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Abstract
Importance of quantum entanglement has been demonstrated in various applications. Usu-
ally, separability of a bipartite state is defined by its algebraic structure, i.e. a convex
combination of product states. But it seems to be hard to check separability (equivalently,
entanglement) of a state from its algebraic structure. In this note, we give some characteri-
zations of separability of bipartite states based on POVM measurements. For bipartite pure
states, we prove the separability, Bell locality, unsteerability and classical correlation are
the same. As a consequence, every entangled pure bipartite state is always Bell nonlocal,
steerable and quantum correlated.

Keywords POVM measurement · Separability · Bell locality · Unsteerability ·
Classical correlation

1 Introduction

Quantum entanglement, as the essence of quantum formalism, was recognized by Einstein,
Podolsky, Rosen [1], and Schrödinger [2] in 1935. This holistic property of compound quan-
tum systems involves nonclassical correlations between subsystems and then has potential
for many quantum processes, including canonical ones: quantum cryptography, quantum
teleportation, and dense coding.

As a special entanglement, Bell nonlocality of a compound quantum system was recog-
nized by Bell [3] in 1964, who accepted the EPR conclusion that the quantum description of
physical reality is not complete as a working hypothesis and formalized the EPR’s idea of
deterministic world in terms of the local hidden variable model [LHVM]. He then showed
that the probabilities for the outcomes obtained when some entangled state is suitably mea-
sured violate an inequality, which was named the Bell inequality. And this property of
quantum state found by Bell is the so-called Bell nonlocality. It is, indeed, demonstrated
by some local quantum measurements whose statistics of the measurement outcomes can-
not be explained by an LHVM [4]. Bell nonlocality is an important resources in quantum
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information and then has been widely discussed, please refer to Clauser and Shimony [5],
Home and Selleri [6], Khalfin and Tsirelson [7], Tsirelson [8], Zeilinger [9], Werner and
Wolf [10], Genovese [11], and Buhrman et al. [12], and [13–19].

As an intermediary property between Bell nonlocality and entanglement, EPR steering
was first observed by Schrödinger [2] in the context of the well-known EPR paradox [1, 20–
22]. It is also is an important resources in quantum information and then has been recently
discussed, please refer to [17, 23–31]. Especially, mathematical definitions of Bell nonlo-
cality and EPR steerability of bipartite states were proposed and their characterizations were
given in [17] by Cao and Guo.

Although entanglement was first recognized as the characteristic trait of quantum
mechanics [1], its role has been debated since it does not capture all the quantum features of
a quantum system [32–34]. In the case of bipartite systems, the quantum discord (generally,
quantum correlation) has been widely accepted as a fundamental tool due to its relevance
in quantum computing tasks not relying on entanglement [32–35]. Luo in [36] established
the mathematical definition of classical correlation and quantum correlation of a bipartite
state by using measurement-induced disturbance to the state. Guo and Cao [37] established
a new characterization of a classical correlated (CC) state and proved that the set of all CC
states becomes a perfect, nowhere dense and compact subset of the metric space of all states.
Please refer to [38–46] for more researches on quantum correlations.

As usual, separability of a bipartite state is defined by its algebraic structure, i.e. a convex
combination of product states. States that are not separable are said to entangled states. But
it seems to be hard to check the entanglement (equivalently, the separability) of a state from
its algebraic structure. In this note, we give some measurement-based characterizations of
separability of bipartite states. In Section 2, measurement-based separability will be dis-
cussed; In Sections 3–5, it will be proved that the separability, Bell locality, unsteerability
and classical correlation are the same for bipartite pure states.

2 Measurement-Based Separability

According to quantum mechanics, a quantum system S is described by a dS-dimensional
complex Hilbert spaceHS (called the state space of S) with a right-linear inner product 〈·|·〉
and the states of the system are denoted by positive operators of trace 1 on HS . The set of
all states of S is denoted by D(HS). Thus,

D(HS) = {ρ ∈ B(HS) : ρ ≥ 0, trρ = 1},

where B(HS) is the C∗-algebra of all bounded linear operators on HS . The elements of
D(HS) are called the mixed states of S. A unit vector |ψ〉 in HS is said to be a pure state
of S and the set of all pure states of S is denoted by PS(HS). We also use [d] to denote the
set {1, 2, . . . , d}.

By the postulates of quantum mechanics, the state space of the composite system AB of
A and B is given by the tensor product space HA ⊗ HB of the state spaces HA and HB of
A and B, respectively.

Recall that a state ρ ∈ D(HA ⊗ HB) is said to be separable if it can be written as

ρ =
k∑

i=1

ciρ
A
i ⊗ρB

i (2.1)
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for some states ρA
i ∈ D(HA), ρB

i ∈ D(HB) and ci ≥ 0(i ∈ [k]) with
∑k

i=1 ci = 1.
Otherwise, it is said to be entangled. Moreover, a pure state |ψ〉 ∈ PS(HA ⊗HB) is said to
be separable if it can be written as the form |ψ〉 = |ψA〉 ⊗ |ψB〉 for some |ψA〉 ∈ PS(HA)

and |ψB〉 ∈ PS(HB). Otherwise, it is called to be entangled.
Next propositions are remarks on the definition of separability and may be well-known.

