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Abstract
In this paper, we discuss four measures for the quantum and classical correlations of two
atoms in a system of two entangled atoms interacting with the Pólya field state. In five dif-
ferent initial states of the two atoms, we compare and analyze the influence of the atomic
and optical field parameters on the time evolution of the quantum correlation and the clas-
sical correlation between two entangled atoms in the considered system. The results show
that though the atomic state is initially in a separate one, the time evolution of geometri-
cal quantum discord (GQD), concurrence (C), quantum discord (QD) can still exhibit non
zero quantum correlation behavior. The results also show that the time evolution of the three
measures of quantum correlation has obvious consistency but the time evolution of classi-
cal correlation (CC) is different from that of quantum correlation in the mentioned cases. In
addition, the two atoms always remain in the maximum entangled state during the evolution
as the two atoms are initially in a maximum entangled state |Ψ4〉.

Keywords Correlation · Geometrical quantum discord · Concurrence · Quantum discord ·
Pólya state

1 Introduction

Quantum information processing has the advantages that classical information processing
doesn’t, usually because there is a correlation beyond the classical between two subsys-
tems. This correlation is called quantum correlation, and one can obtain the possibility of
the measured results information of another subsystem by statistical measurement for a sub-
system [1]. Owing to being a basic resource in information processing, so it becomes a very
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important issue to study the properties of quantum correlation in the quantum system [2].
In recent years, as a non-local quantum correlation, quantum entanglement is widely inves-
tigated and used in quantum information processing [3–5]. However, it has been found that
non-classical correlations can also exist in separable states [6–8]. These researches show
that quantum entanglement is just one form of quantum correlation and cannot describe all
the quantum correlation of a quantum system [9–11]. It is imperative and desirable to intro-
duce the physical quantity measuring general nonlocal correlations. Therefore, Ollivier et al.
proposed the concept of quantum discord (QD) by which the more general nonclassical cor-
relations in a system can be expressed [12, 13].The observations suggest that QD has more
unique advantages than quantum entanglement in some aspects of quantum information pro-
cessing. For instance, a nonzero quantum discord may be responsible for the efficiency of
deterministic one-pure-qubit quantum computation and that of the quantum Carnot engine
[14]. Since the concept of QD was proposed, many works have been devoted to the research
of the quantum discord both theoretically and experimentally [15–21]. In practical appli-
cation, since QD needs to be maximized in the calculation process, it is difficult to obtain
an analytical expression. In order to get around this difficulty, Dakić et al. put forward a
new method, geometrical quantum discord (GQD), which can be more convenient to mea-
sure quantum correlation [22]. The GQD is defined as the smallest Hilbert-Schmidt distance
between the given state and the zero-discord states [23]. Recently, the quantum correlation
and the entanglement in a system of two atoms interacting with a single-mode cavity field,
such as the Fock state, the coherent field state and thermal field state etc., have been inten-
sively investigated [24–32]. The Pólya state is a typically constructed state superimposed
by the binomial state and the negative binomial state [33]. By adjusting some parameters in
this model, the Pólya field state can easily describe the varying process of the optical field
from the binomial state through the intermediate state to the negative binomial state. So the
Pólya state optical field can easily present binomial state, negative binomial state and inter-
mediate state with their unique quantum properties. In this work, we investigate the quantum
and classical correlations in a system of two two-level entangled atoms interacting with the
Pólya field state. Our goal will try to understand how the various correlations in the system
evolve with time. We use the three criteria of GQD, concurrence(C) and QD to measure the
quantum correlation between two atoms by the means of numerical calculations, and then
compare them with the classical correlation. The content of the article is organized as fol-
lows. In Section 2, we give the theoretical model and its solution. In Section 3, we present
a brief overview of four correlation quantities and then study quantum and classical corre-
lations between two atoms. In Section 4, we give numerical results and discussion. Finally,
the conclusion is drawn in Section 5.

