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Abstract
We investigate the monogamy relations of multipartite entanglement in terms of the αth
power of concurrence, entanglement of formation, negativity and Tsallis-q entanglement.
Enhanced new monogamy relations of multipartite entanglement with tighter lower bounds
than the existing monogamy relations are presented, together with detailed examples show-
ing the tightness. These monogamy relations give rise to finer characterization of the
entanglement distributions among the subsystems of a multipartite system.

Keywords Monogamy relations · Multipartite entanglement · Bipartite entanglement
measure

1 Introduction

Quantum entanglement is an essential feature of quantum mechanics which can enhance
quantum technologies such as communication, cryptography and computing beyond clas-
sical limitations. A key property of multipartite entanglement is the monogamous relations
[1, 2], which are important correlations with fundamental differences from the classical
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ones. They restrict the sharability of quantum correlations in multipartite quantum states.
For example, for three qubit quantum systems, denoted by A, B and C, if A and B are in a
maximally entangled state, then A cannot be entangled with C at all. This indicates that it
should obey some trade-off relation on the amount of entanglement between the pairs AB
and AC.

The monogamy relations give rise to the quantification and characterization of entangle-
ment distribution among the multipartite systems. The first mathematical characterization
of the monogamy of entanglement (MOE) was expressed as a form of inequality for
three-qubit state [3]: the entanglement EA|BC between A and BC, the entanglement EAB

(EAC) between A and B (C) satisfy EA|BC ≥ EAB + EAC . Further, Coffman, Kundu and
Wootters (CKW) proposed that the squared concurrence also satisfies the monogamy rela-
tions for multiqubit states [2]. Osborne and Verstraete [4] proved the CKW monogamy
inequality, which quantifies the frustration of entanglement between different parties. Later,
the monogamy inequalities are generalized to other entanglement measures [5–10]. The
monogamy property is of importance in many quantum information tasks, particularly,
in quantum cryptography [11]. In the context of quantum cryptography, such monogamy
property quantifies how much information an eavesdropper could potentially obtain about
the secret key to be extracted. In the context of condensed-matter physics [12], the
monogamy property gives rise to the frustration effects observed in, e.g., Heisenberg anti-
ferromagnets. In addition to the monogamy of entanglement, the concept of monogamy has
also appeared when discussing the violation of Bell’s inequalities [13]. They also play an
important role in the security analysis of quantum key distribution [14], even in black-hole
physics [15].

In Ref. [4, 6] the authors showed that the αth concurrence and the convex-roof extended
negativity (CREN) satisfy the monogamy inequalities in multiqubit systems for α ≥ 2. It has
also been shown that the αth entanglement of formation (EoF), the Tsallis-q entanglement
and the Rényi-α entanglement satisfies the monogamy relations when α ≥ √

2, α ≥ 1,
respectively [16–20].

In this paper, we establish some new monogamy relations of multipartite entangle-
ment for arbitrary quantum states, based on the α-th power of the bipartite entanglement.
We show that these new monogamy relations are tighter than the existing ones given
in [16, 21–28].

2 EnhancedMonogamy Relations for Concurrence

We first consider the monogamy inequalities for concurrence. For a bipartite pure
state |ψ〉AB in Hilbert space , the concurrence is defined as C(|ψ〉AB) =√

2(1 − tr(ρ2
A)) with ρA = trB(|ψ〉AB〈ψ |) [29, 30]. The concurrence for a bipartite mixed

state ρAB is defined by the convex roof extension, C(ρAB) = min{pi ,|ψi 〉}
∑
i

piC(|ψi〉), with

the minimum taking over all possible pure state decompositions of ρAB = ∑
i

pi |ψi〉〈ψi |,
∑

pi = 1 and pi ≥ 0. For an N -qubit state ,
the concurrence C(ρA|B1···BN−1) of the state ρA|B1···BN−1 under bipartite partition A and
B1 · · · BN−1 satisfies [17]

Cα(ρA|B1···BN−1) ≥ Cα(ρAB1) + Cα(ρAB2) + · · · + Cα(ρABN−1), (1)

3450 International Journal of Theoretical Physics (2020) 59:3449–3463



for α ≥ 2, where ρABj
denote the two-qubit reduced density matrices of subsystems ABj ,

j = 1, 2, . . . , N − 1. The relation (1) is further improved, with the conditions of Theorem
1 in [16], as follows,

Cα(ρA|B1···BN−1)

≥ Cα(ρAB1) +
(

2
α
2 − 1

)
Cα(ρAB2) + · · · +

(
2

α
2 − 1

)m−1
Cα(ρABm)

