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Abstract
The random bond-dilution effects of bilinear interaction parameter Jij between the nearest-
neighbor (NN) sites are taken into consideration for the spin-1 Blume-Emery-Griffiths
(BEG) model on the Bethe lattice (BL) comprised of two interpenetrating equivalent sublat-
tices A and B for given coordination number z in terms of exact recursion relations (ERR).
A bimodal distribution for Jij is assumed which is either introduced with probability p or
closed with 1 − p. It is assumed that the biquadratic exchange interaction parameter (K)
is constant between the NN spins and the single-ion anisotropy parameter (D) is taken to
be equivalent on the sublattices A and B. After the study of thermal changes of the order-
parameters, the phase diagrams are calculated on possible planes spanned by our system
parameters. It is found that the model presents both first- and second-order phase transitions.
In addition to the well-known ferromagnetic (F), paramagnetic (P) and ferrimagnetic (FI)
phases, the staggered quadrupolar (SQ) phase is also observed. The bicritical point (BCP)
for all z and double BCP with z ≥ 4 are observed. The tetracritical point was also found for
lower values of p with z ≥ 5.

Keywords Spin-1 · Randomness · BEG model · Staggered quadrupole phase · Bimodal ·
Bethe lattice

1 Introduction

The BEG model Hamiltonian consists of bilinear and biquadratic exchange interaction
parameters in addition to the crystal field term. Since the spin-1 model is the lowest model
consisting of all these parameters, it was thoroughly investigated by using numerous tech-
niques. A closed-form expression for the critical surface of second-order transitions was
formulated as a three-state vertex model [1]. Dimensionality effects with repulsive K < 0
were examined by using the mean field (MF) and renormalization-group (RG) studies
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[2] and it was shown that the results obtained by MF theory were applicable to three-
dimensional systems [3]. The random-anisotropy model was considered by using the MF
theory, transfer-matrix calculations and position-space (RG) calculations [4]. It was ana-
lyzed by using Monte Carlo (MC) RG study on the cubic lattice with K < 0 [5]. It is proven
that BEG model can be transformed into either a spin-l/2 Ising model or a 3-state Potts
model [6]. It was studied within the framework of a finite cluster theory on a diamond lat-
tice [7]. The model with transverse D and, the longitudinal and transverse magnetic fields
was studied via the MFA [8]. The dynamic behavior was studied by using the path prob-
ability method of Kikuchi [9]. The linear chain approximation was used to examine it’s
phase diagrams [10]. A two-fold Cayley tree graph with q coordinated sites was solved
exactly using the ERR’s [11]. The two-particle cluster approximation was used to examine
the reentrant behavior [12]. The transverse field effects on bulk melting and layering subli-
mation transition was studied in the MFT [13]. The random quantum transverse field effects
were considered in the effective field theory (EFT) [14]. A classical spin model with NN
and NNN interactions was proposed for a large class of lattices [15]. The antiferromagnetic
(AFM) model with K < 0 was studied using the lowest approximation of the cluster varia-
tion (CV) method [16]. The AFM model was examined by using the ERR’s on the BL [17].
The exact solution was obtained by the Green’s function and equations of motion formalism
[18]. The critical exponents and phase diagrams were calculated with K and D interactions
under constant J [19]. The model on finite-size Cayley tree were investigated using the
ERR’s [20]. The random transverse D effects were examined by the EFT [21]. The phase
transitions under the random K were investigated on the BL and its phase diagrams were
calculated [22, 23]. The thermodynamics of the AFM model were investigated with a lon-
gitudinal magnetic field [24]. The exact Helmholtz free energy of one-dimensional model
was derived [25]. The model was considered on the BL with J and K exchange interactions
[26]. Lastly, the spin-crossover and Prussian blue analogs materials were investigated in 2D
with a three-state within the BEG model [27].