Proposition 2.1 For a state ρ ∈ D(HA ⊗ HB), the following statements are equivalent.

(1) ρ is separable, i.e. it has the form of (2.1).
(2) ρ can be written as

ρ =
k∑

i,j=1

dij ρ
A
i ⊗ηB

j (2.2)

for some states ρA
i ∈ D(HA), ηB

j ∈ D(HB) and dij ≥ 0(i, j ∈ [k]) with
∑k

i,j=1 dij = 1.
(3) ρ can be written as

ρ =
d1∑

s=1

d2∑

t=1

γst |ψA
s 〉〈ψA

s | ⊗ |ψB
t 〉〈ψB

t | (2.3)

for some pure states |ψA
s 〉 and |ψB

t 〉 of the systems A and B, respectively, and γst ≥ 0
with

d1∑

s=1

d2∑

t=1

γst = 1.

(4) ρ can be written as

ρ =
n∑

i=1

ci |ψA
i 〉〈ψA

i | ⊗ ρB
i (2.4)

for some pure states |ψA
i 〉 and mixed states ρB

i of the systems A and B, respectively,
and ci ≥ 0 with

∑n
i=1 ci = 1.

(5) ρ can be written as

ρ =
m∑

i=1

qiρ
A
i ⊗ |ψB

i 〉〈ψB
i | (2.5)

for some mixed states ρA
i and pure states |ψB

i 〉 of the systems A and B, respectively,
and qi ≥ 0 with

∑m
i=1 qi = 1.

Proposition 2.2 A pure state |ψ〉 of the system AB is separable if and only if |ψ〉〈ψ | is
separable.

Theorem 2.1 A state ρAB is separable if and only if there exists a probability distribu-
tion(PD) {πk}dk=1, states {ρA

k }dk=1 ⊂ D(HA) and {ρB
k }dk=1 ⊂ D(HB) s.t. for every local

POVM {Mi ⊗ Nj }i,j , it holds that

tr[(Mi ⊗ Nj)ρ
AB ] =

d∑

k=1

πktr(Miρ
A
k )tr(Njρ

B
k ), ∀i, j . (2.6)

In that case, ρAB = ∑d
λ=1 πλρ

Ak ⊗ ρBk .
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Proof Necessity. Clearly.
Sufficiency. Suppose that “the sufficient condition” is satisfied, that is, the desired

{πk}dk=1, {ρA
k }dk=1 and {ρB

k }dk=1 exist. Put σ = ρAB −∑d
k=1 πkρ

A
k ⊗ρB

k . For all 0 ≤ X ≤ IA

and 0 ≤ Y ≤ IB , put M1 = X,M2 = IA − X and N1 = Y,N2 = IB − Y , then we obtain
POVMs {M1,M2} and {N1, N2} of A and B, respectively. We see from (2.6) that

tr[(Mi ⊗ Nj)ρ
AB ] =

d∑

k=1

πktr(Miρ
A
k )tr(Njρ

B
k ) = tr

[
(Mi ⊗ Nj)

d∑

k=1

πkρ
A
k ⊗ρB

k

]
.

Thus, tr[(Mi ⊗ Nj)σ ] = 0 for i, j = 1, 2. When i = j = 1, we have tr[(X ⊗ Y )σ ] = 0.
Hence, tr[(X ⊗ Y )σ ] = 0 for all 0 ≤ X ≤ IA and 0 ≤ Y ≤ IB . Thus, tr[(X ⊗ Y )σ ] = 0
for all hermitian operators X on HA and Y on HB . Hence, tr[(X ⊗ Y )σ ] = 0 for all
X ∈ B(HA) and Y ∈ B(HB). Now, every operator T ∈ B(HA ⊗HB) has a decomposition
T = ∑

n Xn ⊗ Yn and so tr(T σ) = ∑
n tr[(Xn ⊗ Yn)σ ] = 0. By using this fact for T = σ †,

we conclude that σ = 0, i.e., ρAB = ∑d
k=1 πkρ

A
k ⊗ρB

k . Therefore, ρ
AB is separable.

Corollary 2.1 A state ρAB is separable if and only if there exists a PD {πk}dk=1, states
{ρA

k }dk=1 ⊂ D(HA) and {ρB
k }dk=1 ⊂ D(HB) s.t. for all local observables X ⊗ Y of AB, it

holds that

〈X ⊗ Y 〉ρAB =
d∑

k=1

πk〈X〉ρAk · 〈Y 〉ρBk . (2.7)

In that case, ρAB = ∑d
λ=1 πλρ

Ak ⊗ ρBk .

Proof The necessity is clear. To prove the sufficiency, we suppose that “the sufficient condi-
tion” is satisfied, that is, the desired {πk}dk=1, {ρA

k }dk=1 and {ρB
k }dk=1 exist. For every POVM{Mi ⊗ Nj }i,j , using (2.7) for X = Mi and Y = Nj , we get

tr((Mi ⊗ Nj)ρ
AB) =

d∑

k=1

πktr(Miρ
A
k )tr(Njρ

B
k ),

which is just (2.6). So, Theorem 2.1 yields that ρAB is separable.