+
(

2
α
2 −1

)m+1 [Cα(ρABm+1) + · · · + Cα(ρABN−2)] +
(

2
α
2 −1

)m

Cα(ρABN−1), (2)

where α ≥ 2.
Generally, a bipartite entanglement measure E is said to be monogamous if

Eαc(ρA|B1···BN−1) ≥
N−1∑
i=1

Eαc(ρABi
), (3)

where ρA|Bi
= trB1···Bi−1Bi+1···BN−1(ρA|B1···BN−1), αc is the minimum exponent for Eαc to

be monogamous [31]. It has been shown in [31] that for 0 ≤ x ≤ 1 and t ≥ 1,

(1 + x)t ≥ 1 + t

2
(x − xt ) + (2t − 1)xt ≥ 1 + (2t − 1)xt . (4)

Lemma 1 For any 2 ⊗ 2 ⊗ 2N−2 mixed state , assuming that CAB ≥
CAC , we have

Cα
A|BC ≥ Cα

AB + α

4
C2

AC(Cα−2
AB − Cα−2

AC ) + (2
α
2 − 1)Cα

AC, (5)

for all α ≥ 2, where N stands for the number of qubit systems, A and B are qubit systems,
C is a 2N−2-dimensional qudit system, consisting of N − 2 qubit systems.

Proof It has been shown that C2
A|BC ≥ C2

AB + C2
AC for arbitrary 2 ⊗ 2 ⊗ 2N−2 tripartite

state ρA|BC [4, 32]. In terms of CAB ≥ CAC , we have

Cα
A|BC ≥ (C2

AB + C2
AC)

α
2

= Cα
AB

(
1 + C2

AC

C2
AB

) α
2

≥ Cα
AB

⎡
⎣1 + α

4

C2
AC

C2
AB

+ [2 α
2 − (1 +

α
2

2
)]

(
C2

AC

C2
AB

) α
2
⎤
⎦

= Cα
AB + α

4
C2

AC(Cα−2
AB − Cα−2

AC ) + (2
α
2 − 1)Cα

AC,

where the second inequality is due to (4). Moreover, if CAB = 0, then CAC = 0. That is to
say the lower bound becomes trivially zero.

From Lemma 1 we have the following proposition.
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Proposition 1 For an N -qubit mixed state , if CABi
≥

CA|Bi+1···BN−1 for i = 1, 2, · · · ,m, and CABj
≤ CA|Bj+1···BN−1 for j = m + 1, · · · , N − 2

(1 ≤ m ≤ N − 3) , we have

Cα
A|B1B2···BN−1

≥
m∑

i=1

hi−1(Cα
ABi

+ JABi
) + hm

N−2∑
j=m+1

(hCα
ABj

+ J̄ABj
) + hmCα

ABN−1
, (6)

for N ≥ 4 and α ≥ 2, where h = 2
α
2 − 1, JABi

= α
4 C2

A|Bi+1···BN−1
(Cα−2

ABi
− Cα−2

A|Bi+1···BN−1
),

J̄ABj
= α

4 C2
ABj

(Cα−2
A|Bj+1···BN−1

− Cα−2
ABj

).

Proof From the inequality (5), we have

Cα
A|B1B2···BN−1

≥ Cα
AB1

+ hCα
A|B2···BN−1

+ α

4
C2

A|B2···BN−1
(Cα−2

AB1
− Cα−2

A|B2···BN−1
)

≥ Cα
AB1

+ h[Cα
AB2

+ hCα
A|B3···BN−1

+ α

4
C2

A|B3···BN−1
(Cα−2

AB2
− Cα−2

A|B3···BN−1
)]

+α

4
C2

A|B2···BN−1
(Cα−2

AB1
− Cα−2

A|B2···BN−1
)

≥ · · ·
≥

m∑
i=1

hi−1(Cα
ABi

+ JABi
) + hmCα

A|Bm+1···BN−1
. (7)

Similarly, as CABj
≤ CA|Bj+1···BN−1 for j = m + 1, · · · , N − 2, we get

Cα
A|Bm+1···BN−1

≥ Cα
A|Bm+2···BN−1

+ hCα
ABm+1

+ α

4
C2

ABm+1
(Cα−2

A|Bm+2···BN−1
− Cα−2

ABm+1
)

≥
N−2∑

j=m+1

(hCα
ABj

+ J̄ABj
) + Cα

ABN−1
. (8)

By combining (7) and (8), we come to the conclusion.