2 The Theoretical Model and its Solution

Here, we consider the system of two two-level atoms labeled A and B resonantly interacting
with a single-mode cavity field. Assume that there is the dipole-dipole interaction between
atoms, and the values of the coupling strength between either of two atoms and a cavity
field are the equals. In this case, the Hamiltonian of the system under the rotating wave
approximation (� = 1)is

H = Ωa+a + 1

2
ω
(
σz

A + σz
B

) + g
[(

a+σ−
A + aσ+

A

) + (
a+σ−

B + aσ+
B

)]

+ga

(
σ−

A σ+
B + σ−

B σ+
A

)
. (1)
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Where a+ and a are the creation and annihilation operators, Ω and ω are the frequency of
the cavity field and the atomic transition frequency, σz

i = |ei〉〈ei |, σ+
i =| ei〉 〈gi |, σ−

i =
|gi〉 〈ei | are the inversion, rising and lowing operators of the i-th atom(i=A,B), respectively.
|ei〉 denotes an excited state of an atom, |gi〉 denotes a ground state of an atom, g is the atom-
field coupling constant, ga is the atomic dipole-dipole coupling constant. For simplicity, we
consider the resonance case (Ω = ω).

Assume that at t=0 the two atoms are in an arbitrarily entangled state

|Ψa(0)〉 = cos
θ

2
|eA, gB〉 − sin

θ

2
eiφ |gA, eB〉 , 0 ≤ θ ≤ π, −π ≤ φ ≤ π, (2)

the field is in a single-mode Pólya State

∣∣Ψf (0)
〉 =

∑M

n=0

[
P M

n (l, η)
] 1
2 |n〉, (3)

here the probability parameter of the light field, the maximum number of photons,

P M
n (l, η) =

(
M

n

)
η(η + l) · · · [η + (n − 1)l]η̄(η̄ + l) · · · [η̄ + (M − n − 1)l]

(1 + l)(1 + 2l) · · · [1 + (M − 1)l] ,

(η ∈ [0, 1], η̄ = 1 − η, l ≥ 0,M ≥ n, n = 0, 1, 2, . . . ). (4)

In (4), M is the maximum number of photons, η is the probability parameter of the light
field and l is the distribution parameter of the light field. When l → 0, the Pólya state is
reduced to a binomial state. And when M → ∞, l → 0, η → 0 with Mη = λ, Ml = ρ−1,
the Pólya state goes to a negative binomial state [33]. In the interaction picture, the evolution
of the state vector of the system obeys the Schrödinger equation

i
∂

∂t
|Ψs(t)〉 = HI |Ψs(t)〉 . (5)

It can be obtained by solving the Schrödinger equation

|Ψs(t)〉 =
∑M

n=0
N1(t, n) |eA, eB, n − 1〉 +

∑M

n=0
N2(t, n) |eA, gB, n〉

+
∑M

n=0
N3(t, n) |gA, eB, n〉 +

∑M

n=0
N4(t, n) |gA, gB, n + 1〉 . (6)

Here the coefficients [34]

N1(t, n) =
(
cos θ

2 − sin θ
2 eiφ

) [
P M

n (l, η)
] 1
2
√

n
(
1 − eigΔt

)
e−igkt

Δ
,

N2(t, n) = 1

4

[
P M

n (l, η)
] 1
2
e−igkt

[(
a +

(
1−eigΔt

)
G

Δ

)
cos θ

2−
(

b +
(
1−eigΔt

)
G

Δ

)
sin θ

2 eiφ

] ,

N3(t, n) = 1

4

[
P M

n (l, η)
] 1
2
e−igkt

[(
b +

(
1−eigΔt

)
G

Δ

)
cos θ

2−
(

a +
(
1−eigΔt

)
G

Δ

)
sin θ

2 eiφ

] ,

N4(t, n) =
(
cos θ

2 − sin θ
2 eiφ

) [
P M

n (l, η)
] 1
2
√

n + 1
(
1 − eigΔt

)
e−igkt

Δ
, (7)
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with

G = ga

g
, k = G + Δ

2
,Δ =

√
8(1 + 2n) + G2,

a = 1 + eigΔt + 2ei 12 (3G+Δ)gt , b = 1 + eigΔt − 2ei 12 (3G+Δ)gt . (8)

The density matrix of the system can be expressed as ρ(t) = |Ψs(t)〉 〈Ψs(t)|, the reduced
density matrix ρAB of the subsystem consisting of two atoms can be obtained by tracing
over the field variables. In the atom-atom bases {|eAeB〉 , |eAgB〉 , |gAeB〉 , |gAgB〉}, the
reduced density matrix ρAB is obtained in the following form

