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Abstract
In this paper, we discuss partial steerability and nonlocality of multipartite quantum states.
For a state ρ of an n-partite system A1A2 · · · An, we introduce the concepts of the steerabil-
ity of ρ from i to j and the (i, j)-Bell nonlocality of ρ. By establishing necessary conditions
for a state ρ to be unsteerable from i to j (resp. (i, j)-Bell local), we derive sufficient con-
ditions for a state ρ to be steerable from i to j (resp. (i, j)-Bell nonlocal). We prove that if
there are some 1 ≤ i < j ≤ n such that ρ is steerable from i to j (resp. (i, j)-Bell nonlocal),
then it is steerable from A to B (resp. (A,B)-Bell nonlocal) provided that A = A1A2 · · · Ak

and B = Ak+1Ak+2 · · · An with 1 ≤ i ≤ k and k < j ≤ n, leading to new methods for
detecting steerability and (A,B)-Bell nonlocal of multipartite states.

Keywords Quantum steering · Bell locality · Multipartite quantum state

1 Introduction

In 1935 the famous EPR paradox was introduced by Einstein, Podolsky and Rosen [1] and
developed to quantum steering by Schrödinger [2]. Quantum steering as a special quan-
tum entanglement is another type of quantum correlations. An experimental about quantum
steering was first performed by Ou et al. [3] and then by [4–6]. Various steering criteria give
yes/no answers to the question of steerability. To study steering, we must understand the
standard provided by Reid [7], which developed by Cavalcanti [8], Foster, Reid and Drum-
mond [9], and Walborn et al [10]. Cao and Guo [11] discussed EPR steering of bipartite
states, including mathematical definition and characterizations, the convexity as well as the
closedness of the set of all EPR unsteerable states. Li et al. in [12] obtained some charac-
terizations of EPR steerability of bipartite states by proving some necessary and sufficient
conditions for a state to be unsteerable with a measurement assemblage of Alice. Based
on one of the obtained characterizations, they derived an EPR steering inequality, which
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serves to check EPR steerability of the maximally entangled states. See [13] for more steer-
ing inequalities, [14, 15] for the steering of tripartite systems and some applications of the
steerable states [16–18].

Bell nonlocality [19–23] is usually detected by a violation of some Bell inequalities, such
as the CHSH inequality [24]. Dong and Cao obtained a Hardy Paradox-based method for
detecting Bell nonlocality [25]. Chen et al [26] showed that Bell nonlocality can be detected
through a violation of EPR steering inequality. Cao and Guo [11] discussed mathematical
definition and characterizations of Bell locality and proved the convexity as well as the
closedness of the sets of all Bell local states.

In this work, we discuss partial steerability and nonlocality of multipartite quantum
states. For a state ρ of an n-partite system A1A2 · · ·An, we introduce the concepts of the
steerability of ρ from i to j and the (i, j)-Bell nonlocality of ρ in Sections 2 and 3, respec-
tively. By establishing necessary conditions for a state ρ to be unsteerable from i to j and
(i, j)-Bell local, respectively, we derive sufficient conditions for a state ρ to be steerable
from i to j and (i, j)-Bell nonlocal, respectively. We also prove that if there are some
1 ≤ i < j ≤ n such that ρ is steerable from i to j (resp. (i, j)-Bell nonlocal), then it
is steerable from A to B (resp. (A,B)-Bell nonlocal) provided that A = A1A2 · · · Ak and
B = Ak+1Ak+2 · · · An with 1 ≤ i ≤ k and k < j ≤ n. This suggests new methods for
detecting steerability and (A,B)-Bell nonlocal of multipartite states.

2 Steering from i to j

Consider an n-partite system A1A2 · · · An described by Hilbert space H1 ⊗H2 ⊗· · ·⊗Hn.
We use Ik to denote the identity operator on Hk and trj to denote the partial-trace operation
trAj

, and use ‖T ‖ and ‖T ‖1 to denote the operator-norm and the trace-norm of an operator
T . For a nonempty proper subset E of [n] = {1, 2, . . . , n}, we use trE to denote the partial-
trace operation on subsystem Πi∈EAi . Thus, Ê := [n] \ E, tr

Ê
denotes the partial-trace

operation on subsystem Π
i∈Ê

Ai = Πi∈[n]\EAi . Specially, when E = {i}, we write trE and
tr

Ê
as tri and tr

î
, respectively.

Let

Mk =
{
Mxk =

{
M

(k)
ak |xk

}ok

ak=1
: xk = 1, 2, . . . , mk

}
(2.1)

be a POVM measurement assemblages (a set of POVMs) of system Ak described by a
Hilbert space Hk of dimension dk for all k = 1, 2, . . . , n. For a state ρ ≡ ρA1A2···An

of an n-partite system A1A2 · · ·An and two subsystems Ai and Aj (i < j), we denote

Nai |xi
= ⊗n

k=1Tik where Tii = M
(i)
ai |xi

and Tik = Ik(k �= i).

Definition 2.1 For a state ρ ≡ ρA1A2···An of an n-partite system A1A2 · · ·An and two
subsystems Ai and Aj (i < j), we say that ρ is unsteerable from i to j (or i can not steer

j ) with Mi if there exists a PD {πλ}dλ=1 and a set of states {σ (j)
λ }dλ=1 of Aj such that

tr
ĵ
[Nai |xi

ρ] =
d∑

λ=1

πλPi(ai |xi, λ)σ
(j)
λ , ∀xi ∈ [mi], ai ∈ [oi], (2.2)

where {Pi(ai |xi, λ)}oi

ai=1 is a PD for each (λ, xi). Equation (2.2) is said to be an LHS model
of ρ with respect to Mi .
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A state ρ is said to unsteerable from i to j if it is unsteerable from i to i with any Mi ;
A state ρ is said to be steerable from i to j with Mi if it is not unsteerable from i to j

with Mi . It is said to be steerable from i to j if it is steerable from i to j with some Mi .
Moreover, a pure state |ψ〉 of A1A2 · · · An is said to be unsteerable (resp. steerable) from
i to j with Mi if |ψ〉〈ψ | is. Furthermore, we also call the unsteerability and steerability
defined here the partial unsteerability and steerability.