Remark We have assumed CABi
≥ CA|Bi+1···BN−1 and CABj

≤ CA|Bj+1···BN−1 in Propo-
sition 1. These constraints are most generally given by relabeling the subsystems. Due to
the conditions of inequality (4), the second inequality of (7) and (8) hold, respectively. As
JABi

s and J̄ABj
s are great than 0, we obtain the tighter lower bound than corresponding

monogamy inequalities in [16]. Particularly, we have the following proposition.

Proposition 2 For any N -qubit mixed state, if CABi
≥ CA|Bi+1···BN−1 , for i =

1, 2, · · · , N − 2, we have

Cα
A|B1B2···BN−1

≥
N−2∑
i=1

hi−1(Cα
ABi

+ JABi
) + hN−2Cα

ABN−1
, (9)

for α ≥ 2 and N ≥ 3, where h = 2
α
2 − 1, JABi

= α
4 C2

A|Bi+1···BN−1
(Cα−2

ABi
− Cα−2

A|Bi+1···BN−1
).
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Proof From the inequality (5), we have

Cα
A|B1B2···BN−1

≥ Cα
AB1

+ hCα
A|B2···BN−1

+ α

4
C2

A|B2···BN−1
(Cα−2

AB1
− Cα−2

A|B2···BN−1
)

≥ Cα
AB1

+ h[Cα
AB2

+ hCα
A|B3···BN−1

+ α

4
C2

A|B3···BN−1
(Cα−2

AB2
− Cα−2

A|B3···BN−1
)]

+α

4
C2

A|B2···BN−1
(Cα−2

AB1
− Cα−2

A|B2···BN−1
)

≥ · · ·
≥ Cα

AB1
+ hCα

AB2
+ · · · + hN−2Cα

ABN−1
+ hN−3 · α

4
C2

ABN−1
(Cα−2

ABN−2
− Cα−2

ABN−1
)

+ · · · + h · α

4
C2

A|B3···BN−1
(Cα−2

AB2
−Cα−2

A|B3···BN−1
)+ α

4
C2

A|B2···BN−1
(Cα−2

AB1
− Cα−2

A|B2···BN−1
). (10)

According to the denotation of JABi
, we obtain the result.

Example 1 Let us consider the three-qubit state |ψ〉 in the generalized Schmidt decomposi-
tion form [33, 34],

|ψ〉 = λ0|000〉 + λ1e
iϕ |100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉, (11)

where λi ≥ 0, i = 0, 1, 2, 3, 4,
4∑

i=0
λ2

i = 1. From the definition of concurrence, we have

CA|BC = 2λ0

√
λ2

2 + λ2
3 + λ2

4, CAB = 2λ0λ2 and CAC = 2λ0λ3. Set λ0 = λ2 = 1
2 , λ1 =

λ3 = λ4 =
√

6
6 , one has CA|BC =

√
7
12 , CAB = 1

2 , CAC =
√

6
6 . Then Cα

A|BC = ( 7
12 )

α
2 ≥

Cα
AB +hCα

AC + α
4 C2

AC(Cα−2
AB −Cα−2

AC ) = ( 1
2 )α +h · (

√
6

6 )α + α
4 · (

√
6

6 )2[( 1
2 )α−2 − (

√
6

6 )α−2].
While the result in [16] is Cα

AB + hCα
AC = ( 1

2 )α + h · (
√

6
6 )α . One can see that our lower

bound is tighter than theirs in [16], see Fig. 1.

Fig. 1 The axis C represents the concurrence of |ψ〉, which is a function of α. The solid blue line represents
the lower bound of concurrence of |ψ〉 in Example 1, the dashed red line represents the lower bound from
our result, the solid black line represents lower bound from the result in [16]
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3 EnhancedMonogamy Relations for EoF

In quantifying quantum entanglement, the entanglement of formation (EoF) [35, 36] is a
well defined important measure of entanglement for bipartite systems. Let and
be m and n dimensional (m ≤ n) vector spaces, respectively. The EoF of a pure state

is defined by

E(|ψ〉) = S(ρA), (12)

where ρA = trB(|ψ〉〈ψ |) and S(ρ) = −tr(ρ log2 ρ). For a bipartite mixed state ρAB ∈
, the entanglement of formation is given by,

E(ρAB) = min{pi ,|ψi 〉}
∑

i

piE(|ψi〉), (13)

with the minimum taking over all possible pure state decompositions of ρAB .