The spin-1 BEG model with special attention given to the SQ phase has also attracted a
lot of attention. The MC simulation was used to calculate the phase diagrams of a 2-d case
[28]. An upper bound was obtained for the critical temperature associated with second-order
phase transitions of the 2-d model [29]. A plaquette of four-spin interaction was investigated
by means of the CV method in the square approximation [30]. The 3-d semi-infinite model
withK < 0 were investigated within the framework of theMF approximation in comparison
to the real-space RG technique [31]. The thermodynamic response functions were studied
in thin films [32]. A finite cluster theory based on the EFT was applied to the model [33].
The range of parameters in a close neighborhood of the AFM three-state Potts model was
considered [34]. It was studied in the two-particle cluster approximation on hypercubic
lattices [35]. The CV method in pair approximation (PA) was used in the site-diluted model
[36]. The MC results were presented at the ferromagnetic-antiquadrupolar-disordered phase
interface [37]. The PA in the CV method was examined to study the thermal variations of
the order parameters with K < 0 [38]. The model was studied by using the MFT and some
new phases were obtained [39]. The model was simulated on a cellular automaton (CA) for
a simple cubic lattice [40, 41]. The SQ phase and bicritical point of the bond and anisotropy
diluted model was studied in the EFT [42]. It was simulated using the cooling algorithm
which was improved from the Creutz cellular automaton (CCA) under periodic boundary
conditions [43, 44]. The 4-d model was simulated using the CA cooling algorithm improved
from the 3-d BEG model algorithm on the hypercubic lattices [45]. It was investigated by
using the MFT and MC simulation [46]. The ferromagnetic version of model in the region
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of K < 0 was considered on a Cayley tree of coordination z [47]. And the MC simulation
technique was used to study the critical behavior of a three-state spin model on [48].

The bond dilution of the BEG model, i.e. J is either turned on or off with some prob-
ability, was only considered in a few works: The bond and crystal field diluted model in
the presence of magnetic field were considered on a simple cubic lattice by using the EFT
[49]. The effect of bond-dilution on a quantum transverse model was investigated within
an expansion technique for cluster identities of a spin-1 localized spin system [50]. The
model with uniform K was studied by the MC simulation using the non-equilibrium relax-
ation method [51]. The spin-1 bond and crystal field diluted model was investigated within
the framework of the EFT [52]. Note also that the Blume-Capel model was also studied on
the BL for the ±J distribution with a competing adjustable parameter α which alters the
strength of bilinear exchange interaction parameter for the FM phase (J > 0) with respect
to AFM phase (J < 0) with probabilities p and 1 − p [53].

This work considers the random bond-dilution effects of Jij , which is either turned on
with probability p or turned off with 1−p, between the NN spins for the spin-1 BEG model
on the BL consisting of two interpenetrating equivalent sublattices A and B for given coor-
dination number z. After obtaining the necessary equations in terms of the ERR’s, we first
present the thermal variations of the order-parameters showing all types of phase transitions
and phase regions of the model. Then we exhibit the phase diagrams on the (D/J, T /J )

and (K/J, T /J ) planes for given values of K/J and D/J , respectively, for z = 3, 4, 5 and
6. We especially focus on the behavior of the staggered quadrupolar (SQ) phase and the
bicritical points.

The rest of this work is arranged as follows: The formulation on the BL in terms of the
ERR’s is given in Section 1, the thermal variations of the order-parameters are discussed
in Section 2, Section 3 is devoted to the phase diagrams and the final section contains our
findings and conclusions.

2 Spin-1 Model in Terms of ERR’s on the BL

The well-known spin-1 BEG model Hamiltonian in terms of the random bilinear exchange
interaction parameter Jij and constant biquadratic exchange interaction parameter K

between the NN spins and the constant crystal field parameter which is active at each spin
site is given in the form:

H = −
∑
〈ij〉

Jij S
A
i SB

j − K
∑
〈ij〉

(SA
i )2(SB

j )2 − D
∑

i

(SA
i )2 − D

∑
j

(SB
j )2 (1)

where SA
i = ±1, 0 and SB

j = ±1, 0 are the values of spins located at ith and j th lattice
points, respectively. The construction of the BL with sublattice A and B is depicted in Fig. 1
with z = 3.