As an application of Corollary 2.1, we have ρAB = ρA ⊗ ρB if and only if for all local
observables X ⊗ Y of AB, it holds that 〈X ⊗ Y 〉ρAB = 〈X〉ρA · 〈Y 〉ρB .

Corollary 2.2 ρAB is separable if and only if there exists a PD {πk}dk=1, {ρA
k }dk=1 ⊂ D(HA)

and {ρB
k }dk=1 ⊂ D(HB) s.t. for every pure state |ψ〉 ∈ HA and |ϕ〉 ∈ HB , it holds that

tr((|ψ〉〈ψ | ⊗ |ϕ〉〈ϕ|)ρAB) =
d∑

k=1

πk〈ψ |ρA
k |ψ〉 · 〈ϕ|ρB

k |ϕ〉. (2.8)

That is,

〈|
〉〈
|〉ρAB =
d∑

k=1

πk〈|ψ〉〈ψ |〉ρAk · 〈|ϕ〉〈ϕ|〉ρBk ,

where |
〉 = |ψ〉|ϕ〉 and 〈σ 〉x = 〈x|σ |x〉 denotes the expectation of σ at a pure state |x〉.
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Proof The necessity is clear. To prove the sufficiency, we suppose that “the sufficient con-
dition” is satisfied, that is, the desired {πk}dk=1, {ρA

k }dk=1 and {ρB
k }dk=1 exist. For every

0 ≤ X ≤ IA and 0 ≤ Y ≤ IB , we consider the spectrum decompositions of X and Y :

X =
dA∑

i=1

ci |ψi〉〈ψi |, Y =
dB∑

j=1

dj |ϕj 〉〈ϕj |,

where {|ψi〉}dA

i=1 and {|ϕj 〉}dB

j=1 are orthonormal bases for HA and HB , respectively, and
ci ≥ 0, dj ≥ 0. For each i, j , we see from (2.8) that

tr[(|ψi〉〈ψi | ⊗ |ϕj 〉〈ϕj |)ρAB ] =
d∑

k=1

πk〈ψi |ρA
k |ψi〉 · 〈ϕj |ρB |ϕj 〉

=
d∑

k=1

πktr(|ψi〉〈ψi |ρA
k )tr(|ϕj 〉〈ϕj |ρB).

Multiplying two sides of above equation by cidj and then finding the sums over i, j , we
obtain that

tr[(X ⊗ Y )ρAB ] =
d∑

k=1

dA∑

i=1

πkci tr[(|ψi〉〈ψi |)ρA
k ]

dB∑

j=1

dj tr[(|ϕj 〉〈ϕj |)ρB ]

=
d∑

k=1

πktr(XρA
k )tr(YρB

k ).

Thus, (2.7) is valid. It follows from Corollary 2.1 that ρAB is separable.

The following conclusion is a direct application of Corollary 2.2, which was pointed out
in [15](pp. 140402-2, Eq. (4)) without proof.

Corollary 2.3 A state ρAB is separable if and only if there exists a PD {πk}dk=1, states
{ρA

k }dk=1 ⊂ D(HA) and {ρB
k }dk=1 ⊂ D(HB) s.t. for every local von Neumann measurement

(projective measurement) {Pi ⊗ Qj }i,j , it holds that

tr[(Pi ⊗ Qj)ρ
AB ] =

d∑

k=1

πktr(Piρ
A
k )tr(Qjρ

B
k ), ∀i, j . (2.9)

Next, we prove a simple characterization of separability of a pure state.

Theorem 2.2 A pure state |ψ〉 of AB is separable if and only if for all projective
measurements M = {Ma}ma=1 of A and N = {Nb}nb=1 of B, it holds that

tr[(Ma ⊗ Nb)(|ψ〉〈ψ |)] = PA(a)PB(b), ∀a ∈ [m], b ∈ [n], (2.10)

where {PA(a)}ma=1 and {PB(b)}nb=1 are PDs.

Proof The necessity is clear. To prove the sufficiency, we assume that the sufficient condi-
tion is satisfied. Let |ψ〉 = ∑r

k=1 ck|ψA
k 〉|ψB

k 〉 be the Schmidt decomposition of |ψ〉 where
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ck > 0(k ∈ [r]), {|ψA
k 〉}rk=1 and {|ψB

k 〉}rk=1 are orthonormal sets inHA andHB , respectively.
Then

|ψ〉〈ψ | =
r∑

k,j=1

ckcj |ψA
k 〉|ψB

k 〉〈ψA
j |〈ψB

j | =
r∑

k,j=1

ckcj |ψA
k 〉〈ψA

j | ⊗ |ψB
k 〉〈ψB

j |. (2.11)

Extending {|ψA
k 〉}rk=1 and {|ψB

k 〉}rk=1 as orthonormal bases {|ψA
k 〉}dA

k=1 and {|ψB
k 〉}dB

k=1 for

HA and HB , respectively, we obtain projective measurements M = {Ma}dA

a=1 of A and

N = {Nb}dB

b=1 of B where Ma = |ψA
a 〉〈ψA

a | and Nb = |ψB
b 〉〈ψB

b |. By (2.10) and (2.11), we
get

PA(a)PB(b) = tr[(Ma ⊗ Nb)(|ψ〉〈ψ |)] = cacbδa,b(a, b ∈ [r])
while PA(a)PB(b) = 0 when a > r or b > r . Thus,

⎛

⎜⎜⎜⎝

c21 0 · · · 0
0 c22 · · · 0
...

