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Abstract

This paper considers the design of output tracking and feedback controllers for nonlinear
stochastic systems. The system status cannot be measured. The studied system contains
nonlinear state functions, noise disturbances and time delays. We use the free weight matrix
method to avoid the conservatism caused by the use of model transformation or cross-term
bounded techniques. Based on the Lyapunov-Krasovskii functional method, we propose an
output tracking and feedback controller design method based on linear matrix inequality
(LMI). Numerical examples show the validity of the obtained results.

Keywords Nonlinear stochastic time-delay systems - Lyapunov-Krasovskii functional
method - Linear matrix inequality

1 Introduction

Stochastic system theory is a type of theory that combines stochastic process theory with
control theory, and now it become an important branch of mathematics and control the-
ory [1-6]. Recently, many scholars have paid attention to the research of robust control
for uncertain stochastic time-delay systems, such as the research of robust stabilization
and robust H, control for uncertain stochastic time-delay systems, and the research on
stochastic time-delay systems with uncertain parameters which satisfy the convex polyhe-
dron structure [7—11]. Most of these studies use Lyapunov function which depends on the
parameters and the method combined with the introduction of free matrix variables to obtain
sufficient conditions for robust stabilization and robust Hy, performance of the studied
system. On the other hand, the state estimation problem of stochastic systems has always
been a relatively important subject in control theory. Since the Luenberger observer [12]
was introduced into the research of control systems, there have been many achievements
in this area. When the external disturbances do not have accurate statistical characteristics,
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we can consider utilizing Hy, filtering and Ly — L filtering [13—15] to study the system.
For the robust control of the system, there are many research methods currently adopted,
such as decomposition of singular values, Hy, control method, Riccati equation method
and so on. The above mentioned methods are mainly based on Lyapunov stability theory
for robust analysis of uncertain systems. Among them, the advantage of using the Riccati
equation processing method is that the structure of the required controller can be obtained,
which is very beneficial to the theoretical analysis of the system. Its disadvantage is that
it needs to determine some undetermined parameters , which is more conservatism. Then
the inner point method for solving convex optimization problems and THE LMI toolbox
introduced by Matlab appeared. When these methods were applied to the robust control
problem of stochastic systems, they greatly promoted the progress in stability and robust
control of stochastic systems. On the basis of these existing results, in view of the universal-
ity and practicability of uncertain stochastic time-delay systems, it is of great significance to
study the design and control problem of state estimators for stochastic systems, especially
uncertain stochastic systems.

The output analog control has a widespread application in industrial production and life.
The main purpose of analog control is reappear the system output, and make the output of
the reference model and the original system nearly as much as possible. Output simulation is
also widely used in robot control and aircraft control, and output control design problems are
generally more complicated and more difficult to implement than stability analysis. In this
paper, we study the H, output control problem for nonlinear stochastic time-delay systems.
Using Lyapunov stability theory and free weight matrix method, sufficient conditions for
time-delay correlation are given to ensure that the output of the stochastic nonlinear system
approximates the output of the given reference model in the sense of Hy. Finally, numerical
examples are used to verify the feasibility of the conclusions obtained.

2 Model Description

In this paper, we consider nonlinear stochastic time-delay systems
dx(t) = [Ax(®)+ Ax(t — 1)+ f(x(t), x(t — 1), 1) + Bu(t)
+Ev(t)]ldt + Hx(t)dw(t) €))
z2(t) =Cix(t) + Cox(t — 1) 2

In the system, assuming that the nonlinear perturbation satisfies the following boundedness
conditions

If @), x(r — ), DIl < ar Ix@I + oz [lx(@ — )l 3)

w(t) € L,[0, c0) is a square integrable vector function, its norm is defined as

lo®l, = fo lw () |*dt

7 > ( is a constant time-delay, the reference model is designed as
X (1) = Dx (1) “
zr (1) = Fx, (1) (5)
Where the dimension of z,(¢) is the same as the dimension of z(¢). x,(t) € R’ is the

reference state. D, F' are constant matrices of appropriate dimensions, and D is a Hurwitz
matrix. The state feedback control rate is

u(t) = Kx(1) + Ky x.(t) (6)
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where K and K, are the control gain matrix. We define that
et) =z(t) — zr (1)
The state feedback control rate (6) is substituted into the system (1),we can get

dx(t) = [(A+ BK)x(t) + BKyx,(t) + Arx(t — 1) + f(x(0), x(t — 1), 1)
+Ev(t)]+ Hx(t)dw(t) @)

e(t) = Cix(t) + Cox(t — 1) — Fx,(¢) (8)