Denote f (x) = H
(

1+√
1−x

2

)
, where H(x) = −x log2(x) − (1 − x) log2(1 − x). From

(12) and (13), one has E(|ψ〉) = f
(
C2(|ψ〉)) for 2 ⊗ m (m ≥ 2) pure state |ψ〉, and

E(ρ) = f
(
C2(ρ)

)
for two-qubit mixed state ρ [30]. It is obvious that f (x) is a mono-

tonically increasing function for 0 ≤ x ≤ 1. The function f (x) satisfies the following
relations:

f
√

2(x2 + y2) ≥ f
√

2(x2) + f
√

2(y2), (14)

where f
√

2(x2 + y2) = [f (x2 + y2)]
√

2.
From [2] one sees that EoF does not satisfy the inequality EA|BC ≥ EAB + EAC . In

[37] the authors showed that EoF is a monotonic function satisfying E2(C2
A|B1B2···BN−1

) ≥
E2(

∑N−1
i=1 C2

ABi
). For N -qubit systems, one has [17]

Eα
A|B1B2···BN−1

≥ Eα
AB1

+ Eα
AB2

+ · · · + Eα
ABN−1

, (15)

where EA|B1B2···BN−1 is the EoF of the state ρA|B1···BN−1 , EABi
is the EoF of the mixed state

ρABi
= trB1B2···Bi−1,Bi+1···BN−1(ρ), i = 1, 2, · · · , N − 1, α ≥ √

2. In particular, we have
following relations.

Lemma 2 For any 2 ⊗ 2 ⊗ 2N−2 mixed state , if CAB ≥ CAC , the
following inequality holds for α ≥ √

2,

Eα
A|BC ≥ Eα

AB + (2t − 1)Eα
AC + t

2
E

√
2

AC(E
α−√

2
AB − E

α−√
2

AC ), (16)

where t = α√
2
.

Proof The proof is similar to the proof of Lemma 1.

Note that, for any N -qubit mixed state , Eα
A|B1B2···BN−1

(ρ)

no longer has similar relation like (6) in Proposition 1. However, the following proposition
holds.
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Proposition 3 For any N -qubit mixed state , if CABi
≥

CA|Bi+1···BN−1 for all i = 1, 2, · · · , N − 2 and α ≥ √
2, we have

Eα
A|B1B2···BN−1

≥
N−2∑
i=1

hi−1(Eα
ABi

+ RABi
) + hN−2Eα

ABN−1
, (17)

where h = 2t −1, t = α√
2
, and RABi

= t
2 (E

√
2

ABi+1
+· · ·+E

√
2

ABN−1
)(E

α−√
2

ABi
−E

α−√
2

A|Bi+1···BN−1
)

with i = 1, 2, · · · , N − 1.

Proof For α ≥ √
2, we have

f α(x2 + y2)

=
(
f

√
2(x2 + y2)

)t

≥
(
f

√
2(x2) + f

√
2(y2)

)t

≥ f α(x2) + (2t − 1)f α(y2)

+ t

2
f

√
2(y2)[f α−√

2(x2) − f α−√
2(y2)], (18)

where the first inequality is due to the inequality (14), and without loss of generality, we
assume x2 ≥ y2, using the monotonicity of f (x) and inequality (4), the second inequality
is obtained.

Let be the optimal decomposition of

EA|B1B2···BN−1(ρ) for the N -qubit mixed state ρ, we have

EA|B1B2···BN−1(ρ)

=
∑

i

piEA|B1B2···BN−1(|ψi〉)

=
∑

i

pif
(
C2

A|B1B2···BN−1
(|ψi〉)

)

≥ f

(∑
i

piC
2
A|B1B2···BN−1

(|ψi〉)
)

≥ f

⎛
⎝

[∑
i

piCA|B1B2···BN−1(|ψi〉)
]2

⎞
⎠

≥ f
(
C2

A|B1B2···BN−1
(ρ)

)
, (19)

where the first inequality is due to that f (x) is a convex function. The second inequality

is due to the Cauchy-Schwarz inequality: (
∑
i

x2
i )

1
2 (

∑
i

y2
i )

1
2 ≥ ∑

i

xiyi , with xi = √
pi
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and yi = √
piCA|B1B2···BN−1(|ψi〉). Due to the definition of concurrence and that f (x) is a

monotonically increasing function, we obtain the third inequality. Therefore, we have

Eα
A|B1B2···BN−1

(ρ)

≥ f α(C2
AB1

+ C2
AB2

+ · · · + C2
ABN−1

)

≥ f α(C2
AB1

) + h · f α(C2
AB2

+ · · · + C2
ABN−1

)

+ t

2
f

√
2(C2

AB2
+ · · · + C2

ABN−1
)[f α−√

2(C2
AB1

) − f α−√
2(C2

AB2
+ · · · + C2

ABN−1
)]

≥ f α(C2
AB1

) + h · f α(C2
AB2

+ · · · + C2
ABN−1

)