Clearly,

tr
ĵ
[Nai |xi

ρ] = tri
[(

M
(i)
ai |xi

⊗ Ij

)
trî,j ρ

]
= tri

[(
M

(i)
ai |xi

⊗ Ij

)
ρij

]
, (2.3)

where ρij = trî,j ρ, the reduced state of ρ on the subsystem AiAj . Thus, ρ is unsteerable
(resp. steerable) from i to j with Mi if and only if ρij is unsteerable (resp. steerable) from
Ai to Aj with Mi in the sense of [11, Definition 3.1].

We use US(i → j,Mi ) to denote the set of all states ρ ≡ ρA1A2···An of an n-partite sys-
tem A1A2 · · ·An that are unsteerable from i to j with Mi . Then we see from [11, Corollary
3.1] that US(i → j,Mi ) is a compact convex subset of the set D(A1A2 · · · An) of all states
of A1A2 · · · An. Therefore, the set S(i → j,Mi ) of all states of A1A2 · · ·An that are steer-
able from i to j with Mi becomes an open set. Also, we use US(i → j) and S(i → j) to
denote the set of all unsteerable and steerable states from i to j of A1A2 · · · An. Thus, we
see from Definition 2.1 that

US(i → j) =
⋂
Mi

US(i → j,Mi ), S(i → j) =
⋃
Mi

S(i → j,Mi ). (2.4)

This implies that US(i → j) is a compact subset of the set D(A1A2 · · ·An) and that
S(i → j) is an open subset of D(A1A2 · · ·An).

Let us discuss a relationship between the unsteerability (steerability) defined by Defini-
tion 2.1 and the unsteerability (steerability) introduced in [11] of an n-partite quantum sys-
tem A1A2 · · ·An as a bipartite system AB where A = A1A2 · · ·Ak , B = Ak+1Ak+2 · · ·An

and 1 ≤ i ≤ k and k < j ≤ n. Suppose that a state ρ of A1A2 · · ·An is unsteerable from
A to B in the sense of [11, Definition 3.1]. Then for any indices 1 ≤ i ≤ k and k < j ≤ n,
and any POVM measurement assemblage

Ni =
{
M(i) =

{
M

(i)
ai |xi

}oi

ai=1
: xi ∈ [mi]

}

of Ai , we denote Ma|x = ⊗k
n=1Tin with Tii = M

(i)
a|x and Tin = In(n �= i) for each a ∈ [oi]

and x ∈ [mi]. Then we get a measurement assemblage MA = {{Ma|x}oi

a=1 : x ∈ [mi]} of
system A. From [11, Definition 3.1], there exists a PD {πλ}dλ=1 and a set {σλ}dλ=1 of states
of B such that for all x ∈ [mi], a ∈ [oi], it holds that

trA[(Ma|x ⊗ IB)ρ] =
d∑

λ=1

πλPA(a|x, λ)σλ,

where {PA(a|x, λ)}oi

a=1is a PD for each (λ, x). Hence, for all xi ∈ [mi], ai ∈ [oi], it holds
that

tri
[(

M
(i)
ai |xi

⊗ Ij

)
ρij

]
= tr

ĵ

(
trA[(Ma|x ⊗ IB)ρ]) =

d∑
λ=1

πλPA(ai |xi, λ)σ
(j)
λ ,

where ĵ = {k+1, k+2, . . . , n}\{j} and σ
(j)
λ = tr

ĵ
(σλ). It follows from (2.3) and Definition

2.1 that ρ is unsteerable from i to j .
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Consequently, if there are some 1 ≤ i < j ≤ n such that ρ is steerable from i to j , then
it is steerable from from A to B provided that A = A1A2 · · · Ak and B = Ak+1Ak+2 · · ·An

with 1 ≤ i ≤ k and k < j ≤ n. This leads a method for detecting steerability of multipartite
states.

Next, we derive a necessary condition for a state ρ ≡ ρA1A2···An ro be unsteerable from
i to j . To this, we let ρ ∈ US(i → j). Then the reduced state ρij = trî,j ρ is unsteerable
from i to j in the sense of [11, Definition 3.1].

Next, we aim to deduce necessary conditions for unsteerability from i to j . To do so, we
let Xt, Yt be observables of At(t = i, j) and F±

t = Xt ± ıYt (t = i, j). Since Xt and Yt

have the spectral decompositions:

Xt =
dt∑

k=1

x
(t)
k P

(t)
k , Yt =

dt∑
k=1

y
(t)
k Q

(t)
k , t = i, j, (2.5)

we get a decomposition of F
st
t where st = ± ≡ ±1:

F
st
t =

dt∑
k=1

(
x

(t)
k P

(t)
k + ıst y

(t)
k Q

(t)
k

)
(t = i, j). (2.6)

Consider the projective POVM measurement assemblages induced by (2.5): Mi = {Pi,Qi}
where Pi =