Jij is the random bilinear exchange interaction parameter which is assumed to be
distributed according to the binary probability distribution function P(Jij )

P (Jij ) = pδ(Jij − J ) + (1 − p)δ(Jij ), (2)

where p indicates the probability or the bond concentration with 0 ≤ p ≤ 1, i.e it was
turned on ferromagnetically with p or turned off with 1 − p.
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Fig. 1 The BL of coordination number z = 3. The superscripts over spins S, denote the sublattice A or B,
while the subscripts denote the shell number of the BL

The partition function of the model is given as

Z =
∑

e−βH =
∑
Spc

P (Spc) (3)

where Spc refers to the spin configurations. The probability functions P for each sublattice
are given as

P(SA
0 ) = exp

[
βD(SA

0 )2
] [

gn(S
A
0 )

]z

(4)

P(SB
1 ) = exp

[
βD(SB

1 )2
] [

gn−1(S
B
1 )

]z

(5)

where the subscripts 0 and 1 refer to the zeroth and first shells and n counts the number of
the shells of the BL. The gn functions are the partial partition functions of a branch of the
BL which are written in terms of summation over the spin set {SB

1 } for gn(S
A
0 ) as

gn(S
A
0 ) =

∑
{SB

1 }
exp

[
β(Jij S

A
0 SB

1 + K(SA
0 )2(SB

1 )2) + D(SB
1 )2

]
[gn−1(S

B
1 )]z−1 (6)
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and similarly over the spin set {SA
1 } for gn−1(S

B
1 ) as

gn−1(S
B
1 ) =

∑
{SA

2 }
exp

[
β(Jij S

A
2 SB

1 + K(SA
2 )2(SB

1 )2) + D(SA
2 )2

]
[gn−2(S

A
2 )]z−1 (7)

The ratios of these gn functions for each sublattice are assumed to be similar with the equa-
tions of state in the ERR approach [17, 23, 53]. Thus, the ERR’s belonging to each sublattice
A and B are given respectively as

Xn = gn(+1)

gn(0)
, Yn = gn(−1)

gn(0)
(8)

and

An−1 = gn−1(+1)

gn−1(0)
, Bn−1 = gn−1(−1)

gn−1(0)
(9)

The explicit expressions of these ERR’s have the following forms:

X
(ij)
n = eβ(Jij +K+D)[A(ij)

n−1]z−1 + eβ(−Jij +K+D)[B(ij)

n−1]z−1 + 1

eβD[A(ij)

n−1]z−1 + eβD[B(ij)

n−1]z−1 + 1
, (10)

Y
(ij)
n = eβ(−Jij +K+D)[A(ij)

n−1]z−1 + eβ(Jij +K+D)[B(ij)

n−1]z−1 + 1

eβD[A(ij)

n−1]z−1 + eβD[B(ij)

n−1]z−1 + 1
, (11)

and

A
(ij)

n−1 = eβ(Jij +K+D)[X(ij)

n−2]z−1 + eβ(−Jij +K+D)[Y (ij)

n−2]z−1 + 1

eβD[X(ij)

n−2]z−1 + eβD[Y (ij)

n−2]z−1 + 1
, (12)

B
(ij)

n−1 = eβ(−Jij +K+D)[X(ij)

n−2]z−1 + eβ(Jij +K+D)[Y (ij)

n−2]z−1 + 1

eβD[X(ij)

n−2]z−1 + eβD[Y (ij)

n−2]z−1 + 1
. (13)

The final expressions, i.e. after the implementation of bond dilution function P(Jij ), are
obtained simply by integrations as

Xn =
∫

X
(ij)
n P (Jij )dJij =

∫
X

(ij)
n [pδ(Jij − J ) + (1 − p)δ(Jij )]dJij ,

Yn =
∫

Y
(ij)
n P (Jij )dJij =

∫
Y

(ij)
n [pδ(Jij − J ) + (1 − p)δ(Jij )]dJij (14)

An−1 =
∫

A
(ij)

n−1P(Jij )dJij =
∫

A
(ij)

n−1[pδ(Jij − J ) + (1 − p)δ(Jij )]dJij

Bn−1 =
∫

B
(ij)

n−1P(Jij )dJij =
∫

B
(ij)

n−1[pδ(Jij − J ) + (1 − p)δ(Jij )]dJij

After obtaining the bond-diluted ERR’s, the order-parameters, i.e. magnetization and
quadrupolar moments, are given for the sublattice A as

mA = 〈SA
0 〉 = eβD[Xz

n − Y z
n ]

eβD[Xz
n + Y z

n ] + 1
, (15)

qA = 〈(SA
0 )2〉 = eβD[Xz

n + Y z
n ]

eβD[Xz
n + Y z

n ] + 1
, (16)
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and similarly for the sublattice B as

mB = 〈SB
1 〉 = eβD[Az

n−1 − Bz
n−1]

eβD[Az
n−1 + Bz

n−1] + 1
, (17)

qB = 〈(SB
1 )2〉 = eβD[Az

n−1 + Bz
n−1]

eβD[Az
n−1 + Bz

n−1] + 1
. (18)