... · · · ...
0 0 · · · c2r

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

PA(1)
PA(2)

...
PA(r)

⎞

⎟⎟⎟⎠ (PB(1), PB(2), · · · , PB(r)) .

Since the matrix on the right-hand side is of rank 1, we conclude that r = 1 and so |ψ〉 =
|ψA

1 〉|ψB
1 〉.

Corollary 2.4 A pure state |ψ〉 of AB is entangled if and only if there exist two projective
measurements M = {Ma}ma=1 of A and N = {Nb}nb=1 of B such that the joint PD {tr[(Ma ⊗
Nb)(|ψ〉〈ψ |)]}a,b of the output results (a, b) can not be factorized a s a product of the PDs
of the output results a and b.

For example, when |ψ〉 = 1√
2
(|00〉 + |11〉), we take

Ma = |a〉〈a|(a = 0, 1), Nb = |b〉〈b|(b = 0, 1)

and put Pab = tr[(Ma ⊗ Nb)(|ψ〉〈ψ |)]. Then

[Pab] =
(
1/2 0
0 1/2

)
�=

(
PA(0)
PA(1)

)
(PB(0), PB(1))

for any PDs {PA(0), PA(1)} and {PB(0), PB(1)} since the left-hand side has rank 2 while
the right-hand side has rank 1. It follows from Corollary 2.4 that |ψ〉 is entangled.

3 Separability and Bell Locality

Usually, Bell nonlocality was revealed by the violations of various Bell’s inequalities and
Bell nonlocal states must be entangled. However, entangled states are not necessarily Bell
nonlocal [10]. Gisin [48, 49] proved that all entangled pure states are Bell nonlocal, which
was referred to as Gisin’s theorem and have been generalized to multipartite systems
[50–55].

To recall the definition of Bell locality, we use x and y to denote the labels of POVMs of
Alice and Bob and use a and b to denote their measurement outcomes, respectively. Thus,
their POVM choices are denoted by Mx = {Ma|x}oA

a=1 and Ny = {Nb|y}oB

b=1, respectively,
where x ∈ [mA], y ∈ [mB ]. These POVMs form measurement assemblages of A and B:
MA = {Mx}mA

x=1 andNB = {Ny}mB

y=1, respectively.
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Definition 3.1 [17, Definition 2.1]

(1) A state ρAB is said to be Bell local for a given measurement scenario MA ⊗ NB if
there exists a PD {πλ}dλ=1 such that

tr[(Ma|x ⊗ Nb|y)ρAB ] =
d∑

λ=1

πλPA(a|x, λ)PB(b|y, λ), ∀a, b, x, y, (3.1)

where {PA(a|x, λ)}oA

a=1 and {PB(b|y, λ)}oB

b=1 are PDs for each (λ, x) and (λ, y),
respectively.

Equation (3.1) is said to be a local hidden variable (LHV) model of ρAB w. r. t
MA ⊗ NB and λ is said to be an LHV with PD {πλ}dλ=1.

(2) A state ρAB is said to be Bell nonlocal forMA ⊗NB if it is not Bell local forMA ⊗
NB .

(3) A state ρAB is said to be Bell local if it is Bell local for everyMA ⊗ NB .
(4) A state ρAB is said to be Bell nonlocal if it is not Bell local, i.e., if there exists an

MA ⊗ NB such that ρAB is not Bell local forMA ⊗ NB .

Let BL(MA,NB) denote the set of all states that are Bell local for MA ⊗ NB ,
BNL(MA,NB) denote the set of all states that are Bell nonlocal forMA ⊗NB , BL(AB)

the set of all Bell local states of AB; BNL(AB) denote the set of all states that are Bell
nonlocal. Thus, we see from the definition that

BL(AB) =
⋂

MA,NB

BL(MA,NB), BNL(AB) =
⋃

MA,NB

BNL(MA,NB).

A pure state |ψ〉 of AB is said to be Bell local (resp. Bell nonlocal) if |ψ〉〈ψ | is Bell
local (resp. Bell nonlocal).

A following characterization of Bell locality was proved in [17], in which �A =
{J1, J2, . . . , JNA

} with NA = o
mA

A denotes the set of all possible maps from [mA] into [oA],
and �B = {K1,K2, . . . , KNB

} with NB = o
mB

B is the set of all possible maps from [mB ]
into [oB ].