{
P

(i)
k

}di

k=1
and Qi =

{
Q

(i)
k

}di

k=1
. Since ρ is unsteerable from i to j , we see by

Definition 2.1 that there exists a PD {πλ}dλ=1 and a set of states
{
σ

(j)
λ

}d

λ=1
⊂ DAj

such that

tri
[(

P
(i)
k ⊗ Ij

)
ρij

]
=

d∑
λ=1

πλPi(k|Pi, λ)σ
(j)
λ , ∀k = 1, 2, . . . , di , (2.7)

tri
[(

Q
(i)
k ⊗ Ij

)
ρij

]
=

d∑
λ=1

πλPi(k|Qi, λ)σ
(j)
λ , ∀k = 1, 2, . . . , di , (2.8)

where {Pi(k|Pi, λ)}di

k=1 and {Pi(k|Qi, λ)}di

k=1 are PDs. Hence,

tr
[(

P
(i)
k ⊗ P

(j)

�

)
ρij

]
=

d∑
λ=1

πλPi(k|Pi, λ)tr
(
P

(j)

� σ
(j)
λ

)
, ∀k ∈ [di], � ∈ [dj ], (2.9)

tr
[(

Q
(i)
k ⊗ P

(j)

�

))
ρij

]
=

d∑
λ=1

πλPi(k|Qi, λ)tr
(
P

(j)

� σ
(j)
λ

)
, ∀k ∈ [di], � ∈ [dj ], (2.10)
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and so on. With these identities, we compute that

〈Xi ⊗ Xj 〉ρij
=
∑
k,�

x
(i)
k x

(j)

� 〈P (i)
k ⊗ P

(j)

� 〉ρij

=
∑
k,�

x
(i)
k x

(j)
�

d∑
λ=1

πλPi(k|Pi, λ)tr
(
P

(j)
� σ

(j)
λ

)

=
d∑

λ=1

πλ

∑
k

x
(i)
k Pi(k|Pi, λ)

∑
�

x
(j)
� tr

(
P

(j)
� σ

(j)
λ

)

=
d∑

λ=1

πλ〈Xi〉λ · 〈Xj 〉λ,

where

〈Xi〉λ =
di∑

k=1

x
(i)
k Pi(k|Pi, λ), 〈Xj 〉λ =

dj∑
�=1

x
(j)
� tr

(
P

(j)
� σ

(j)
λ

)
.

Similarly,

〈Xi⊗Yj 〉ρij
=

d∑
λ=1

πλ〈Xi〉λ·〈Yj 〉λ, 〈Yi⊗Xj 〉ρij
=

d∑
λ=1

πλ〈Yi〉λ·〈Xj 〉λ, 〈Yi⊗Yj 〉ρij
=

d∑
λ=1

πλ〈Yi〉λ·〈Yj 〉λ.

Consequently,

〈F si
i ⊗ F

sj
j 〉ρij

= 〈Xi ⊗ Xj 〉ρij
+ ısj 〈Xi ⊗ Yj 〉ρij

+ ısi〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

=
d∑

λ=1

πλ

[〈Xi〉λ · 〈Xj 〉λ + ısj 〈Xi〉λ · 〈Yj 〉λ + ısi〈Yi〉λ · 〈Xj 〉λ − sisj 〈Yi〉λ · 〈Yj 〉λ
]

=
d∑

λ=1

πλ〈F si
i 〉λ · 〈F sj

j 〉λ,

where
〈F sk

k 〉λ = 〈Xk〉λ + ısk〈Yk〉λ(k = i, j).

Convexity of f (t) = t2 implies that

|〈F si
i ⊗ F

sj
j 〉ρij

|2 ≤
d∑

λ=1

πλ|〈F si
i 〉λ|2|〈F sj

j 〉λ|2. (2.11)

By using convexity of f (t) = t2 again, we have

|〈F si
i 〉λ|2 = |〈Xi〉λ + ısi〈Yi〉λ|2 = |〈Xi〉λ|2 + |〈Yi〉λ|2 ≤ 〈X2

i 〉λ + 〈Y 2
i 〉λ = 〈X2

i + Y 2
i 〉λ,
(2.12)

where

〈X2
i 〉λ =

di∑
k=1

|x(i)
k |2Pi(k|Pi, λ), 〈Y 2

i 〉λ =
di∑

k=1

|y(i)
k |2Pi(k|Pi, λ).

By introducing

Δ2
λT = 〈T 2〉λ − (〈T 〉λ)2 = tr(T 2σλ) − (tr(T σλ))

2(T = Xj , Yj ) (2.13)
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and letting that

Cj = min
λ∈[d]

(
Δ2

λXj + Δ2
λYj

)
, (2.14)

we have

|〈F sj
j 〉λ|2 = |〈Xj 〉λ|2+|〈Yj 〉λ|2 = 〈X2

j 〉λ+〈Y 2
j 〉λ−

(
Δ2

λXj + Δ2
λYj

)
≤ 〈X2

j 〉λ+〈Y 2
j 〉λ−Cj .

(2.15)
Combining (2.11), (2.12) and (2.15), we obtain that

|〈F si
i ⊗ F

sj
j 〉ρij

|2 ≤
d∑

λ=1

πλ〈X2
i + Y 2

i 〉λ〈X2
j + Y 2

j − Cj 〉λ. (2.16)

By (2.9) and (2.10), we get

〈(X2
i + Y 2

i ) ⊗ (X2
j + Y 2

j − Cj )〉ρij
=

d∑
λ=1

πλ〈X2
i + Y 2

i 〉λ〈X2
j + Y 2

j − Cj 〉λ,

and so
|〈F si

i ⊗ F
sj
j 〉ρij

|2 ≤ 〈(X2
i + Y 2

i ) ⊗ (X2
j + Y 2

j − Cj )〉ρij
. (2.17)

With the discussion above, we arrive at the following.