Then the following generalized system can be obtained

0] _ [[A+BK BK, [ x(t) A 07T x(t —1)
v | = o » ||lxo|T|o0o0]||xie—1
+ [(I)] fx@),x(t—1),1)+ [g]v(t)}dt

+|:g 8]dw(r) ©)

3 H. Output Tracking of System

Theorem 3.1 Consider the system (8), (9) and the state feedback control rate in the form
(6), if there is a matrix P > 0, P, > 0, Q1 > 0, Q> > 0, Ry > 0, Ry > 0, suitable
dimension matrix M, N1, N>, and the constant ¢ > 0, satisfy the matrix inequality

[T, [I;, P PiBK, —-CF 0 0 P E ITio
My O 0 ~CoF —-M 0 0 ATR,
* *  —el 0 0 0 0 0 R
* * * Myg —Ni+N» —N; 0 0 KrTBTRl
I S * 155 0 —N, 0 0 <0 (10
* % % * * —t7 'Ry 0 0 0
* % % * * * —t7'Ry, 0 0
* ok % * * * * —y2I 0
L o*x * % * * x  —1t IRy |

where

M = (A+BK) P+ Pi(A+BK)+ H'PlH 4+ Q1 + s 1 4+ CI ¢,
I = P1A; +MT+C1TC2

My =easl — Q1 —M—-M" +ClCy

My = D'P,+ P,D+ 0>

Mss = tDTRyD — Q2+ FTF

Mg = ATR + KTBTR,

Then the generalized closed-loop system (8), (9) satisfies the Ho, output tracking perfor-
mance indicator y.
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Proof Select Lyapunov-Krasovskii functional as

V (x(@), x (1) = xT(O)Pix(t) + x] (1) Pax, (1)
t

t
+/ xT(S)le(S)ds+/ xT () Qax, (s)ds
-7 -7
t t
+/ /)ET(a)Rl)E(oe)dads
-7 N

t t
+/ /)_C,T(a)Rzir(oz)dads 11
t—1

A

According to the formula /70, we can get the differential operator as
LV (1), x: (1) = 2xT (©) PLE (1) + 2x] (1) PaZy (1)
+x"OHT PHx(t) +xT () Q1x(t) — x" (t = 1) Q1x(t — 7)
+x/ (1) Q2% (1) — x] (1 = 1) Qax,(t = T)

t
+‘L')ET(t)R1)E(t)—/ T (s)R1x(s)ds
-7

t
o2l ()R (1) — f 57 (5) Ro (5)ds

-7

According to the Leibniz-Newton formula

2F [xT(t—r)M <x(t)—x(t—t)—/r x(s)ds>] =0
t—1

2E |:(er(t)N1 +xl (- t)Ng) - (x,(z) ot —T)— / ;,(s)ds)] =0
-7

In combination with

t t Rl t
/ T (R x(s)ds < </ )ET(s)ds> <——) (f )E(s)ds)
t—1 t—1 T t—1
t t R2 t
/ %1 (s)Ra%, (s)ds < (/ )ErT(s)ds> (—7) (/ )E,(s)ds)
-7 -7 -7

When v(t) =0,
LV (x(1), x, (1)) < 2xT (1) Py [(A + BK)x(t) + BK,x,(t) + A x(t — 7)]
+f (x(0), x(t = T), 1) + 2x] (1) P,Dx, (1)
+xTOHTPLHX@) +xT (1) 01x@t) —xT(t — 1) Q1x(t — 1)
+x7 (1) Qox, (1) — x] (1 = 7) Qax, (1 — T)
+7[(A + BK)x(t) + BK,x,(t) + Acx(t — 7) + f (x (1), x(t — 1), DT
Ri[(A+BK)x(t) + BK,x,(t) + Aex(t — 1) + f (x(8), x(t — 1), 1)]

([ o) (2 ([ )

+7[Dx, ()" Ry [Dx, (1)]

t t
+ (/ )_ch(s)ds) <—&> <f )E,(S)dS)
t—t T t—t

+sa12xT(t)x(t) + sa%xT(t —T)x(t—1)
—efT (x(0), x(t — ), 1) f (x(), x(t — 1), 1)
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let
10 = [xTOxT@ =) T @0, 5@ —0).0 L0
t t T
xIt—1) / T (s)ds / xr (s)ds:|
-1 -1
Then
ELV (x(0), %) < E[n" ()0 (1) ]
Where
[ 11 12 P1 PiBK, 0 0 0 ]
¥ X O 0 0 -M 0
x % —el 0 0 0 0
Y = * * * Y4 —N;+ Ny —NI 0
% % % * Bss 0 —N»
* %k * * —t7 IRy 0
| * ok * * * —t71R,
AT + KTBT ] AT + kTBT 77
AT AT
I I
+ K,TBT - (tRy) - K,TBT
0 0
0 0
and