Lemma 3.1 [17, Theorem 2.1]. A state ρAB is Bell local forMA ⊗NB if and only if there
exists a PD {qk,j : 1 ≤ k ≤ NA, 1 ≤ j ≤ NB} satisfying

tr[(Ma|x ⊗ Nb|y)ρAB ] =
NA∑

k=1

NB∑

j=1

qk,j δa,Jk(x)δb,Kj (y), (3.2)

where {qk,j }(k,j)∈[NA]×[NB ] is a PD.

The sufficiency is clearly valid by Definition 3.1 and the necessity was proved in [17] by
using the Total Probability Formula. Indeed, when (3.1) holds, the matrix [PA(a|x, λ)] with
(x, a)-entry is row-stochastic and it is follows from [47] that [PA(a|x, λ)] can be written as
a convex combination of {0, 1} row-stochastic matrices [δa,Jk(x)]:

PA(a|x, λ) =
NA∑

k=1

pA(k, λ)δa,Jk(x), ∀x, a, (3.3)
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where {pA(k, λ)}NA

k=1 is a PD. Similarly,

PB(b|y, λ) =
NB∑

j=1

pB(j, λ)δb,Kj (y), ∀y, b, (3.4)

where {pB(j, λ)}NB

j=1 is a PD. Using (3.1)–(3.4) shows that (3.2) holds for

qk,j =
d∑

λ=1

πλpA(k, λ)pB(j, λ).

With the characterization (3.2), it was proved in [17] that BL(AB) is a compact convex
set and then BNL(AB) is an open set. The following Bell local inequality was proved
essentially in [18] by using (3.1). Indeed, it can be obtained easily in light of (3.2).

Lemma 3.2 [18, Theorem 3.2] If ρ ∈ BL(AB),C, D and P,Q are±1-valued observables
of A and B, resp., then

|〈C ⊗ P 〉ρ + 〈C ⊗ Q〉ρ + 〈D ⊗ P 〉ρ − 〈D ⊗ Q〉ρ | ≤ 2, (3.5)

〈C ⊗ P 〉ρ + 〈C ⊗ Q〉ρ + |〈D ⊗ P 〉ρ − 〈D ⊗ Q〉ρ | ≤ 2. (3.6)

Next theorem shows that the separability and the Bell locality are the same for a pure
state. We first discuss the case where dA = dB = N (Theorem 3.1) and then deduce the
general case (Corollary 3.1). The proof of Theorem 3.1 is motivated by [48–50].

Theorem 3.1 When dA = dB = N , a pure state |ψ〉 of AB is separable if and only if it is
Bell local.

Proof Since every separable state is Bell local [17, Remark 2.2], the necessity holds.
To proof the sufficiency, we let |ψ〉 be entangled. Let |ψ〉 = ∑N

k=1 ck|ψA
k 〉|ψB

k 〉 be the
Schmidt decomposition of |ψ〉 where c1 > c2 ≥ ck ≥ 0(k = 3, 4 . . . , N), {|ψA

k 〉}Nk=1 and
{|ψB

k 〉}Nk=1 are orthonormal bases (ONBs) for HA and HB .
Case 1. N = 2n. Define generalized Pauli X and Z operators by

XA
k = |ψA

2k−1〉〈ψA
2k| + |ψA

2k〉〈ψA
2k−1|, ZA

k = |ψA
2k−1〉〈ψA

2k−1| − |ψA
2k〉〈ψA

2k|,
XB

k = |ψB
2k−1〉〈ψB

2k| + |ψB
2k〉〈ψB

2k−1|, ZB
k = |ψB

2k−1〉〈ψB
2k−1| − |ψB

2k〉〈ψB
2k|,

then XA
k ,ZA

k ,XB
k and ZB

k are Hermitian unitary operators and satisfy

(XL
k )2 = (ZL

k )2 = |ψL
2k−1〉〈ψL

2k−1| + |ψL
2k〉〈ψL

2k|(L = A,B),

XL
k ZL

j = ZL
k XL

j = XL
k XL

j = ZL
k ZL

j = 0(k �= j)(L = A,B),

XL
k ZL

k = −|ψL
2k−1〉〈ψL

2k| + |ψL
2k〉〈ψL

2k−1|(L = A, B),

ZL
k XL

k = |ψL
2k−1〉〈ψL

2k| − |ψL
2k〉〈ψL

2k−1|(L = A,B).

Put

A(α) = (sinα)

n∑

k=1

XA
k + (cosα)

n∑

k=1

ZA
k (−π < α < π), (3.7)

B(β) = (sin β)

n∑

k=1

XB
k + (cos β)

n∑

k=1

ZB
k (−π < β < π), (3.8)
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then A(α) and B(β) are Hermitian unitary operators on HA and HB , respectively.
Therefore, the eigenvalues of A(α) and B(β) are ±1. Clearly, (3.7) and (3.8) imply that

A(α) ⊗ B(β) = (sinα sin β)

n∑

k,j=1

XA
k ⊗ XB

j + (sinα cos β)

n∑

k,j=1

XA
k ⊗ ZB

j

+(cosα sin β)

n∑

k,j=1

ZA
k ⊗ XB

j + (cosα cos β)

n∑

k,j=1

ZA
k ⊗ ZB

j .

