8858-8608
mailto: lyhuang@xujc.com


superdense coding [2], quantum teleportation and telecloning [3]. As one of the simplest
quantum systems, the Heisenberg spin chain is a natural candidate in the solid state sys-
tems for the realization of quantum entanglement compared with other physics systems [4].
Recently, an interesting type of quantum entanglement, i.e., thermal entanglement has been
extensively studied due to its advantages over other kinds of entanglement.

In a recent paper, the entanglement and intrinsic decoherence in the two-qubit Heisenberg
XXX model with Dzyaloshinski-Moriya(DM) anisotropic antisymmetric interaction under
a inhomogeneous magnetic field was investigated by Qin Meng [5]. His team also consid-
ered the thermal entanglement in a two-qubit XY chain with the DM interaction [6]. And
the thermal entanglement of a two-qubit XXZ chain in the DM anisotropic antisymmetric
interaction with a homogeneous magnetic field was studied [7], while the thermal entangle-
ment in the mixed three-spin XXZ Heisenberg model on a triangular cell with nonuniform
magnetic fields was researched [8]. Also, Xu Lin discussed the quantum correlations and
thermal entanglement in a two-qubit Heisenberg XXZ model with external magnetic fields
[9]. What’s more, the thermal entanglement in a two-qubit Heisenberg XXZ model with
DM anisotropic antisymmetric interaction in a inhomogeneous magnetic field was discussed
[10]. However, the thermal entanglement in a two-qubit Ising model with DM anisotropic
antisymmetric interaction is rarely considered [11, 12]. In view of the above results, in this
paper we are going to study the thermal entanglement of a two-qubit Ising spin chain with
the DM anisotropic antisymmetric interaction under a nonuniform magnetic field.

The article is organized as follows. In Section 2, we introduce the model under con-
sideration. In Section 3, the influences of various factors on the thermal entanglement are
discussed. In Section 4, a summary is given.

2 TheModel

Consider a Ising spin chain of two qubits in the presence of the DM anisotropic antisymmet-
ric interaction with a nonuniform external magnetic field. The Hamiltonian of the system is
given by

H = Jσx
1 σx

2 + 1

2
[(B + h)σ z

1 + (B − h)σ z
2 + D(σx

1 σ
y

2 − σ
y

1 σx
2 )]. (1)

where σx
i , σ

y
i and σz

i are Pauli operators. J is the real coupling constant and D is the
DM vector coupling. The DM anisotropic antisymmetric interaction arises from spin-orbit
coupling [13, 14]. The positive J corresponds to the antiferromagnetic case, and the negative
J refers to the ferromagnetic case. B is the uniform magnetic field. h ≥ 0 is restricted, and
the magnetic fields on the two spins have been parameterized that h controls the degree of
inhomogeneity.

In the standard basis{|00〉, |01〉, |10〉, |11〉}, the Hamiltonian can be expressed as

H =

⎛
⎜⎜⎝

B 0 0 J

0 h J + iD 0
0 J − iD −h 0
J 0 0 −B

⎞
⎟⎟⎠ (2)
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A straightforward calculation gives the eigenstates:

|ϕ1〉 = 1

a+

[
B + δ

J
|00〉 + |11〉

]
,

|ϕ2〉 = 1

a−

[
B − δ

J
|00〉 + |11〉

]
,

|ϕ3〉 = 1

b+

[
i(h + u)

D + iJ
|01〉 + |10〉

]
,

|ϕ4〉 = 1

b−

[
i(h − u)

D + iJ
)|01〉 + |10〉

]
. (3)

where δ = √
J 2 + B2, u = √

J 2 + h2 + D2, a2± = 2δ2±2Bδ
J

, b2± = 2u2±2hu

J 2+D2 .
With corresponding eigenvalues

E1,2 = ±δ,

E3,4 = ±u. (4)

The state of a spin chain with the above Hamiltonian H at a thermal equilibrium can be
described by a density matrix

ρ(T ) = exp(−βH)/Z (5)

where β = 1/(kT ), k is the Boltzmann constant, which is henceforth taken as 1, and T

is the temperature, H is the system Hamiltonian and Z = tr[exp(−βH)] is the partition
function. As ρ(T ) represents a thermal state, the entanglement in the thermal state is called
thermal entanglement [15].