The phase diagrams of the model are calculated thorough the thermal variations of the order-
parameters. The phase transitions lines, i.e. second- or first-order, separate the different
phase regions of the model which are identified accordingly

– The ferromagnetic phase F: mA = mB �= 0, qA = qB = q �= 0
– The paramagnetic phase P: mA = mB = 0, qA = qB = q �= 0
– The ferrimagnetic phase FI: mA �= mB �= 0, qA �= qB

– The staggered quadrupolar phase SQ: mA = mB = 0, qA �= qB

It should be noted that instead of these order-parameters, the total magnetization m, the
staggered magnetizationms and the “staggered quadrupolar moment”qs are commonly used
in obtaining the phase diagrams which are given respectively as

m = 1

2
(mA + mB), ms = 1

2
(mA − mB) and qs = 1

2
(qA − qB). (19)

In order to classify the type of the phase transitions, one may need to consult to the free
energy which is obtained simply by F = −kT lnZ and given as

− βF = 1

2 − z
ln

[
eβD(Az−1

n−1 + Bz−1
n−1) + 1

]
+ z − 1

2 − z
ln

[
eβD(Xz−1

n + Y z−1
n ) + 1

]

+ ln
[
eβD(Xz

n + Y z
n ) + 1

]
(20)

Numerical analysis of these formulations are required to calculate the phase diagrams of the
model from thermal analysis which is carried out in the next section.

3 The Thermal Variations of the Order-Parameters

The obtaining of the phase diagrams requires the study of order-parameters thermally. Thus,
we present the thermal variations of magnetizations mA and mB and, quadrupolar moments,
qA and qB , belonging to the sublattices A and B together with m, ms and qs in this section.
This will inform readers how to determine the type of phase transitions, i.e. second- or first-
order, and different phase regions. In studying this section, the phase identification rules
given on page 6 should be reminded.

The Fig. 2a-c, obtained for z = 3,K/J = −1.2: (a) D/J = 1.5 and p = 0.1 (see
Fig. 2a), (b) D/J = 1.5 and p = 1.0 (see Fig. 2b), and D/J = 0.5 and p = 1.0 (see
Fig. 2c), show that the model gives only the second-order phase transitions following the F-
SQ-P, F-P and SQ-P phases, respectively. Figure 2a shows that mA = mB = m = 1.0 and
qA = qB = 1.0 with qs = 0.0 indicating the F phase which terminate at the first Tc, where
mA = mB go to zero and qA = qB make a little peak. Afterwards, magnetizations always
remain at zero. The quadrupolar moments are separated at the kink where qB first decreases
(qA increases) then increases (qA decreases) combining at the second Tc. qs present a closed
half loop between these two Tc’s indicating the SQ phase. Finally, qA = qB leading to
qs = 0, magnetizations are already zero, indicating the P phase. Figure 2b is the well-known
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Fig. 2 The temperature dependence of the order parameters illustrated for z = 3,K/J = −1.2,D/J = 1.5:
a p = 0.1, b p = 1.0 and, c z = 3,K/J = −1.2, D/J = 0.5 and p = 1.0. They approve the correctness of
the phase diagram of Fig. 5a

IInternational Journal of Theoretical Physics (2020) 59:3915–3935 3921



behavior of m’s and q’s. They all start from their GS values, i.e. 1.0, then as temperature
increases the magnetizations go to zero and quadrupolar moments present peak at the Tc

separating the F and P phases. Afterwards mA = mB = 0.0 and qs = 0.0. Figure 2c shows
that mA = mB = 0.0 and, qA = 1.0 and qB = 0.0, i.e. qs �= 0.0. As the temperature
increases, qB increases but qA decreases to eventually combine at the Tc and they always
stay to be equal afterwards giving qs = 0.0 indicating SQ-P phase transition.