+ t

2
[f

√
2(C2

AB2
) + · · · + f

√
2(C2

ABN−1
)] · [f α−√

2(C2
AB1

) − f α−√
2(C2

A|B2···BN−1
)]

≥ f α(C2
AB1

) + h · f α(C2
AB2

) + · · · + hN−2 · f α(C2
ABN−1

)

+h(N−3) · t

2
f

√
2(C2

ABN−1
)[f α−√

2(C2
ABN−2

) − f α−√
2(C2

ABN−1
)]

+ · · · + t

2
[f

√
2(C2

AB2
) + · · · + f

√
2(C2

ABN−1
)] · [f α−√

2(C2
AB1

) − f α−√
2(C2

A|B2···BN−1
)]

≥ Eα
AB1

+ hEα
AB2

+ · · · + hN−2Eα
ABN −1 + hN−3 · t

2
(E

√
2

ABN−1
)[Eα−√

2
ABN−2

− E
α−√

2
ABN−1

] + · · ·

+ t

2
(E

√
2

AB2
+ · · · + E

√
2

ABN−1
) · (E

α−√
2

AB1
− E

α−√
2

A|B2···BN−1
), (20)

where we have used the monogamy inequality (15) to obtain the first inequality. By using

the relation (14) and the monotonicity of the function f
√

2(x), we get the third and the
fourth inequalities. Since for any 2⊗2 quantum state ρABi

, E(ρABi
) = f

[
C2(ρABi

)
]
, from

(19) one gets the last inequality.

Since CABi
≥ CA|Bi+1···BN−1 , (i = 1, 2, · · · , N −2), RABi

≥ 0 holds, and our results are
tighter than (8) in [16].

Example 2 Let us consider the three-qubit state |ψ〉 in Example 1 again. Set λ0 =
λ2 = 1

2 and λ1 = λ3 = λ4 =
√

6
6 in (11). One has Eα

A|BC = (0.674027)α ,

Eα
AB + hEα

AC + α

2
√

2
(E

√
2

AC)(E
α−√

2
AB − E

α−√
2

AC ) = (0.354579)α + h · (0.258403)α +
α

2
√

2
· (0.258403)

√
2[(0.354579)α−√

2 − (0.258403)α−√
2]. While the result in [16] gives

Eα
AB + hEα

AC = (0.354579)α + h · (0.258403)α . We can verify that our result is better than
the corresponding result in [16], see Fig. 2.

4 EnhancedMonogamy Relations for Negativity

Another well known quantifier of bipartite entanglement is the negativity, which is based on
the positive partial transposition (PPT) criterion. Given a bipartite state ρAB in ,
the negativity is defined by [38] N(ρAB) = (||ρTA

AB ||1 − 1)/2, where ρ
TA

AB is the par-
tial transposed matrix of ρAB with respect to the subsystem A, || · ||1 is the trace
norm. The negativity is a convex function of ρAB . For convenience, we use N(ρAB) =
||ρTA

AB ||1 − 1 [6]. For any bipartite pure state |ψ〉AB , the negativity N(ρAB) is given by
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Fig. 2 The axis E represents the EoF of the state |ψ〉, which is a function of α. The solid blue line represents
the lower bounds of EoF of the state |ψ〉 in Example 2, the dashed red line represents the lower bound from
our result, and the solid black line represents the lower bound from the result in [16]

N(|ψ〉AB) = 2
∑
i<j

√
λiλj = (tr

√
ρA)2−1, where λi are the eigenvalues of the reduced den-

sity matrix of |ψ〉AB . For a mixed state ρAB , the convex-roof extended negativity (CREN)
is defined as

Nc(ρAB) = min
∑

i

piN(|ψi〉AB), (21)

where the minimum is taken over all possible pure state decompositions {pi, |ψi〉AB} of
ρAB . CREN gives a perfect discrimination of positive partial transposed bound entangled
states and separable states in any bipartite quantum systems [39, 40].

Notice that there exists a relationship between CREN and concurrence. For any bipartite
pure state |ψ〉AB in a d ⊗ d quantum system with Schmidt rank 2, |ψ〉AB = √

λ0|00〉 +√
λ1|11〉. One has N(|ψ〉AB) =‖ |ψ〉〈ψ |TB ‖1 −1 = 2

√
λ0λ1 =

√
2(1 − trρ2

A) =
C(|ψ〉AB). It follows that for any two-qubit mixed state ρAB = ∑

pi |ψi〉AB〈ψi |,
Nc(ρAB) = min

∑
i

piN(|ψi〉AB) (22)

= min
∑

i

piC(|ψi〉AB)

= C(ρAB).

Here NcAB = Nc(ρAB), then we have the following result.