Theorem 2.1 Let ρ ∈ US(i → j) and let Xt, Yt be observables of At(t = i, j) and
F±

t = Xt ± ıYt (t = i, j). Then the inequality (2.17) holds for all si , sj = ±. Equivalently,
for all si , sj = ±1, it holds that

|〈Xi⊗Xj 〉ρij
+ısj 〈Xi⊗Yj 〉ρij

+ısi〈Yi⊗Xj 〉ρij
−si sj 〈Yi⊗Yj 〉ρij

| ≤
√

〈(X2
i + Y 2

i ) ⊗ (X2
j + Y 2

j − Cj )〉ρij
,

(2.18)

where Cj is defined by (2.14). In addition, if X2
t = Y 2

t = It (t = i, j), then for all
si , sj = ±1, it holds that

|〈Xi ⊗Xj 〉ρij
+ ısj 〈Xi ⊗Yj 〉ρij

+ ısi〈Yi ⊗Xj 〉ρij
−sisj 〈Yi ⊗Yj 〉ρij

| ≤ √
2(2 − Cj ). (2.19)

Recall [27, (5)] that

Δ2
λσ

x + Δ2
λσ

y + Δ2
λσ

z ≥ 2, 0 ≤ Δ2
λσ

t ≤ 1(t = x, y, x).

Thus,
Δ2

λσ
x + Δ2

λσ
y ≥ 1,Δ2

λσ
x + Δ2

λσ
z ≥ 1,Δ2

λσ
y + Δ2

λσ
z ≥ 1.

With these inequalities, we have the following.

Corollary 2.1 Let Hi = Hj = C
2, ρ ∈ US(i → j) and let Xi, Yi be hermitian unitary

operators on Hi , Xj + ıYj ∈ {σx ± ıσy, σ x ± ıσz, σ y ± ıσz}. Then
|〈Xi ⊗Xj 〉ρij

+ ısj 〈Xi ⊗Yj 〉ρij
+ ısi〈Yi ⊗Xj 〉ρij

− sisj 〈Yi ⊗Yj 〉ρij
| ≤ √

2, ∀si , sj = ±1.
(2.20)

Especially,

|〈Xi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| + |si〈Yi ⊗ Xj 〉ρij
+ sj 〈Xi ⊗ Yj 〉ρij

| ≤ 2, (2.21)

|〈Xi ⊗ Xj 〉ρij
+ sj 〈Xi ⊗ Yj 〉ρij

+ si〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| ≤ 2. (2.22)
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Clearly, the last inequality is just the famous Bell inequality.

Corollary 2.2 Let Hi = Hj = C
2. If there exist hermitian unitary operators Xi, Yi on Hi

and Xj + ıYj ∈ {σx ± ıσy, σ x ± ıσz, σ y ± ıσz}, and si , sj = ± such that

|〈Xi ⊗ Xj 〉ρij
+ ısj 〈Xi ⊗ Yj 〉ρij

+ ısi〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| >
√

2, (2.23)

then ρ ∈ S(i → j).

Corollary 2.3 For a state ρ of an n-qubit system, let the reduced state ρij (i < j) of ρ be

ρij = trî,j (ρ) =

⎡
⎢⎢⎣

a 0 0 0
0 xx∗ xy∗ 0
0 x∗y yy∗ 0
0 0 0 0

⎤
⎥⎥⎦ = a|00〉〈00| + (1 − a)|ϕ〉〈ϕ|, (2.24)

where a = 1 − |x|2 − |y|2 ≥ 0 and

|ϕ〉 = 1√
x∗x + y∗y

(0, y, x, 0)T = 1√
x∗x + y∗y

(x|01〉 + y|10〉).

If |xy∗| >
√

2
4 , then ρ is steerable from i to j .

Proof Let σ = (σ x, σ y, σ z) and let rk = (ak, bk, ck) be unit vectors in R
3. Then

X1 := r1 · σ = a1σ
x + b1σ

y + c1σ
z, Y1 := r2 · σ = a2σ

x + b2σ
y + c2σ

z

are Hermitian unitary operators on C
2. Put F

s1
1 = X1 + ıs1Y1 and F

s2
2 = σx + ıs2σ

y where
s1, s2 = ±1 ≡ ±, and define

δ(ρij ) = max
{|〈F s1

1 ⊗ F
s2
2 〉ρij

| : ‖r1‖2 = ‖r2‖2 = 1, s1, s2 = ±1 ≡ ±} .

We see from Corollary 2.2 that when δ(ρij ) >
√

2, ρ is steerable from i to j . When s1 = 1
and s2 = −1, we have

F+
1 = X1 + ıY1 =

[
c1 + ıc2 a1 + ıa2 − ıb1 + b2

a1 + ıa2 + ıb1 − b2 −c1 − ıc2

]
, F−

2 =
[

0 0
2 0

]
,

and so

F+
1 ⊗ F−

2 =

⎡
⎢⎢⎣

0 0 0 0
2c1 + 2ıc2 0 2(a1 + ıa2 − ıb1 + b2) 0

0 0 0 0
2(a1 + ıa2 + ıb1 − b2) 0 −2c1 − 2ıc2 0

⎤
⎥⎥⎦ .

Thus,
〈F+

1 ⊗ F−
2 〉ρij

= tr
[(

F+
1 ⊗ F−

2

)
ρ12

] = 2xy∗(a1 + ıa2 − ıb1 + b2).

Since a2
k + b2

k ≤ 1(k = 1, 2), we have

2|xy∗(a1+ıa2−ıb1+b2)| ≤ 2|xy∗|(|a1−ıb1|+|ıa2+b2|)| ≤ 4|xy∗| = 2|xy∗|f (1, 0, 0, 1),

where f (a1, b1, a2, b2) = |a1 + ıa2 − ıb1 +b2| ≤ 2. Hence, δ(ρij ) = 2|xy∗|f (1, 0, 0, 1) =
4|xy∗|. We conclude from Corollary 2.2 that ρ is steerable from i to j if |xy∗| >

√
2/4.