By writing

|ξi〉 = c2i−1|ψA
2i−1〉|ψB

2i−1〉 + c2i |ψA
2i〉|ψB

2j 〉, |ψ〉 =
n∑

i=1

|ξi〉,

we compute that

(XA
k ⊗ XB

j )|ξi〉 = c2i−1X
A
k |ψA

2i−1〉 ⊗ XB
j |ψB

2i−1〉 + c2iX
A
k |ψA

2i〉 ⊗ XB
j |ψB

2j 〉
= c2i−1δk,i |ψA

2k〉 ⊗ δj,i |ψB
2j 〉 + c2iδk,i |ψA

2i−1〉 ⊗ δj,i |ψB
2j−1〉.

Hence,
〈ξm|(XA

k ⊗ XB
j )|ξi〉 = 2c2i−1c2i , if m = k = j = i; (3.9)

it is 0 otherwise. Similarly,

(XA
k ⊗ ZB

j )|ξi〉 = c2i−1|ψA
2i〉 ⊗ |ψB

2i−1〉 − c2i |ψA
2i−1〉 ⊗ |ψB

2i〉 if k = j = i;
it is 0 otherwise. Therefore,

〈ξm|(XA
k ⊗ ZB

j )|ξi〉 = 0, ∀i, j, k, m. (3.10)

Likewise,
〈ξm|(ZA

k ⊗ XB
j )|ξi〉 = 0, ∀i, j, k, m. (3.11)

Since

(ZA
k ⊗ ZB

j )|ξi〉 = c2i−1Z
A
k |ψA

2i−1〉 ⊗ ZB
j |ψB

2i−1〉 + c2iZ
A
k |ψA

2i〉 ⊗ ZB
j |ψB

2j 〉
= c2i−1δk,i |ψA

2i−1〉 ⊗ δj,i |ψB
2i−1〉 + c2iδk,i |ψA

2i〉 ⊗ δj,i |ψB
2i〉,

we get

(ZA
k ⊗ ZB

j )|ξi〉 = c2i−1|ψA
2i−1〉 ⊗ |ψB

2i−1〉 + c2i |ψA
2i〉 ⊗ |ψB

2i〉, if k = j = i;
it is 0 otherwise. Thus,

〈ξm|(ZA
k ⊗ ZB

j )|ξi〉 = c22i−1 + c22i , if m = k = j = i; (3.12)

it is 0 otherwise. Using (3.9)–(3.12) shows that

〈ab〉 := 〈A(α) ⊗ B(β)〉ψ = cosα cos β + K sinα sin β, (3.13)

where K = 2(c1c2 + c3c4 + . . . + cN−1cN) > 0. So,

〈ab′〉 := 〈A(α) ⊗ B(β′)〉ψ = cosα cos β′ + K sinα sin β′,

〈a′b〉 := 〈A(α′) ⊗ B(β)〉ψ = cosα′ cos β + K sinα′ sin β,

〈a′b′〉 := 〈A(α′) ⊗ B(β′)〉ψ = cosα′ cos β′ + K sinα′ sin β′.
Especially, letting α = 0, α′ = π/2, β = −β′ = arctanK implies that

〈ab〉 = cos β, 〈ab′〉 = cos β, 〈a′b〉 = K sin β, 〈a′b′〉 = −K sin β,
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and so

〈ab〉 + 〈ab′〉 + 〈a′b〉 − 〈a′b′〉 = 2 cos β + 2K sin β = 2(1 + K2)1/2 > 2.

It follows from Lemma 3.2 that |ψ〉 is Bell nonlocal.
Case 2. N = 2n + 1. Let XL

k , ZL
k (L = A,B) be as in Case 1 and define

A(α) = (sinα)

n∑

k=1

XA
k + (cosα)

n∑

k=1

ZA
k + |ψA

2n+1ψ
A
2n+1〉〈ψA

2n+1ψ
A
2n+1|,

B(β) = (sin β)

n∑

k=1

XB
k + (cos β)

n∑

k=1

ZB
k + |ψB

2n+1ψ
B
2n+1〉〈ψB

2n+1ψ
B
2n+1|,

which are Hermitian unitary operators and then have eigenvalues ±1. By writing

|ξi〉 = c2i−1|ψA
2i−1〉|ψB

2i−1〉 + c2i |ψA
2i〉|ψB

2j 〉
and |ψ〉 = ∑n

i=1 |ξi〉 + c2n+1|ψA
2n+1〉|ψB

2n+1〉, we obtain that

〈ab〉 := 〈A(α) ⊗ B(β)〉ψ = (1 − c2N) cosα cos β + K sinα sin β + c2N .

Chose α = 0, α′ = π/2, β = −β′ = arctan(K/(1 − c2N)), then

〈ab〉 = (1 − c2N) cos β + c2N, 〈ab′〉 = (1 − c2N) cos β + c2N,

〈a′b〉 = K sin β + c2N, 〈a′b′〉 = −K sin β + c2N,

〈ab〉 + 〈ab′〉 + 〈a′b〉 − 〈a′b′〉 = 2(1 − c2N) cos β + 2c2N + 2K sin β

= 2[(1 − c2N)2 + K2]1/2 + 2c2N
> 2(1 − c2N) + 2c2N
= 2

since K > 0. It follows from Lemma 3.2 that |ψ〉 is Bell nonlocal.
Now, we turn to discuss the Bell locality of a pure state |ψ〉 ofHA ⊗HB with dA �= dB .