Proposition 4 For an N -qubit mixed state, if NcABi
≥ NcABi ···BN−1 for i = 1, 2, · · · ,m,

and NcABj
≤ NcABj ···BN−1 for j = m + 1, · · · , N − 2 (1 ≤ m ≤ N − 3, N ≥ 4), the

following holds for all α ≥ 2,

Nc
α
A|B1B2···BN−1

≥
m∑

i=1

hi−1(Nc
α
ABi

+ QABi
) + hm

N−2∑
j=m+1

(hNc
α
ABj

+ Q̄ABj
) + hmNc

α
ABN−1

,

(23)

where h = 2
α
2 − 1, QABi

= α
4 Nc

2
A|Bi+1···BN−1

(
Nc

(α−2)
ABi

− Nc
(α−2)
A|Bi+1···BN−1

)
, Q̄ABj

=
α
4 Nc

2
ABj

(
Nc

(α−2)
A|Bj+1···BN−1

− Nc
(α−2)
ABj

)
.
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Proof From the inequality (5), we have

Nc
α
A|B1B2···BN−1

≥ Nc
α
AB1

+ hNc
α
A|B2···BN−1

+ α

4
Nc

2
A|B2···BN−1

(Nc
(α−2)
AB1

− Nc
(α−2)
A|B2···BN−1

)

≥ Nc
α
AB1

+ h[Nc
α
AB2

+ hNc
α
A|B3···BN−1

+ α

4
Nc

2
A|B3···BN−1

(Nc
(α−2)
AB2

− Nc
(α−2)
A|B3···BN−1

)]
+α

4
Nc

2
A|B2···BN−1

(Nc
(α−2)
AB1

− Nc
(α−2)
A|B2···BN−1

)

≥ · · ·
≥

m∑
i=1

hi−1(Nc
α
ABi

+ QABi
) + hmNc

α
A|Bm+1···BN−1

. (24)

Similarly, as NcABj
≤ NcA|Bj+1···BN−1 for j = m + 1, · · · , N − 2, we get

Nc
α
A|Bm+1···BN−1

≥ Nc
α
A|Bm+2···BN−1

+ hNc
α
ABm+1

+ α

4
Nc

2
ABm+1

(
Nc

(α−2)
A|Bm+2···BN−1

− Nc
(α−2)
ABm+1

)

≥
N−2∑

j=m+1

(hNc
α
ABj

+ Q̄ABj
) + Nc

α
ABN−1

. (25)

Combining (24) and (25), we complete the proof.

In particular, if NcABi
≥ NcA|Bi+1···BN−1 for all i = 1, 2, · · · , N − 2, we have the

following proposition.

Proposition 5 For any N -qubit state , if NcABi
≥

NcA|Bi+1···BN−1 for all i = 1, 2, · · · , N − 2, we have

Nα
c A|B1B2···BN−1

≥
N−2∑
i=1

hi−1(Nα
c ABi

+ QABi
) + hN−2Nα

c ABN−1
, (26)

for α ≥ 2, where h = 2
α
2 − 1, QABi

= α
4 Nc

2
A|Bi+1···BN−1

(Nc
α−2
ABi

− Nc
α−2
A|Bi+1···BN−1

).

Example 3 Let us consider the three-qubit state |ψ〉 (11) again. From the definition of

CREN, we have NcA|BC = 2λ0

√
λ2

2 + λ2
3 + λ2

4, NcAB = 2λ0λ2, and NcAC = 2λ0λ3. Set

λ0 = λ2 = 1
2 , λ1 = λ3 = λ4 =

√
6

6 , one has Nc
α
A|BC ≥ Nc

α
AB +hNc

α
AC + α

4 Nc
2
AC(Nc

α−2
AB −

Nc
α−2
AC ) = ( 1

2 )α + h · (
√

6
6 )α + α

4 · (
√

6
6 )2[( 1

2 )α−2 − (
√

6
6 )α−2]. While from [16] one has

Nc
α
AB + hNc

α
AC = ( 1

2 )α + h · (
√

6
6 )α . One can see that our lower bound is tighter than the

results in [16] for α ≥ 2, see Fig. 3.