The proof is completed.

Example 2.1 Consider the four-qubit state ρ(I) = |ψ(I)〉〈ψ(I)| where

|ψ(I)〉 = C0001|0001〉 + C0010|0010〉 + C0100|0100〉 + C1000|1000〉, (2.25)
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with the condition that

|C0001|2 + |C0010|2 + |C0100|2 + |C1000|2 = 1.

Case 1 Qubit 1 steers qubit 2, that is, the steerability of ρ(I) from 1 to 2.

First, we have

ρ12 = tr34(ρ
(I)) =

⎡
⎢⎢⎣

Q0001 + Q0010 0 0 0
0 Q0100 C0100C

∗
1000 0

0 C∗
0100C1000 Q1000 0

0 0 0 0

⎤
⎥⎥⎦ , (2.26)

where Qijkl = C∗
ijklCijkl . Since ρ12 has the form (2.24), Corollary 2.3 implies that |ψ(I)〉

is steerable from 1 to 2 provided that |C0100C
∗
1000| >

√
2/4. For example, when C0001 =

C0010 = 0 and |C0100| = |C1000| = √
2/2, we have ρ12 = |β01〉〈β01| where |β01〉 =

1√
2
(eıθ1 |01〉 + eıθ2 |10〉) with θ1, θ2 ∈ R. Since |C0100C

∗
1000| = 1/2 >

√
2/4, ρ(I) from 1 to

2.

Case 2 Qubit 2 steers qubit 3, that is, the steerability of ρ(I) from 2 to 3.

First, we have

ρ23 = tr14(ρ
(I)) =

⎡
⎢⎢⎣

Q0001 + Q1000 0 0 0
0 Q0010 C0010C

∗
0100 0

0 C∗
0010C0100 Q0100 0

0 0 0 0

⎤
⎥⎥⎦ , (2.27)

where Qijkl = C∗
ijklCijkl . Since ρ23 has the form (2.24), Corollary 2.3 implies that |ψ(I)〉

is steerable from 2 to 3 provided that |C0100C
∗
0010| >

√
2/4.

Case 3 Qubit 3 steers qubit 4, that is, the steerability of ρ(I) from 3 to 4.

First, we have

ρ34 = tr12(ρ
(I)) =

⎡
⎢⎢⎣

Q0100 + Q1000 0 0 0
0 Q0001 C0001C

∗
0010 0

0 C∗
0001C0010 Q0010 0

0 0 0 0

⎤
⎥⎥⎦ , (2.28)

where Qijkl = C∗
ijklCijkl . Since ρ34 has the form (2.24), Corollary 2.3 implies that |ψ(I)〉

is steerable from 3 to 4 provided that |C0001C
∗
0010| >

√
2/4.

Case 4 Qubit 1 steers qubit 4, that is, the steerability of ρ(I) from 1 to 4.

First, we have

ρ14 = tr23(ρ
(I)) =

⎡
⎢⎢⎣

Q0010 + Q0100 0 0 0
0 Q0001 C0001C

∗
1000 0

0 C∗
0001C1000 Q1000 0

0 0 0 0

⎤
⎥⎥⎦ , (2.29)
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where Qijkl = C∗
ijklCijkl . Since ρ14 has the form (2.24), Corollary 2.3 implies that |ψ(I)〉

is steerable from 1 to 4 provided that |C∗
1000C0001| >

√
2/4.

Next, let us discuss a relationship between the steerability defined by Definition 2.1 and
the steerability of a bipartite system. To this, let us divide an n quantum system A1A2 · · ·An

as a bipartite system AB where A = A1A2 · · · Ak and B = Ak+1Ak+2 · · ·An. Suppose
that a state ρ of A1A2 · · ·An is unsteerable from A to B as a state of AB in the sense of
[11, Definition 3.1]. Then for any indices 1 ≤ i ≤ k and k < j ≤ n, ρ is unsteerable from
i to j . Indeed, for any POVM measurement assemblage

Mi =
{
Mxi =

{
M

(i)
ai |xi

}oi

ai=1
: xi = 1, 2, . . . , mi

}

of Ai , we denote Mai |xi
= ⊗k

t=1Tit where Tii = M
(i)
ai |xi

and Tit = Ik(t �= i). Then we get a
POVM measurement assemblage

MA =
{
{Mai |xi

}oi

ai=1 : xi = 1, 2, . . . , mi

}

of system A with Mai |xi
⊗ IB = Nai |xi

. Thus, there exists a PD {πλ}dλ=1 and s set {σλ}dλ of
system B such that

trA[(Mai |xi
⊗ IB)ρ] =

d∑
λ=1

πλPA(ai |xi, λ)σλ, ∀xi = 1, 2, . . . , mi, ai = 1, 2, . . . , oi ,

where {Pi(ai |xi, λ)}oi

ai=1 is a PD for each (λ, xi). Hence, for all xi = 1, 2, . . . , mi, ai =
1, 2, . . . , oi , it holds that

tr
ĵ
[Nai |xi

ρ] = tr
ĵ
trA[(Mai |xi

⊗ IB)ρ] =
d∑

λ=1

πλPA(ai |xi, λ)σ
(j)
λ ,

where σ
(j)
λ = tr

ĵ
σλ. It follows from Definition 2.1 that ρ is unsteerable from i to j .

Consequently, if there are some 1 ≤ i < j ≤ n such that ρ is steerable from i to j , then
it is steerable from A to B provided that 1 ≤ i ≤ k and k < j ≤ n, where A = A1A2 · · ·Ak

and B = Ak+1Ak+2 · · ·An. This leads a method for detecting steerability a bipartite system
AB.