Without loss of generality, we assume that dA < dB .
Let |ψAB〉 be an entangled state of HA ⊗ HB . Then it has the Schmidt decomposi-

tion |ψAB〉 = ∑r
k=1 ck|ψA

k 〉|ψB
k 〉(ck > 0, r > 1), where {|ψA

k 〉}rk=1 and {|ψB
k 〉}rk=1 are

orthonormal sets in HA and HB , respectively. Extending {|ψA
k 〉}rk=1 and {|ψB

k 〉}rk=1 as

orthonormal bases {|ψA
k 〉}dA

k=1 and {|ψB
k 〉}dB

k=1 forHA andHB , respectively. Defining

J

(
dA∑

k=1

xk|ψA
k 〉

)
=

dA∑

k=1

xk|ψB
k 〉, (3.14)

we obtain an isometric operator J : HA → HB . Since

|ψ̃BB〉 := (J ⊗ IB)|ψAB〉 =
r∑

k=1

ck|ψB
k 〉|ψB

k 〉

is an entangled state of BB, we see from Theorem 3.1 that |ψ̃BB〉 is Bell nonlocal. Now,
let us prove that |ψAB〉 is Bell nonlocal. Otherwise, it is Bell local. For every measurement
assemblages MB = {{Ma|x}o1a=1}m1

x=1 and NB = {{Nb|y}o2b=1}m2
y=1 NB of B, put M ′

a|x =
J †Ma|xJ , thenM′

A = {{M ′
a|x}o1a=1}m1

x=1 becomes the a measurement assemblage of A since
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J †J = IA. Thus, we get measurement assemblagesM′
A andNB of A and B. Since |ψAB〉

was Bell local, there exists a probability distribution {πλ}dλ=1 such that

tr[(M ′
a|x ⊗ Nb|y)|ψAB〉〈ψAB |] =

d∑

λ=1

πλPA(a|x, λ)PB(b|y, λ), ∀a, b, x, y, (3.15)

where {PA(a|x, λ)}o1a=1 and {PB(b|y, λ)}o2b=1 are probability distributions. Since

tr[(Ma|x ⊗ Nb|y)|ψ̃BB〉〈ψ̃BB |] = 〈ψAB |(J † ⊗ IB)Ma|x ⊗ Nb|y)(J ⊗ IB)|ψAB〉
= 〈ψAB |(J †Ma|xJ ⊗ Nb|y)|ψAB〉
= tr[(M ′

a|x ⊗ Nb|y)|ψAB〉〈ψAB |],
it follows from (3.15) that

tr[(Ma|x ⊗ Nb|y)|ψ̃BB〉〈ψ̃BB |] =
d∑

λ=1

πλPA(a|x, λ)PB(b|y, λ), ∀a, b, x, y.

This shows that |ψ̃BB〉 is Bell local, a contradiction. Consequently, |ψAB〉 is Bell nonlocal.
As a conclusion, we have the following corollary.

Corollary 3.1 A pure state of any bipartite system AB is separable if and only if it is Bell
local. Equivalently, a pure state of AB is Bell nonlocal if and only if it is entangled.

Combining Theorem 2.2 and Corollary 3.1 implies the following conclusion, which gives
a brief characterization of Bell locality for a pure state.

Corollary 3.2 A pure state |ψAB〉 of AB is Bell local if and only if for all projective
measurements M = {Ma}ma=1 of A and N = {Nb}nb=1 of B, it holds that

tr[(Ma ⊗ Nb)|ψAB〉〈ψAB |] = PA(a)PB(b), ∀a, b, (3.16)

where {PA(a)}ma=1 and {PB(b)}nb=1 are PDs.

As the end of this section, motivated by the deduction of Corollary 3.1, we discuss a
relationship between the separability (resp. Bell locality) of a mixed state ρAB of HA ⊗
HB(dA < dB) and that of the corresponding state

ρ̃BB = (J ⊗ IB)ρAB(J ⊗ IB)†

ofHB ⊗ HB where J is given by (3.14).
Let ρAB be separable. Then it can be written as ρAB = ∑d

k=1 ckρ
A
k ⊗ρB

k where ck ≥
0,

∑
k ck = 1, ρA

k and ρB
k are states ofHA andHB , respectively. Then

ρ̃BB =
d∑

k=1

ck(JρA
k J †)⊗ρB

k .

Since JρA
k J †(k ∈ [d]) are states ofHB , we see that ρ̃BB is separable and then Bell local.

Let ρAB be Bell local. Using the identity

tr[(Ma|x ⊗ Nb|y)ρ̃BB ] = tr[((J †Ma|xJ ) ⊗ Nb|y)ρAB ],
we see that ρ̃BB is Bell local.