The Fig. 3a–b, obtained for z = 4,K/J = −1.0 and p = 0.3, show that the model
gives F-SQ-P and F-P phase transitions with increasing temperature, respectively. Figure 3a
is obtained for D/J = 1.0 and is similar to the Fig. 2a with the exception of observing a
Tt instead of the first Tc of Fig. 2a. As seen, the magnetizations jump to zero discontinu-
ously where qA and qB jump to different nonzero values and then again combine at the Tc.
Again the F-SQ-P phases are observed in order. The next one is obtained when D/J = 2.0
presenting the second-order F-P phase transition as in Fig. 2b. The Fig. 3c calculated for
z = 6,K/J = −1.0,D/J = −0.1 and p = 1.0, show that the model gives P-F-P phase
transitions with increasing temperature. All the order-parameters start from zero, mA = mB

remains zero and qA = qB increases with increasing temperature. At the first Tc, mA = mB

gains some value and qA = qB present a kink. With the increase of temperature, they all
increase to give peaks at some maxima. Then, mA = mB go to zero and qA = qB presents
second kink at the second Tc.

Figure 4 shows the details of obtaining Fig. 5d, i.e. z = 6 and K/J = −1.2. Figure 4a
is calculated for D/J = 1.2 and p = 1.0. Here, one clearly see the existence of FI phase.
As seen, ms �= 0.0 at low temperatures, i.e. mA �= mB �= 0.0 and qA �= qB , indicating the
FI phase. The sublattice order-parameters combine at the temperature where ms becomes
zero. Then mA = mB and qA = qB follows different paths in the F region. Again the
magnetizations go to zero continuously at the Tc and quadrupolar moments present little
kinks with the start of the P phase. Figure 4b is obtained for D/J = 4.0 and p = 0.1. It
is clear that mA = mB = qA = qB starting from zero temperature in the F phase, then
they are separated indicating the existence of ms which correspond to the FI phase region.
The magnetizations become zero with qA �= qB indicating the SQ phase. It is clear that mA

and mB jump to zero indicating the first order phase transition temperature Tt . Figure 4c
obtained for D/J = 5.5 and p = 0.1, show that mA and mB go to zero continuously in
contrary to the previous figure. Otherwise, they are similar.

4 The Phase Diagrams

Our system parameters include K , D and J , see (1), in addition to temperature, T , coordi-
nation number z and probability p. J is usually taken to be a scaling parameter. Thus, we
are left with K/J , D/J , T/J , z and p. Therefore, one can obtain the phase diagrams on the
(D/J, T /J ) and (K/J, T /J ) planes for given K/J and D/J , respectively. The probability
p values are taken with increment 0.1 in the range 0.1 ≤ p ≤ 1.0 and z = 3, 4, 5 and 6.
The p = 1.0 case is the well-known BEG model as given in the references, while p = 0
case just turns off J .

Our first phase diagrams are presented on the (D/J, T /J ) planes, see Fig. 5, for
K/J = −1.2 with the given p and z values above. In Fig. 5a plotted for z = 3, the second-
order phase transition lines, i.e. Tc-lines, separate the phases P, SQ and F as the border-line
between them. As the temperature is increased the system goes into the P phase which sur-
rounds SQ and F phases appearing at lower temperatures. As seen the Tc-lines separating
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Fig. 3 The thermal variations of the order parameters illustrated for z = 4,K/J = −1.0 and p = 0.3: a
D/J = 1.0 and b D/J = 2.0 and, c z = 6,K/J = −1.0, D/J = −0.1 and p = 1.0. They are obtained
with relation to the phase diagrams Fig. 6b, d
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Fig. 4 The temperature dependence of the order parameters illustrated for z = 6 and K/J = −1.2: a
D/J = 1.2 and p = 1.0, b D/J = 4.0 and p = 0.1 and c D/J = 5.5 and p = 0.1. All are in agreement
with Fig. 5d
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Fig. 5 The phase diagrams on the (D/J, T /J ) plane when K/J = −1.2: a z = 3, b z = 4, c z = 5, and
d z = 6. The solid- and dashed-lines correspond to the Tc- and Tt -lines, respectively. Intersection points at
which SQ-P phase lines and F-P ones meet on the Tt -line are the BCP’s