11 =(A+ BK)T Py + P{(A+ BK) + H' Pi{H + Q) + e}l
Y= PlA; + mT

Yo =¢eadl — Q1 —M—MT

Yu=D'P+ P,D+ O

Yss=tD"RyD — Q>

Using Schur complement lemma, we can find that matrix inequality ¥ < 0 is true only if
matrix inequality ¥ < 0 is true, where

(=11 12 Pi PiBK, 0 0 0 AT +KTBT
* Tp 0 0 0 -M 0 AT
*  x —¢l 0 0 0 0 1

s_| * * * ZTu -Ni+N -NI 0 K.TBT
I * 55 0 —N> 0
* ok * * * —t7 IR, 0 0
* % * * * * -1t 'R,y 0

L o+ x = * * * * —t7 IR !
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Then multipling simultaneously the left and right sides of the matrix inequality ¥ < 0 by
the diagonal matrix diag{/, I, I, I, I, I, I, I Ry}, we can get

%y %12 Py PiBK, 0 0 0 ATR +KTBTR,T
* T» 0 0 0 -M 0 ATR,
* % —¢l 0 0 0 0 R
* % % Y44 —N+N» —NI 0 K, TBTR,
* ok % * Dss 0 —N; 0
* %k * * * —t7 IRy 0 0
* %k * * * * —t71R, 0
T * * * * —t7IRy i
<0 (12)

Thus, the system (8), (9) is asymptotically stable.

Next, we continue to prove that the closed-loop system (8), (9) can satisfy the corre-
sponding specified Ho, output characteristics. Assuming that under zero initial conditions,
when the system has a perturbation input v(¢) , considering the Lyapunov-Krasovskii
functional (11), we can get the random differential as

LV (x(t), x,(1)) < 2xT(1)P1[(A+ BK)x(t) + BK,x,(t) + A;x(t — 7)
+f (@), x(t = 1), 1) + Ev(t)] + 2x (1) PyDx, (1)
+xTOHT P Hx(t) +x" () Q1x(t) = x" (t = ) Q1x(t — 1)
+x] () Qaxr (1) — x] (¢ — T) Qaxr (1 — T)
+7[(A+ BK)x(t) + BK,x,(t) + Arx(t — 7)
+7F (x(),x(t —1), 1)+ Evi)]" Ry
[(A+ BK)x(t) + BK,x,(t) + Acx(t — 1)
+f(x@),xt—1),1t)+ Ev(t)]

(L) ()L o)

+7 [Dx, ()17 Ry [Dx (1)]

t t
+ (/ er(s)ds> (—&) (f )E,(s)ds)
t—1 T t—t

Xy (s) = Dxy(s)

where

From the S-process, we can see
LV (x(t), x,(1)) < 77 (OTTi(t)
where

) = [xT(t)xT(z — ) fT (@), x(t —v), 0 x] 1)

t t T
x,T(r—r)/ )?T(s)ds/ )ErT(s)dsvT(t)]
-7 —T
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¥ 12 P P|BK, 0 0 0 PE ]
¥ X O 0 0 -M 0 0
*  x —el 0 0 0 0 0
o= * * * Y44 —N1+N; —NI1 0 0
- * ok % * Yss 0 —N; 0
* ok sk * * —t71R 0 0
* ok ok * * * —t7 IRy 0
| * * * * * * (U
(AT + KTBT ] (AT +K7BT "
Al Al
1 1
K, BT K, BT
+ 0 (TR1) 0
0 0
0 0
Considering the following indicators
o0
o= [ [T e~y wr0esJas
0
Under zero initial conditions, there are V (0) = 0 and V (c0) > 0, so
o0
p= / [¢" e =y v + LV (0, x,0) |dr = Vioo)  (13)
0
o0
< / [¢" (e = v v() + LV (x(0), %, (0) |ar (14)
0

However
el (e() —y*v" (1) + LV (x(@®). % (1) < 7" (A7)
where
[Ty My P PIBK, —C\F 0 0 P.E
* Tlpp O 0 —Cy)F -M 0 0
* ¥ —e 0 0 0 0 0
= * ook * My —-N1+N» —N; 0 0
- * % % * 155 0 —N, 0
* % % * * —t7 IRy 0 0
* ok * * * * —t7'Ry, 0
L * * * * * —yzl
(AT + KTBT ] CAT + kTBT "
AT AT
1 1
K" BT KT BT
+ 0 (‘L’R]) 0
0 0
0 0
L 0 i L 0 i
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Here