ρAB = Trfield[ρ(t)] =

⎛

⎜⎜
⎝

ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

⎞

⎟⎟
⎠ , (9)

where

ρ11 =
∑M

n=1
|N1(t, n)|2 , ρ12 =

∑M

n=0
N1(t, n + 1)N∗

2 (t, n),

ρ13 =
∑M

n=0
N1(t, n + 1)N∗

3 (t, n), ρ14 =
∑M

n=0
N1(t, n + 2)N∗

4 (t, n),

ρ21 =
∑M

n=0
N2(t, n)N∗

1 (t, n + 1), ρ22 =
∑M

n=0
|N2(t, n)|2 ,

ρ23 =
∑M

n=0
N2(t, n)N∗

3 (t, n), ρ24 =
∑M

n=0
N2(t, n + 1)N∗

4 (t, n),

ρ31 =
∑M

n=0
N3(t, n)N∗

1 (t, n + 1), ρ32 =
∑M

n=0
N3(t, n)N∗

2 (t, n),

ρ33 =
∑M

n=0
|N3(t, n)|2 , ρ34 =

∑M

n=0
N3(t, n + 1)N∗

4 (t, n),

ρ41 =
∑M

n=0
N4(t, n)N∗

1 (t, n + 2), ρ42 =
∑M

n=0
N4(t, n)N∗

2 (t, n + 1),

ρ43 =
∑M

n=0
N4(t, n)N∗

3 (t, n + 1), ρ44 =
∑M

n=0
|N4(t, n)|2 . (10)

3 Quantum Correlations Between the Two Atoms

In this section, we will study the quantum correlations between two entangled atoms
by using the three criteria of the geometrical quantum discord, the concurrence and the
quantum discord.

We use the geometrical quantum discord (GQD) to measure the correlation between the
two bodies. The density matrix of two-body system can be expressed as

ρAB = 1

4

⎡

⎣I ⊗ I +
3∑

i=1

(Aiσi ⊗ I + BiI ⊗ σi) +
3∑

i,j=1

(
Pijσi ⊗ σj

)
⎤

⎦ , (11)

where I is an identity matrix, Ai = Tr [ρAB (σi ⊗ I )] , Bi = Tr [ρAB (I ⊗ σi)] are com-
ponents of the local Bloch vectors, σi, σj (i, j = x, y, z) are three Pauli matrices, and
Pij = Tr

[
ρAB

(
σi ⊗ σj

)]
.

Therefore, GQD for two-body systems is [22]

D(t) = 1

4

(
‖A‖2 + ‖P ‖2 − κmax

)
, (12)
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here ‖A‖2 = ∑3
i=1A

2
i , P = Pij is a matrix, ‖P ‖2 = Tr

(
P T P

)
, κmax is the largest eigen-

value of the matrix K = AAT + PP T , superscript T denotes transpose of vector A or
matrix P .

According to the above theory, we can conveniently obtain the following results,

A1 = ρ13 + ρ24 + ρ31 + ρ42, P11 = ρ14 + ρ23 + ρ32 + ρ41,

A2 = i (ρ13 + ρ24 − ρ31 − ρ42) , P12 = i (ρ14 − ρ23 + ρ32 − ρ41) ,

A3 = ρ11 + ρ22 − ρ33 − ρ44, P13 = ρ13 − ρ24 + ρ31 − ρ42,

P21 = i (ρ14 + ρ23 − ρ32 − ρ41) , P31 = ρ12 + ρ21 − ρ34 − ρ43,

P22 = −ρ14 + ρ23 + ρ32 − ρ41, P32 = i (ρ12 − ρ21 − ρ34 + ρ43) ,

P23 = i (ρ13 − ρ24 − ρ31 − ρ42) , P33 = ρ11 − ρ22 − ρ33 + ρ44. (13)

‖A‖2 = A2
1 + A2

2 + A2
3, (14)

‖P ‖2 = P 2
11 + P 2

21 + P 2
31 + P 2

12 + P 2
22 + P 2

32 + P 2
13 + P 2

23 + P 2
33. (15)