5 EnhancedMonogamy Relations for Tsallis-Q Entanglement

The Tsallis entropy is a generalization of the standard Boltzmann-Gibbs entropy. The
Tsallis-q entropy [41, 42] with respect to a non-negative number q, can be used to
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Fig. 3 The axis Nc stands for the negativity of |ψ〉, which is a function of α. The solid blue line represents
the lower bound of negativity of |ψ〉 in Example 3, the dashed red line represents the lower bound from our
result, the solid black line represents lower bound from the result in [16]

characterize classical statistical correlations inherent in quantum states [43]. For a bipartite
pure state |ψ〉AB , the Tsallis-q entanglement is defined by [20],

Tq(|ψ〉AB) = Sq(ρA) = 1

q − 1
(1 − tr(ρ

q
A)), (27)

for any q > 0 and q 
= 1. If q tends to 1, Tq(ρ) converges to the von Neumann entropy,
i.e., limq→1 Tq(ρ) = −tr(ρ ln ρ). For a bipartite mixed state ρAB , the Tsallis-q entangle-

ment is defined via the convex-roof extension, Tq(ρAB) = min
∑

i

piTq(|ψi〉AB), with the

minimum taken over all possible pure state decompositions of ρAB .
In [44], the authors proved an analytic relationship between the Tsallis-q entanglement

and the concurrence for 5−√
13

2 ≤ q ≤ 5+√
13

2 ,

Tq(|ψ〉AB) = gq(C2(|ψ〉AB)), (28)

where the function gq(x) is defined by

gq(x) = 1

q − 1

[
1 −

(
1 + √

1 − x

2

)q

−
(

1 − √
1 − x

2

)q]
. (29)

It has been shown that Tq(|ψ〉) = gq

(
C2(|ψ〉)) for any 2 ⊗ m (m ≥ 2)-dimensional pure

state |ψ〉, and Tq(ρ) = gq

(
C2(ρ)

)
for two-qubit mixed state ρ [20]. Hence (28) holds for

any q such that gq(x) in (29) is monotonically increasing and convex. In particular, gq(x)

satisfies the following relations for 2 ≤ q ≤ 3,

gq(x2 + y2) ≥ gq(x2) + g2
q(y2). (30)

Lemma 3 For any 2 ⊗ 2 ⊗ 2N−2 mixed state , if CAB ≥ CAC , the
following inequality holds for α ≥ 1,

Tq
α
A|BC

≥ Tq
α
AB

+ (2α − 1)Tq
α
AC

+ α

2
TqAC

(Tq
α−1
AB − Tq

α−1
AC ), (31)

where 2 ≤ q ≤ 3, N stands for the number of qubit systems, A and B are qubit systems, C
is a 2N−2-dimensional qudit system, consisting of N − 2 qubit systems.
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Proof The proof is similar to the proof of Lemma 1.

The Tsallis-q entanglement satisfies TqA|B1B2···BN−1
≥

N−1∑
i=1

TqABi
[20], where i =

1, 2, · · · N − 1, 2 ≤ q ≤ 3. It is further proved that T 2
q A|B1B2···BN−1

≥
N−1∑
i=1

T 2
q ABi

for

5−√
13

2 ≤ q ≤ 5+√
13

2 in [44].
Note that, for any N -qubit mixed state , if CABi

≥
CA|Bi+1···BN−1 for i = 1, 2, · · · , m, and CABj

≤ CA|Bj+1···BN−1 for j = m + 1, · · · , N − 2
(1 ≤ m ≤ N − 3, N ≥ 4), C(ρ) no longer satisfies the relation (6) in Proposition 1.
Nevertheless, for the case that CABi

≥ CA|Bi+1···BN−1 for i = 1, 2, · · · , N − 2, we have an
enhanced monogamy relation for the Tsallis-q entanglement.

Proposition 6 For an arbitrary N -qubit mixed state ρA|B1···BN−1 , if CABi
≥ CA|Bi+1···BN−1

for i = 1, 2, · · · , N − 2 (N ≥ 3), the αth power of Tsallis-q entanglement satisfies the
following monogamy relation,

Tq
α
A|B1B2···BN−1

≥
N−2∑
i=1

hi−1(Tq
α
ABi

+ GABi
) + hN−2Tq

α
ABN−1

(32)

for α ≥ 1, where h = 2α − 1, and GABi
= α

2 (TqABi+1
+ · · · + TqABN−1

)(Tq
α−1
ABi

−
Tq

α−1
A|Bi+1···BN−1

).

Proof For α ≥ 1, we have

gα
q (x2 + y2) (33)

≥
(
gq(x2) + gq(y2)

)α

≥ gq
α(x2) + (2α − 1)gq

α(y2) + α

2
gq(y2)(gq

α−1(x2) − gq
α−1(y2)),

where the first inequality is due to the inequality (30), and the second inequality is obtained
analogously from the proof of the second inequality in (5).