F and P and, SQ and P phases emerge from the same D/J at zero temperature. The first
lines move towards right as D/J increases which are seen at higher T/J as p is increased.
The latter ones make a closed loop all terminating at zero D/J . It is clear that these lines
present reentrant behavior for some p values. This reentrance behavior appears to be more
pronounced for the small p. The SQ phase region becomes smaller when p increases while
those of F phase is becoming larger. With other words, two fixed values of theD/J appear at
T/J = 0. Indeed, the SQ-P and the SQ-F phase transition lines meet at multicritical points
which lead to multicritcal lines that take place at D/J = z(−1.0 − K/J) for T/J = 0
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and all p. The second fixed values are related to the SQ-P phase transition lines which go
to D/J = 0 at T/J = 0. It is important to note that by increasing the value of D/J from
D/J = 0, the SQ-P transition temperature increases and passes by a smooth maximum and
then reduces rapidly to zero at D/J = 0.6, according to D/J = z(−1.0 − K/J).

For z = 4, the topology of the phase diagram change qualitatively. Indeed, in Fig. 4b
the SQ phase is separated from the P phase by the Tc-lines and from the F phase by the
first-order lines, i.e. Tt -lines. These two lines meet with other Tc-lines separating the P and
F phases for all p at the so-called BCP. Corresponding to the coordinates of the BCP, the
values of D/J decrease while that of T/J , first increase and then decrease further with the
increase of p. Here again, D/J takes two fixed values at absolute zero temperature, the
first one concerning the Tc-lines between SQ and P phases at D/J = 0 and the second one
related to the Tt -lines between the SQ and F phases at D/J = z(−1.0 − K/J).

The phase diagrams for z = 5 and 6, Fig. 5c and d respectively, are very similar with the
z = 4 case, i.e. Fig. 5b. The main difference arises from the existence of the ferrimagnetic
(FI) phase found for all p. For these values, we see the sequences of the phases as P-SQ-
FI-F and/or P-SQ-F. In addition, the four Tc-lines connect at tetracritical points. It should
be noted that the detailed analysis for the existence FI phase and tetracritical point was not
carried out in this work which we hope to carry out in our next work.

It is worth noticing that by changing z from 4 to 6, the phase diagrams change only quan-
titatively. As seen from the Fig. 5a-d, the dependence of T/J on the value of D/J is very
similar in these curves. Indeed, we found that not only when D/J is fixed, the F-P critical
temperature takes larger value with the increase of p but also the SQ-P critical temperature
decreases when increasing p. We also remark that the SQ phase region increases when z

increases. The reentrant behavior is seen for p = 0.1 when z = 4. It also exists for z = 5
and 6 where it is seen at lower D/J ’s in contrary to the z = 3 and 4 for which it appears at
higher D/J ’s. It should also be noted that:

i - the critical SQ-F Tc-lines for z = 3 as the SQ-F first order transition line for z > 3
emerges at T/J = 0 with the values of D/J = z(−1.0 − K/J).

ii - F phase represents the ground state (GS) for D/J > z(−1.0 − K/J) while the
disordered SQ phase becomes the GS for 0 < D/J < z(−1.0 − K/J). The P phase is
the GS for D/J < 0.

iii - the SQ-P critical line approaches the zero-temperature phase boundary with a negative
slope for z < 4, with a positive slope for z > 4 and with an infinite gradient for z = 4.
This situation is then typical for the reentrant phenomenon which appears at sufficiently
high coordination number z > 4 and becomes more pronounced as z is higher.

Again, Fig. 6 are displayed on the (D/J, T /J ) planes with K/J = −1.0 for given p

and z which are similar with the Fig. 5. In this case, F phase represents the GS for D/J > 0
while the disordered P phase becomes the GS for D/J < 0. For z = 3, the SQ phase
exists for only p = 0.1 and 0.2 at small finite non-zero temperature. As the value of D/J

is increased from D/J = 0, the SQ-P transition temperature increases and passes by a
smooth maximum and then reduces rapidly to zero at D/J = 0. However, the F-P critical
temperature exhibits a smooth monotonous decline with decreasing D/J . For z = 4, 5 and
6, the range of p in which the system has BCP expands with the increase of z. All transition
lines emerge from T/J = 0 at D/J = 0.