3 (i, j)-Nonlocality

Let 1 ≤ i < j ≤ n. For measurement assemblages Mi and Mj given by (1), we denote

Nai |xi
= ⊗n

k=1Tik, Naj |xj
= ⊗n

k=1Sjk,

where

Tii = M
(i)
ai |xi

, Tjj = M
(j)
aj |xj

, Sik = Ik(k �= i), Sjk = Ik(k �= j).

Then

M(xi ,xj ) = {Nai |xi
Naj |xj

: (ai, aj ) ∈ [oi] × [oj ]}
forms a POVM of A1A2 · · ·An for each label (xi, xj ) in [mi] × [mj ].

Definition 3.1 Let ρ be a state of an n-partite system A1A2 · · ·An and let Ai and Aj (i < j)

be given two subsystems.
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(1) ρ is said to be (i, j)-Bell local with respect to (Mi ,Mj ) if there exists a PD {πλ}dλ=1
such that

tr[Nai |xi
Naj |xj

ρ] =
d∑

λ=1

πλPi(ai |xi, λ)Pj (aj |xj , λ) (3.30)

for all xi ∈ [mi], ai ∈ [oi], xi ∈ [mj ], aj ∈ [oj ], where {Pi(ai |xi, λ)}oi

ai=1 and

{Pj (aj |xj , λ)}oj

aj =1 are probability distributions (PDs). Equation (3.30) is said to be a

LHV model of ρ with respect to (Mi ,Mj ).
(2) ρ is said to be (i, j)-Bell local if it is (i, j)- Bell local w.r.t any (Mi ,Mj ).
(3) ρ is said to be (i, j)-Bell nonlocal w.r.t. (Mi ,Mj ) if it is not (i, j)-Bell local w.r.t.

(Mi ,Mj ).
(4) ρ is said to be (i, j)-Bell nonlocal if it is not (i, j)-Bell local w.r.t. some (Mi ,Mj ).
(5) A pure state |ψ〉 of A1A2 · · ·An is said to be (i, j)-Bell local (resp. (i, j)-Bell local)

if |ψ〉〈ψ | is (i, j)-Bell local (resp. (i, j)-Bell nonlocal).

Furthermore, we also call the Bell locality and Bell nonlocality defined here the partial
Bell locality and Bell nonlocality.

Clearly,

tr[Nai |xi
Naj |xj

ρ] = tr
[
trîj

(
Nai |xi

Naj |xj
ρ
)] = tr

[(
Mi

ai |xi
⊗ M

j
aj |xj

)
ρij

]
, (3.31)

where ρij = trî,j ρ, the reduced state of ρ on the subsystem AiAj . Thus, ρ is (i, j)-Bell
local if and only if ρij is Bell local in the sense of [11, Definition 2.1].

We use BL(i, j,Mi ) (resp. BNL(i, j,Mi )) to denote the set of all states ρ ≡
ρA1A2···An of an n-partite system A1A2 · · ·An that are (i, j)-Bell local (resp. (i, j)-Bell
nonlocal) w.r.t Mi . Then we see from [11, Corollary 3.1] that BL(i, j,Mi ) is a com-
pact convex subset of the set D(A1A2 · · ·An) of all states of A1A2 · · ·An. Therefore, the
set BNL(i, j,Mi ) becomes an open subset of D(A1A2 · · ·An). Also, we use BL(i, j)

and BNL(i, j) to denote the set of all (i, j)-Bell local and (i, j)-Bell nonlocal states of
A1A2 · · ·An, respectively. Thus, we see from Definition 3.1 that

BL(i, j) =
⋂
Mi

BL(i, j,Mi ), BNL(i, j) =
⋃
Mi

BNL(i, j,Mi ). (3.32)

This implies that BL(i, j) is a compact subset of the set D(A1A2 · · · An) and that
BNL(i, j) is an open subset of D(A1A2 · · ·An).

When ρ ∈ BL(i, j), the reduced state ρij = trî,j ρ is Bell local in the sense of [11,
Definition 2.1]. It follows from [11] that ρij is unsteerable from i to j and so ρ is unsteerable
from i to j . Thus,

US(i → j) ⊂ BL(i, j),BNL(i, j) ⊂ S(i → j). (3.33)

Example 3.1 Consider the tripartite pure state

|ψ〉 =
1∑

i,j=0

cij |ij〉|ij 〉|0〉

of ∈ C
4 ⊗ C

4 ⊗ C
2 with cij ≥ 0(i, j = 0, 1) and K = 2(c00c01 + c10c11) > 0 and obtain

ρ12 := tr3(|ψ〉〈ψ |) = |ϕ〉〈ϕ| where |ϕ〉 = ∑1
i,j=0cij |ij〉|ij 〉.
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Put

A(α) = (sin α)

(
σx 0
0 σx

)
+ (cos α)

(
σy 0
0 σy

)
,

B(β) = (sin β)

(
σx 0
0 σx

)
+ (cos β)

(
σy 0
0 σy

)
,

where α, β ∈ [−π, π]. Then A(α) and B(β) are ±1-valued observables of C4. we take
s1 = s2 = 1 and

X1 = A(α), Y1 = A(α′),X2 = B(β), Y2 = B(β ′),
then

〈X1 ⊗ X2〉ϕ = 〈A(α) ⊗ B(β)〉ϕ = cos α cos β + K sin α sin β,

〈X1 ⊗ Y2〉ϕ = 〈A(α) ⊗ B(β ′)〉ϕ = cos α cos β ′ + K sin α sin β ′,
〈Y1 ⊗ X2〉ϕ = 〈A(α′) ⊗ B(β)〉ϕ = cos α′ cos β + K sin α′ sin β,

〈Y1 ⊗ Y2〉ϕ = 〈A(α′) ⊗ B(β ′)〉ϕ = cos α′ cos β ′ + K sin α′ sin β ′.
Especially, letting α = 0, α′ = π/2, β = −β ′ = arctan(K) yields that

〈X1 ⊗ X2〉ϕ + 〈X1 ⊗ Y2〉ϕ + 〈Y1 ⊗ X2〉ϕ − 〈Y1 ⊗ Y2〉ϕ = 2(cos β + K sin β) = 2(1 + K2)1/2 > 2.