Let be the optimal decomposition for

the N -qubit mixed state ρ. We have

TqA|B1B2···BN−1
(ρ) =

∑
i

piTq(|ψi〉A|B1B2···BN−1)

=
∑

i

pigq

[
C2

A|B1B2···BN−1
(|ψi〉)

]

≥ gq

[∑
i

piC
2
A|B1B2···BN−1

(|ψi〉)
]

≥ gq

⎛
⎝

[∑
i

piCA|B1B2···BN−1(|ψi〉)
]2

⎞
⎠

= gq

[
C2

A|B1B2···BN−1
(ρ)

]
,

(34)
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where the first inequality is due to that gq(x) is a convex function. The second inequality

is due to the Cauchy-Schwarz inequality: (
∑
i

x2
i )

1
2 (

∑
i

y2
i )

1
2 ≥ ∑

i

xiyi , with xi = √
pi and

yi = √
piCA|B1B2···BN−1(|ψi〉). Due to the definition of the Tsallis-q entanglement and that

gq(x) is a monotonically increasing function, we obtain the third inequality. Therefore, we
have

T α
q A|B1B2···BN−1

(ρ)

≥ gα
q

[∑
i

C2(ρABi
)

]

≥ gα
q (C2

AB1
) + h · gα

q (C2
AB2

) + · · · + h(N−3) · gα
q (C2

ABN−2
) + h(N−2) · gq

α(C2
ABN−1

)

+h(N−3) · α

2
gq

α(C2
ABN−1

)[gq
α−1(C2

ABN−2
) − gq

α−1(C2
ABN−1

)]
+ · · · + α

2
[gq

α(C2
AB2

) + · · · + gq
α(C2

ABN−1
)] · [gq

α−1(C2
AB1

) − gq
α−1(C2

A|B2···BN−1
)]

≥ Tq
α
AB1

+ hTq
α
AB2

+ · · · + hN−3Tq
α
AB(N−2)

+ hN−2Tq
α
AB(N−1)

+h(N−3) · α

2
Tq

α
ABN−1

(Tq
α−1
ABN−2

− Tq
α−1
ABN−1

)

+ · · · + α

2
(Tq

α
AB2

+ · · · Tq
α
ABN−1

) · (Tq
α−1
AB1

− Tq
α−1
A|B2···BN−1

),

where we have used the monogamy inequality in (20) for N -qubit states ρ to obtain the
first inequality. By using the fact that gq(x) is a monotonically increasing function and
the inequality (4), we get the second inequality. Since for any 2 ⊗ 2 quantum state ρABi

,
Tq(ρABi

) = gq

[
C2(ρABi

)
]
, from (34) one gets the last inequality.

Example 4 Let us consider again the three-qubit state |ψ〉 (11). From the definition of

Tsallis-q entanglement, we have TqA|BC
= gq [(2λ0

√
λ2

2 + λ2
3 + λ2

4)
2], TqAB

= gq(4λ2
0λ

2
2)

and TqAC
= gq(4λ2

0λ
2
3). Set λ0 = λ2 = 1

2 , λ1 = λ3 = λ4 =
√

6
6 and q = 2, one

has T2
α
A|BC = ( 7

24 )α ≥ T2
α
AB + (2α − 1)T2

α
AC + α

2 T2AC(T2
α−1
AB − T2

α−1
AC ) = ( 1

8 )α +

Fig. 4 The axis T represents the Tsallis-q of |ψ〉, which is a function of α. The solid blue line represents the
lower bounds of Tsallis-q of |ψ〉 (q=2) in Example 4. The dashed red line represents the lower bound from
our enhangced monogamy inequalities. The solid black line represents the lower bound from the result in [16]
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(2α − 1)(0.08333)α + 0.08333α
2 [( 1

8 )(α−1) − (0.08333)(α−1)]. While the formula in [16] is
T2

α
AB + (2α − 1)T2

α
AC = ( 1

8 )α + (2α − 1)(0.08333)α . One can see that our result is better
than that in [16] for α ≥ 1, see Fig. 4.

6 Conclusion

Entanglement monogamy is a fundamental property of quantum multipartite states. The
extension of the monogamy relation for multipartite entanglement is far more from trivial.
We have explored the multipartite entanglement based on the monogamy of the αth-power
of concurrence Cα (α ≥ 2), entanglement of formation Eα (α ≥ √

2), negativity Nα
c (α ≥

2) and Tsallis-q entanglement T α
q (α ≥ 1). We have proposed a new class of monogamy

relations of multipartite entanglement for arbitrary quantum states, and showed that these
new monogamy relations have larger lower bounds and tighter than the existing monogamy
relations presented in [21, 27, 28, 31]. These tighter monogamy relations give rise to finer
characterization of the entanglement distributions among the subsystems of a multipartite
system. Our approach may be also applied to the study of monogamy properties related to
other quantum correlations.
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