The final exhibit of this kind of phase diagram is obtained for K/J = −0.9 as shown in
Fig. 7. It is very interesting since the system may present double BCP for given parameters
when z ≥ 4. Again, the phase transitions lines are only of Tc-lines for z = 3 with all
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Fig. 6 The phase diagrams on the (D/J, T /J ) plane when K/J = −1.0: a z = 3, b z = 4, c z = 5, and d
z = 6

p. The value of the critical temperature increases when D/J and p also increase. The SQ
phase appears for p = 0.1 only in a closed region which is surrounded by the P phase. The
Fig. 7b-d present the fact that the system presents double BCP’s. Indeed, for z ≥ 4, the
system has always double BCP’s. The range of p in which the system has BCP’s expands
with the increase of z. With the increase of p, the range of D/J in which the system has
BCP’s decreases. Starting from the lowest and ending up at the highest temperature, the
system undergoes the following sequence of second-order phase transitions F-P-SQ-P and
F-P-F-P. The first one is obtained for p = 0.1 (Fig. 7a), p = 0.1 − 0.3 (Fig. 7b, c) and
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Fig. 7 The phase diagrams on the (D/J, T /J ) plane when K/J = −0.9: a z = 3, b z = 4, c z = 5, and d
z = 6

p = 0.1 − 0.4 (Fig. 7d). However, the occurrence of the second one is related to a high
enough coordination number z and p. The system then presents a double reentrant behavior.

The next phase diagrams are calculated on the (K/J, T /J ) planes for given values of
D/zJ when p changes from 0.1 to 1.0 by the increase of 0.1 and for z = 3, 4, 5 and 6. In
here we have used D/zJ instead of D/J , this scaling causes all the lines emerge from the
same K/J value, i.e. independent from z.

The obtained phase diagrams for D/zJ = 0 are shown in Fig. 8. Figure 8a plotted for
z = 3, shows the critical temperature as a function of K/J in an absence of the single-ion
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Fig. 8 The phase diagrams on the (K/J, T /J ) plane when D/zJ = 0.0. The number accompanying each
curve denotes the p between 0.1 and 1.0 with the increment of 0.1: a z = 3, b z = 4, c z = 5, and d z = 6

anisotropy (D/J = 0). In this particular case, the ordered ferromagnetic phase (F) rep-
resents the GS for K/J > −1.0, while the disordered paramagnetic phase (P) becomes
the GS for D/J < −1.0. The SQ phase does not appear. The system always undergoes
second order F-P phase transition for any value of p. Note that all the Tc-lines vanish at
K/J = −1.0 which is independent from the value of p. On Fig. 8b-d, the phase diagrams
obtained for z = 4, 5 and 6, respectively, show two Tc-lines for each p. The first Tc-lines
originate from K/J = −1.0 and behave similarly as in the z = 3 case separating the F
and P phases in the K/J > −1.0 region. It is clear that as z increases these lines appear
at higher temperatures. They are also seen at higher temperatures for higher p values for
all z. The second Tc-lines also originate from K/J = −1.0 and are seen in the region with
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K/J < −1.0. They appear at higher temperatures for lower p separating the SQ and P
phases. The reentrant phenomena is also obvious in this case.

The phase diagrams forD/zJ = 0.5 are shown in Fig. 9. As seen from the phase diagram
on Fig. 9a plotted for z = 3, the F-P critical temperature exhibits a smooth monotonous
decline with decreasing K/J while by the increase of K/J from negative values, the SQ-
P critical line approaches the zero-temperature with a negative slope which appears more
pronounced when p is smaller. These lines combine for each p, when they approach the
zero-temperature phase boundary between SQ and F phases, at multi-critical point which

Fig. 9 The phase diagrams on the (K/J, T /J ) plane when D/zJ = 0.5. The number accompanying each
curve denotes p between 0.1 and 1.0 with the increment of 0.1: a z = 3, b z = 4, c z = 5, and d z = 6. The
solid- and dashed-lines correspond to the Tc- and Tt -lines, respectively. Intersection points at which SQ-P
phase lines and F-P ones meet on the Tt -line are the BCP’s
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lead to multicritcal lines that take place at K/J = −1.5 for all p. For z > 3, Fig. 9b-d,
the phase transitions are of the form of Tc-lines in the high temperature region and of the
form of Tt -lines in the region of low temperatures, for all p. It is noteworthy that not only
when K/J is fixed, the F-P critical temperature takes larger value with the increase of p but
also the SQ-P critical temperature decreases when increasing p. As seen the wing-shaped
Tc-lines present little kinks at their minima from where the Tt -lines appear which terminate
at K/J = −1.5 for all p and z. It is obvious that BCP’s also appear at the minima of these
Tc-lines. The left wing separates the SQ and P phases, while the right wing separates the
F and P phases. It is also clear that by decreasing p values, the BCP’s are shifted towards
more positive values of K/J and it gradually appears as lower T/J for lower p while all the
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Tt -lines separating SQ and F phases go to zero temperature at K/J = −1.5 independently
to p and z according to K/J = −1 − D/zJ .