We conclude from [24, Theorem 3.2] that |ψ〉 is Bell nonlocal and then it is (1, 2)-Bell
nonlocal.

Let us discuss a relationship between the (i, j)-Bell locality defined by Definition 3.1
and the (A,B)-Bell locality [24] of an n-partite quantum system A1A2 · · · An as a bipartite
system AB where A = A1A2 · · · Ak , B = Ak+1Ak+2 · · · An and 1 ≤ i ≤ k and k < j ≤ n.
Suppose that a state ρ of A1A2 · · ·An is (A,B)-Bell local in the sense of [24], i.e., it is Bell
local as a bipartite state of AB in the sense of [11, Definition 2.1]. Then for any indices
1 ≤ i ≤ k and k < j ≤ n, and any POVM measurement assemblages

Nt =
{
M(t) =

{
M

(t)
at |xt

}ot

at=1
: xt ∈ [mt ]

}
(t = i, j)

of At(t = i, j), we denote Ma|x = ⊗k
n=1Tin with Tii = M

(i)
a|x and Tin = In(n �= i) for each

a ∈ [oi] and x ∈ [mi]; Nb|y = ⊗n
m=k+1Sjm with Sjj = M

(j)
b|y and Sjm = Im(m �= j) for

each b ∈ [oj ] and y ∈ [mj ]. Then we get measurement assemblages

MA = {{Ma|x}oi

a=1 : x ∈ [mi]},NB = {{Nb|y}oj

b=1 : y ∈ [mj ]}
of systems A and B, respectively. From [11, Definition 2.1], there exists a PD {πλ}dλ=1 such
that for all x ∈ [mi], y ∈ [mj ], a ∈ [oi], b ∈ [oj ], it holds that

tr[(Ma|x ⊗ Nb|y)ρ] =
d∑

λ=1

πλPA(a|x, λ)PB(b|y, λ)

where {PA(a|x, λ)}oi

a=1 and {PB(b|y, λ)}oj

b=1 are PDs for each (λ, x) and each (λ, y),
respectively. Hence, for all xi ∈ [mi], ai ∈ [oi], xj ∈ [mj ] and aj ∈ [oj ], it holds that

tr
[
M

(i)
ai |xi

⊗ M
(j)
aj |xj

ρij

]
= tr[(Mai |xi

⊗ Naj |xj
)ρ] =

d∑
λ=1

πλPA(ai |xi, λ)PB(aj |xj , λ).

It follows from (3.31) and Definition 3.1 that ρ is (i, j)-Bell local.
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Consequently, if there are some 1 ≤ i < j ≤ n such that ρ is (i, j)-Bell nonlocal, then it
is Bell nonlocal as a state of AB provided that A = A1A2 · · · Ak and B = Ak+1Ak+2 · · ·An

with 1 ≤ i ≤ k and k < j ≤ n. This leads a method for detecting Bell nonlocality of
multipartite states.

It is well-known that Bell inequality is a very useful tool for detecting Bell nonlocality.
Next, we deduce a complex Bell inequality for detecting (i, j)-Bell nonlocality. To do this,
we let ρ be any state of A1A2 · · ·An and Xt, Yt be hermitian operators on Ht (t = i, j).
Since |〈T 〉ρij

|2 ≤ 〈|T |2〉ρij
≤ ‖|T |2‖1, we have for all si , sj = ±1, it holds that

|〈F s1
1 ⊗ F

s2
2 〉ρij

| = |〈Xi ⊗ Xj 〉ρij
+ ısj 〈Xi ⊗ Yj 〉ρij

+ ısi〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

|
= |〈(Xi + ısiYi) ⊗ (Xj + ısjYj )〉ρij

|
≤ 〈|(Xi + ısiYi) ⊗ (Xj + ısjYj )|2〉

1
2
ρij

= 〈|(Xi + ısiYi)|2 ⊗ |(Xj + ısjYj )|2〉
1
2
ρij

.

This shows that

|〈F s1
1 ⊗ F

s2
2 〉ρij

| ≤ 〈|(Xi + ısiYi)|2 ⊗ |(Xj + ısjYj )|2〉
1
2
ρij

. (3.34)

Similarly,
√〈(

X2
i + Y 2

i

)⊗
(
X2

j + Y 2
j

)〉
ρij

≤ 〈|(Xi + ısiYi)|2 ⊗ |(Xj + ısjYj )|2〉
1
2
ρij

.

If in addition, X2
t = Y 2

t = It (t = i, j), then

〈|(Xi + ısiYi)|2 ⊗ |(Xj + ısjYj )|2〉
1
2
ρij

= 〈2Ii − ısi[Xi, Yi]) ⊗ (2Ij − ısj [Xj , Yj ])〉
1
2
ρij

= 〈
4Ii ⊗ Ij − 2ısi[Xi, Yi] ⊗ Ij − 2ısj Ii ⊗ [Xj , Yj ] + sisj [Xi, Yi] ⊗ [Xj , Yj ]

〉 1
2
ρij

.