M =(A+BK) P+ Pi(A+ BK)+ H' PiH + Q| + ea?1 + CI ¢y
M= PA +MT +ClCy

My =¢asl — Q1 —M—-M" +Cclc,

My =D" P+ P,D+ Qs

Mss =tD ' RyD — Q0+ FTF

From Schur lemma, the inequality IT < 0 is equivalent to the matrix inequality

AT

[T, I, Py PiBK, —CF 0 0 PiE AT + KTBTT
* Ty 0 0 —C,F -M 0 0 AT
*  * —el 0 0 0 0 0 1
* * * Myg —Ni+ Ny —N; 0 0 KrTBT
* % % * 155 0 —-N, 0 0
* % % * * —t71IR, 0 0 0
* ok * * * * -t 'R, 0 0
* ok % * * * * —y21 0
* * * * * * _.L.—llel ]
0

5)

Then multipling simultaneously by the diagonal matrix diag{/, I, I, I, 1,1, I, R1} on both
sides of the inequality, that is easy to obtain the matrix inequality of Theorem 3.1.

4 Feedback Controller Design

O

Next, we consider the design problems of Hy, output tracking controller, and give some
conclusions based on Theorem 3.1.

Theorem 4.1 Considering system (8), (9), if there are matrices PL>0,P >0 01 >0,

0> > 0, Ry > 0, Ry > 0, the appropriate dimension matrix M, N1, N,, and constant
e > 0, makes the matrix inequality

@ Springer

[T M BK, —C\F PIAT + KTBT M7 ]
* TIp O 0 —CyF f’]ArT Iy
x  * —g] 0 0 1 0
* * * f_’zDT-i-D}_)Q-i-QZ —N1152+N2}_)2 I%fBT I47 <0
* %k * —-Q02+FTF 0 Is7
E3 £ ES k * —'L_'Rl -2t 0
B * * * 77

(16)
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where

My =PAT +K"BT + AP+ BK + 01+ C] ¢,
Mia=A.Pi+M+ClC,

My=-0—-M-M"+clc,

My = [ooﬁlHT Py oo]

Ty = [-PM 000 P, 0]

My = [-PN;00000]

My = diag [ ~FRy — TRy — Py — ™'yl — e 031 — £Ry = 271

=11

Then the generalized closed-loop system (8), (9) satisfies H, output tracking performance

Y.

Proof Let

ﬁ] = Plil, f_’z = P{l

Then multipling simultaneously both sides of the matrix inequality % < 0 by the diagonal
matrix diag [Pl PiIP,PI1 I], we can get

[Ty My, I BK,. P 0 0 0 PAT + KTBT T
* Tl 0 0 0 -PM 0 P AT
x  * —gl 0 0 0 0 1
* %k * My —NiPo+ NP, —PN; 0 szrTBT
* ok ok * 155 0 —P,N; 0
* ok * * * —t71R, 0 0
* ok * * * * —t71R, 0
L *  x * * * * * —t_lRfl i
<0
where

Let

M = Pi(A+ BK)' +(A+ BK)P, + PLHT PL{HPy + PQ1 P + sa? P, P,
My = AP+ PIMPy

My =ea3 PP — PLQ1 P, — PLMP; — PLMT Py

My = P,DT + DP, 4+ P,0, P,

Ils5 = TﬁzDTRzD}_)z — PzQzﬁz

K=KP,K. =K, P,
Q1= P101P1, 0= P,02P,
M= P MP
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Then
(I My, I BK, 0 0 0 P AT +KTBT
* Ty 0 0 0 —PM 0 P AT
* * —gI 0 0 0 0 1
* * ¥ Ilge —N1P, + NPy —P|N; _O KrTBT <0
% ok ok %k Iss 0 —P,N; 0
* % * * * —t71R 0 0
* % * * * * —t71R, 0
I * * * * * * —r_lRfl i
where
My = PLAT + KTBT + AP\ + BK + PLHT PLHPy + Q1 + el P Py
My = A Py
My =eas PP — Q)
My = P,DT + DP, + 0>
Mss = tP,D" RyDP, — 02
Then under zero initial conditions, we can consider the H, indicator
o0
p= / le" ()e(s) — y*vT (s)v(s)lds
0
)
T (De(t) — y*oT () + LV (x(1), x,(1) < 7" (1) [T7(t)
where
[Ty My 1 BI%, —-CF P]AT_+1€TBT 77
* TIp O 0 —Cy)F P1AZ: ITyy
*  *F —gf 0 0 1 0
ko ok * I;zDT+DI;2+Q2 —N1_132—|—N2132 IE,TBT 0 <0
* ok % * —0)+FTF 0 57
* % * * * —zR, ! 0
L % x * * * * 1177 |
Here