In the standard basis{|00〉, |01〉, |10〉, |11〉},

ρ(T ) = 1

Z
exp(−βH)

= 1

Z

4∑
k=1

exp(−βEk)|ϕk〉〈ϕk|

= 1

Z

⎛
⎜⎜⎝

m 0 0 r

0 p y∗ 0
0 y q 0
r 0 0 n

⎞
⎟⎟⎠ (6)
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where

m = e−βδ 1

a2+

(
B + δ

J

)2

+ eβδ 1

a2−

(
B − δ

J

)2

,

r = e−βδ 1

a2+
B + δ

J
+ eβδ 1

a2−
B − δ

J
,

p = e−βu 1

b2+
(h + u)2

D2 + J 2
+ eβu 1

b2−
(h − u)2

D2 + J 2
,

q = e−βu 1

b2+
+ eβu 1

b2−
,

y = e−βu 1

b2+
h + u

J + iD
+ eβu 1

b2−
h − u

J + iD
,

n = e−βδ 1

a2+
+ eβδ 1

a2−
,

Z = 2 cosh(βδ) + 2 cosh(βu). (7)

3 Thermal Entanglement

Before computer the thermal entanglement, we review a measure of entanglement. Concur-
rence [16] is one of the most prevalently used entanglement monotones for two qubits. Let
ρ12 be the joint density matrix of the system consisting of qubits 1 and 2, which may be
pure or mixed. The concurrence corresponding ρ12 is defined as

C12 = max{λ1 − λ2 − λ3 − λ4, 0}, (8)

where λ1, λ2, λ3 and λ4 are the square roots of the four eigenvalues of �12 = ρ12(σ
y ⊗

σy)ρ∗
12(σ

y ⊗ σy) in descending order, with the asterisk denoting the complex conjuga-
tion. The value of C ranges from 0 for completely disentangled states to 1 for maximally
entangled states.

So the thermal entanglement of the above density matrix can be measured by the
concurrence C which has been defined as

C = 2

Z
max{|y| − √

mn, |r| − √
pq, 0}. (9)

Figure 1 gives the plots of C as a function of B and T for different D , for the coupling
constant J is set to be 1. From Fig. 1, it is clear that the concurrence C is symmetrical with
B = 0. In general, the C decreases with the increasing value of |B|, and the C increases
with the increasing value of D. It is also observed that under the influence of the increas-
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Fig. 1 The thermal entanglement measured by the concurrence C as a function of the uniform magnetic
field B and the temperature T for different DM coupling constant D. The coupling constant J = 1 and the
nonuniform magnetic field h = 0. a D = 1; b D = 2; c D = 3; d D = 4

ing T , the C decreases gently. That is to say, the |B| and T have negative effects while the
D has a positive effect on the C. In detail, the increasing D not only raises the maximum
value of C but also expands the range of the |B| and T where exists thermal entanglement
simultaneously. In other words, the threshold value |Bt | as well as Tt above which the ther-
mal entanglement vanishes increases with the increasing D. Moreover, for a definite D, the
threshold value |Bt | is also increased with the increasing T . So we can adjust the values
of D, B and T to control the region of thermal entanglement we want. It is found that this
conclusion accords with the conclusion of Huang in Refs. [10].

It must be noted that, the influence of h on C is different from them. Figure 2 shows
the plots of the C versus h, T for different D. From Fig. 2, it is obvious that, for a definite
D, when the T is small, as the h increases, the C decreases monotonically. When the T

is bigger than a critical value Tc, as the h increases, the C develops to a maximum value
and then drops much slowly. In other words, before and after Tc, the effect of h on C is
different. What’s more, when the h is raised, the key temperature Tk at which the C reaches
the maximum value increases, while the maximum value of C becomes smaller. Through
comparison between Fig. 2a, b, c and d, it is found that, the larger the value of D is, the the
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Fig. 2 The thermal entanglement measured by the concurrence C as a function of the nonuniform magnetic
field h and the temperature T for different DM coupling constant D. The coupling constant J = 1 and the
uniform magnetic field B = 0. a D = 1; b D = 2; c D = 3; d D = 4

bigger the value of Tc is. So we always can adjust the value of T and h to get the maximal
thermal entanglement C for different D.

4 Conclusion

In this paper, we have studied the thermal entanglement in the two-qubit Ising spin chain
in the presence of the Dzyaloshinski-Moriya anisotropic antisymmetric interaction in a
nonuniform magnetic field. During the discussions, some conclusions are obtained. The
external magnetic field |B| has a negative effect on the value of C, and the h has the double
influence on C. The D can not only develop the value of C but also heighten the values of
the |Bt | and the Tt above which the thermal entanglement vanishes. When the T is bigger
than a critical value Tc, the increasing h can develop the C to a maximum value and then
drop it much slowly. Though the increasing h makes the maximum value of C smaller, it
increases the key temperature Tk at which the C reaches the maximum value. The increas-
ing T makes the C smaller, but it makes the |Bt | bigger. In brief, we can adjust the values
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of B, h, D and T to control the thermal entanglement, which is useful for the quantum
teleportation and other applications.
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