Since

‖si[Xi, Yi]) ⊗ Ij‖ ≤ 2, ‖sj Ii ⊗ [Xj , Yj ]‖ ≤ 2, ‖[Xi, Yi] ⊗ [Xj , Yj ]‖ ≤ 4,

we have

‖4 − 2ısi[Xi, Yi] ⊗ Ij − 2ısj Ii ⊗ [Xj , Yj ] + sisj [Xi, Yi] ⊗ [Xj , Yj ]‖ ≤ 16

and therefore,

|〈F s1
1 ⊗ F

s2
2 〉ρij

| ≤ 4. (3.35)

Indeed, the last inequality can be obtained from the fact that

‖F s1
1 ⊗ F

s2
2 ‖ = ‖F s1

1 ‖ · ‖F s2
2 ‖ ≤ 4

when X2
t = Y 2

t = It (t = i, j). This shows that a quantum upper bound for |〈F s1
1 ⊗ F

s2
2 〉ρij

|
is 4.

Similar to the derivation of Theorem 2.1, we can obtain the following conclusion, which
is a necessary condition for a state ρ to be (i, j)-Bell local.
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Theorem 3.1 Let ρ ∈ BL(i, j) and let Xt, Yt be hermitian operators on Ht (t = i, j).
Then for all si , sj = ±1, it holds that

|〈Xi⊗Xj 〉ρij
+ısj 〈Xi⊗Yj 〉ρij

+ısi〈Yi⊗Xj 〉ρij
−sisj 〈Yi⊗Yj 〉ρij

| ≤
√〈(

X2
i + Y 2

i

)⊗
(
X2

j + Y 2
j

)〉
ρij

.

(3.36)

If in addition, X2
t = Y 2

t = It (t = i, j), then for all si , sj = ±1, it holds that

|〈Xi ⊗ Xj 〉ρij
+ ısj 〈Xi ⊗ Yj 〉ρij

+ ısi〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| ≤ 2, (3.37)

and

|〈Xi ⊗ Xj 〉ρij
+ sj 〈Xi ⊗ Yj 〉ρij

+ si〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| ≤ 2. (3.38)

Proof The proof of (3.36) is similar to the derivation of (2.18), and (3.37) is the special
case of (3.36). Inequality (3.38) is essentially given in ref. [24, Theorem 3.1]. The proof is
completed.

It is remarkable to note that the famous Tsirelson’s inequality [28, Problem 2.3, pp.118]
shows that in the case that Hi = Hj = C

2, the inequality

|〈Xi ⊗ Xj 〉ρij
+ sj 〈Xi ⊗ Yj 〉ρij

+ si〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| ≤ 2
√

2 (3.39)

holds for all two-qubit states ρij . Moreover, the validity of (3.37) is just a necessary con-
dition for a state ρ to be (i, j)-Bell local, but not a sufficient one. For example, when
ρij = |ψ〉〈ψ | where |ψ〉 = 1√

2
(|00〉 + |11〉), we take si = sj = 1 and

Xi = σx, Yi = −σz, Xj = 1√
2
(σ x − σz), Yj = 1√

2
(σ x + σz)

and compute that

〈Xi ⊗ Xj 〉 = 〈Xi ⊗ Yj 〉ρij
= 〈Yi ⊗ Xj 〉ρij

= −〈Yi ⊗ Yj 〉ρij
=

√
2

2
.

Thus,

|〈Xi ⊗ Xj 〉ρij
+ ısj 〈Xi ⊗ Yj 〉ρij

+ ısi〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| = 2,

and

|〈Xi ⊗ Xj 〉ρij
+ sj 〈Xi ⊗ Yj 〉ρij

+ si〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| = 2
√

2.

Thus, (3.37) holds while ρij is well-known to be Bell nonlocal.
As consequences of Theorem 3.1, we have the following two corollaries, which are

sufficient conditions for a state to be (i, j)-Bell nonlocal.

Corollary 3.1 If there exist hermitian operators onHt (t = i, j) and si , sj = ±1 such that

|〈Xi⊗Xj 〉ρij
+ısj 〈Xi⊗Yj 〉ρij

+ısi〈Yi⊗Xj 〉ρij
−sisj 〈Yi⊗Yj 〉ρij

| >

√
〈(X2

i + Y 2
i ) ⊗ (X2

j + Y 2
j )〉ρij

,

then ρ ∈ BNL(i, j).
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Corollary 3.2 If there exist hermitian unitary operators Xk, Yk on Hk(k = i, j) and
si , sj = ±1 such that

|〈Xi ⊗ Xj 〉ρij
+ ısj 〈Xi ⊗ Yj 〉ρij

+ ısi〈Yi ⊗ Xj 〉ρij
− sisj 〈Yi ⊗ Yj 〉ρij

| > 2,

then ρ ∈ BNL(i, j).

4 Conclusions

In this paper, we have discussed partial steerability and nonlocality of multipartite quan-
tum states, named steerability from i to j and (i, j)-Bell nonlocality, n-partite states. By
establishing necessary conditions for a state ρ to be unsteerable from i to j (resp. (i, j)-
Bell local), we derive sufficient conditions for a state ρ to be steerable from i to j (resp.
(i, j)-Bell nonlocal). We have proved that if there are some 1 ≤ i < j ≤ n such that ρ is
steerable from i to j , then it is steerable from from A to B provided that A = A1A2 · · ·Ak

and B = Ak+1Ak+2 · · · An with 1 ≤ i ≤ k and k < j ≤ n. This leads a method for detect-
ing steerability of multipartite states. Moreover, we have checked that if there are some
1 ≤ i < j ≤ n such that ρ is (i, j)-Bell nonlocal, then it is Bell nonlocal as a state of AB

provided that A = A1A2 · · · Ak and B = Ak+1Ak+2 · · ·An with 1 ≤ i ≤ k and k < j ≤ n.
This leads a method for detecting Bell nonlocality of multipartite states.
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