This leads to the following conclusion.
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Proposition 3.1 When dA < dB , it holds that

(1) If ρAB is separable, then ρ̃BB is separable.
(2) If ρAB is Bell local, then ρ̃BB is Bell local.
(3) A pure state |ψAB〉 is separable (resp. entangled, Bell local, Bell nonlocal) if and only

if so is ψ̃BB .

This implies that to detect entanglement or Bell nonlocality of a state ρAB , it suffices to
detect that of ρ̃BB .

An interesting question is whether the separability (Bell locality) of ρ̃BB implies that of
ρAB .

4 Separability and Unsteerability

According to [17], a state ρ of system AB is said to be unsteerable from A to B if for any
measurement assemblage MA = {{Ma|x}oA

a=1 : x ∈ [mA]} of A, there exists a PD {πλ}dλ=1
and a set of states {σλ}dλ=1 ⊂ D(HB) such that

trA[(Ma|x ⊗ IB)ρ] =
d∑

λ=1

πλPA(a|x, λ)σλ, ∀x, a, (4.1)

where {PA(a|x, λ)}oA

a=1 is a PD for each (a, x). A state ρ of systemAB is said to be steerable
from A to B if it is not unsteerable from A to B.

With this definition, the following characterization was established in [17, Theorem 3.1].

Theorem 4.1 A state ρAB of the system AB is unsteerable from A to B if and only if for any
measurement assemblage MA = {{Ma|x}oA

a=1 : x ∈ [mA]} of A, there exists a PD {πλ}dλ=1
and a group of states {σλ}dλ=1 ⊂ DB such that, for every POVM {Nb}oB

b=1 of B, it holds that

tr[(Ma|x ⊗ Nb)ρ
AB ] =

d∑

λ=1

πλPA(a|x, λ)tr(Nbσλ), (4.2)

where {PA(a|x, λ)}oA

a=1(1 ≤ x ≤ mA, 1 ≤ λ ≤ d) are PDs.

We see from this theorem that every unsteerable state must be Bell local. It was also
proved in [17, Theorem 4.3] that every entangled pure state of Cn ⊗C

n is steerable from A

to B. The theorem below shows that the separability and the unsteerability are the same for
a pure state of any bipartite system. Thus, any entangled pure state of any bipartite state is
always steerable from A to B and from B to A.

Theorem 4.2 A pure state |ψ〉 of a system AB is separable if and only if it is unsteerable
from A to B and from B to A.

We see from Theorem 4.2 that an entangled state must be two-way steerable, i.e. it is
steerable from both A to B and B to A. This leads to the following.

Corollary 4.1 A pure state |ψ〉 of a system AB is entangled if and only if it is two-way
steerable.
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5 Separability and Classical Correlation

Recall that [36, 37] a state ρ ∈ D(HA ⊗ HB) is said to be classically correlated (CC) if
there exists a rank-1 projective measurement � = {�A

s ⊗�B
t : s ∈ [m], t ∈ [n]} such that

m∑

s=1

n∑

t=1

(�A
s ⊗�B

t )ρ(�A
s ⊗�B

t ) = ρ,

otherwise, ρ is said to be quantum correlated (QC). A pure state |ψ〉 is said to be CC (resp.
QC) if |ψ〉〈ψ | is CC (resp. QC).

It was proved [37, Theorem 1.1] that every CC state is separable, but not every separable
state is CC. The following theorem shows that separability and classical correlation are the
same for pure states.

Theorem 5.1 A pure state |ψ〉 of a system AB is separable if and only if it is classically
correlated.

Proof Since every CC state is separable [37, Theorem 1.1], the sufficiency is valid. To
prove the necessity, we let |ψ〉 be a separable state of a system AB. Then it can be written
as |ψ〉 = |ψA〉|ψB〉 for some pure states |ψA〉 and |ψB〉 of A and B, respectively. Thus,
ρ := |ψ〉〈ψ | = |ψA〉〈ψA| ⊗ |ψB〉〈ψB |. Extending |ψA〉 and |ψB〉 as orthonormal bases
{|ei〉}dA

i=1 and {|fj 〉}dB

j=1 for HA and HB , respectively, such that |e1〉 = |ψA〉 and |f1〉 =
|ψB〉, we obtain a rank-1 projective measurement � = {�A

s ⊗�B
t : s ∈ [m], t ∈ [n]} with

�A
s = |es〉〈es |, �B

t = |ft 〉〈ft |. Clearly,
m∑

s=1

n∑

t=1

(�A
s ⊗�B

t )ρ(�A
s ⊗�B

t ) = |e1〉〈e1| ⊗ |f1〉〈f1| = ρ.

Thus, ρ is CC.

Corollary 5.1 A pure state |ψ〉 of a system AB is entangled if and only if it is quantum
correlated.

6 Conclusions

We have obtained some measurement-based characterizations of separability of bipartite
states. Our results imply that the separability of a bipartite state can be detected by local
POVM measurements. Especially, for bipartite pure states, we have proved that the sepa-
rability, Bell locality, unsteerability and classical correlation are the same. Consequently,
every entangled pure bipartite state is always Bell nonlocal, two-way steerable and quantum
correlated.
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