My =P AT + KTBT + AP, + BK + Q1 + CT'Cy
Mp=A.P +ClCy

Myn=-01+C;C,

My = [OOPIHT PlOOE]

IMy; =[0000 P, 00]

Ms7 = [00000 — DT 0]

1177 :diag{—le — IR, — P —8_105172] _8—1a£21 —fR;l —y2]}

T=1

-1

Then through the inequality (/ R) (R_l) (IR) > 0 is equivalent to —R~! < R — 21, we
can prove the Theorem 4.1 .
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5 Numerical Example

In this section, numerical examples are given to illustrate that the proposed theoretical
method is feasible.

Example 1 The relevant parameters of the random time-delay system (1), (2) are as follows

2 11 -1 2 0 L1 L1 02 ~12 =01 0.1 02
Ao |05 -18 13 02 _|-15-12 12 11|, _|-05 04 1605
“lo2 —21-05 1" AT 4 —i2—21 1 |0 T3 —ie0s 00
01 2 18 LS 1oLl 18 —15 09 1 1812
21 1 16 02 1-10 0 001
~1.8 —28 02 05 21 1101 020 1010
b=112 —01-16 08 | B=l1060605|" E=]02| Cl:[l 11 0.6]’
02 01 08 —15 101 1 05 0.1
1011 105 1 1
C2—|:1011], F_[l 0 11 1], =05, a=ay=0.2,
1.7 =3 =70 80 53 31 =520.71
K — 9 10 —120 100 K. — 71 5 -6 2
T -6 —19 250 —240 |’ "T|-15-10 20 -3 |’
-1 18 =70 4 1 1 -32 05

Using Hy, output tracking design method for the stochastic time-delay system proposed in
Theorem 3.1, using the LMI control toolbox to solve the matrix inequality (10), the solution
matrix can be obtained is

153.4776 —113.0205 118.2967 —17.8939
—113.0205 206.7780 —131.1372 4.4986
118.2967 —131.1372 311.3364 —16.6175
—17.8939 44986 —16.6175 31.6135

2.7816 0.4694 2.6990 1.3911
0.4694 1.5261 1.1401 0.8413
2.6990 1.1401 6.4259 3.2534
1.3911 0.8413 3.2534 4.1505

0.4833 —0.0251 —0.4119 0.0056
—0.0251 0.4163 —-0.2825 —0.2979
—0.4119 —0.2825 1.6441 —0.4845
0.0056 —0.2979 —0.4845 1.5044

4.2361 0.5642 —1.7152 —0.8451
0.5642 5.1765 0.5647 0.1564
—1.7152 0.5647 3.2389 —1.3641
—0.8451 0.1564 —1.3641 3.8856

6.5803 —5.8864 4.8925 —0.8778
—5.8864 8.1701 —5.9815 0.5194

4.8925 —59815 5.5893 —0.4677
—0.8778 0.5194 —0.4677 0.2369

0.5526 0.0500 0.6127 0.2789
0.0500 0.2095 0.1651 0.1518
0.6127 0.1651 1.2327 0.6506
0.2789 0.1518 0.6506 0.9099

P =

Py =10° x

01 =10 x

0> =10 x

R =

Ry = 10° x
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0.7146  0.1395 0.1066 —0.1570
—2.3178 5.2264 —-3.1670 0.0312

M= 24612 —2.6956 2.3350 —0.2840
—1.5296 —1.2299 —0.0110 0.4434
[—0.5263 2.2511 —1.1853 —0.0775]

Nj = —0.2998 1.6682 —0.8913 —0.0781

—1.7187 6.3412 —3.3680 —0.1676
| —0.2062 1.2850 —0.6820 —0.0627 |
[—0.0158 0.0696 —0.0409 —0.0030 |

Ny = —0.0385 0.0683 —0.0492 0.0009

0.0019 0.0502 —0.0226 —0.0041
| —0.0336 0.0975 —0.0591 —0.0018 |

e =122355

Thus we know that the feasible solution exists, that is, when the time-delay 7 < 0.5, the
closed-loop system satisfies H, output tracking performance y in the mean square sense,
which shows that our proposed method is very effective.
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