The next phase diagrams are obtained on the (K/J, T /J ) planes when p = 1.0 with
D/zJ between 0.1 and 0.5 with the increment of 0.05 for all z. The system presents only Tc-
lines when z = 3 again, Fig. 10a. For each p, the SQ-P and F-P Tc-lines meet only at zero
temperature. On the other hand, when K/J is fixed, the critical temperature takes larger
value with the increase of D/zJ . We also remark that the SQ phase region increases when z

increases. For z = 4, 5 and 6, as shown in Fig. 10b-d, the system exhibits BCP’s again. The
Tt -lines separating SQ and F phases go to zero temperature at K/J = −1 − D/zJ . Here
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again, for fixed K/J , the critical temperature takes larger value with the increase of D/zJ

and z.
Our previous Figs. 5, 6 and 7 have shown that there exists critical values of the parameter

p, say pc, for which different trends of the model emerged. We find instructive to illustrate
this problem by generating phase boundaries in the (p, T /J ) plane for a selected value of the
reduced single-ion anisotropy D/J for z = 3−6. This is depicted in Fig. 11 for D/J = 0.6
and selected values of K/J and in Fig. 12 for K/J = −1.2 for selected values of D/J . Sur-
prisingly, critical values of p derived are often connected to bicritical points (panels b,c,d).
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In Fig. 11a, for K/J = −1.15, pc = 0.528. For p > pc, the system undergoes a second-
order transition F-P and shows the same trends as the pure BEG model corresponding to
p = 1. Below pc, the behavior is completely different. Indeed, one gets second-order tran-
sitions F-SQ-P. This behavior changes in other panels where first-order transitions appear at
low temperature at any value of p leading to bicritical points. In Fig. 11c, for K/J = −1.1,
it can be seen that there is one critical value pc = 0.801 above which only F-P transition
exists whereas below, a F-SQ-P transition emerges. Due to the re-entrant behavior of the
first-order transition line, this critical value pc is not connected to the associated bicritical
point (p = 0.754) whereas for K/J = −1.0, this occurs and pc = 0.596. The same obser-
vations can be done in panel (d). Beyond the re-entrant behavior observed for some values
of K/J , the system behaves for few values of p close to p = 1 as the pure BEG model
due to the SQ-F-P transition which prevails. Figure 12 shares almost the same features with
Fig. 11 and critical values of p could be determined for selected values of D/J .

Without going into details, we should note that the phase diagrams on the (D/J, T /J )

planes of [29, 31, 39, 43], on the (K/J, T /J ) planes of [32, 34, 40, 41, 45] and on both
planes of [33, 38, 42, 48] are similar with the ones that are obtained in this work. Note
also that for the case of the bond dilution we also see similar phase diagrams in [51]. The
existence of tetracritical point are also obtained as the case in [29, 31, 46].

5 Conclusion

The bond-dilution effects of Jij between the NN spins are studied randomly for the spin-
1 BEG model on the BL consisting of two interpenetrating equivalent sublattices A and B
for given coordination number z in terms of ERR’s. Jij is either randomly turned on with
probability p or turned off with 1 − p. K between the NN spins and the D of the sublat-
tices A and B are taken as constants. Thermal variations of the order-parameters are studied
numerically to obtain the phase diagrams on the (D/J, T /J ) and (K/J, T /J ) planes. We
found that the model presents both first- and second-order phase transitions. In addition
to the well-known ferromagnetic (F), paramagnetic (P) and ferrimagnetic (FI) phases, the
staggered quadrupolar (SQ) phases is also observed. The BCP, double BCP’s and tetracrit-
ical points are also observed. As a last word, we say that our calculations show an overall
agreement with the literature.
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