Accordingly, three eigenvalues of the matrix K are

κ1 = −1

3
X1 − 2

3

(
X2
1 − 3X2

)1/2
cos

γ

3
,

κ2 = −1

3
X1 + 1

3

(
X2
1 − 3X2

)1/2 (
cos

γ

3
+ √

3 sin
γ

3

)
,

κ3 = −1

3
X1 + 1

3

(
X2
1 − 3X2

)1/2 (
cos

γ

3
− √

3 sin
γ

3

)
, (16)

with

γ = arccosL,L = 2X3
1 + 27X3 − 9X1X2

2
(
X2
1 − 3X2

)3/2 , (17)

and

X1 = − (Y1 + Y2 + Y3) ,

X2 = Y1Y2 + Y2Y3 + Y1Y3 − Y4Y5 − Y6Y7 − Y8Y9,

X3 = −Y1Y2Y3 − Y4Y7Y8 − Y5Y6Y9 + Y2Y6Y7 + Y3Y4Y5 + Y1Y8Y9,

Y1 = A2
1 + P 2

11 + P 2
12 + P 2

13,

Y2 = A2
2 + P 2

21 + P 2
22 + P 2

23,

Y3 = A2
3 + P 2

31 + P 2
32 + P 2

33,

Y4 = A1A2 + P11P21 + P12P22 + P13P23,

Y5 = A1A2 + P21P11 + P22P12 + P23P13,

Y6 = A1A3 + P11P31 + P12P32 + P13P33,

Y7 = A1A3 + P31P11 + P32P12 + P33P13,

Y8 = A2A3 + P21P31 + P22P32 + P23P33,

Y9 = A2A3 + P31P21 + P32P22 + P33P23. (18)

It follows from (9–18), we get the GQD to measure the correlation between two atoms

D(t) = −1

4
[X1 + max (κ1, κ2, κ3)] . (19)
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Generally, we have two measurement methods, which are called by negativity [35, 36]
and concurrence [37], to quantify the quantum entanglement between two atoms in a system.
In this paper, the concurrence is adopted to measure the entanglement between two atoms.
It is defined as

C(t) = max {0, λ1 − λ2 − λ3 − λ4} , (20)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 is the eigenvalue of the Hermitian matrix R.

R ≡
√√

ρABρ̃AB
√

ρAB . (21)

Here ρ̃AB = (
σy ⊗ σy

)
ρ∗

AB

(
σy ⊗ σy

)
, in which σy is the Pauli matrix and ρ∗

AB denotes
the complex conjugate of the density matrix ρAB .The range of concurrence is from 0 to 1.
The larger the concurrence, the stronger the entanglement. For the unentangled state, C =
0, whereas C =1 for the maximally entangled state.

The quantum discord (QD) of a bipartite system AB is defined as the difference between
the total correlation and classical correlation (CC) [13],

QD (ρAB) = I (ρAB) − CC (ρAB) . (22)

Here the total correlation is measured by their quantum mutual information

I (ρAB) = S (ρA) + S (ρB) − S (ρAB) , (23)

and the classical correlation can be expressed as [11]

CC (ρAB) = S (ρA) − min{
ΠB

k

}

[
S
(
ρAB |

{
ΠB

k

})]
. (24)

In which S
(
ρj

) = −T rj
(
ρj log2 ρj

) = −∑
i λi

j log2 λi
j is the von Neumann entropy

with
{
λi

j

}
being the nonzero eigenvalues of the quantum state ρj , and the subscript j indi-

cates either the subsystem A(B) or the total system AB, and the reduced density matrix of
A(B) defined as

ρA(B) = TrB(A) (ρAB) , (25)

and
{
ΠB

k

}
denotes a complete set of projective measurements performed on the subsystem

B, and S
(
ρAB | {ΠB

k

}) = ∑
k pkS

(
ρA

k

)
is the quantum conditional entropy, with

pk = T rAB

[(
IA ⊗ ΠB

k

)
ρAB

(
IA ⊗ ΠB

k

)]
(26)

being the corresponding probability of measurement outcome k(k = 1, 2), and

ρA
k = 1

pk

TrB
[(

IA ⊗ ΠB
k

)
ρAB

(
IA ⊗ ΠB

k

)]
(27)

is the corresponding conditional density matrix.
Substituting (23) and (24) into (22), the quantum discord of the system is finally

determined to be

QD (ρAB) = S (ρB) − S (ρAB) + min{
ΠB

k

}

[
�kpkS

(
ρA

k

)]
. (28)

The calculation of quantum discord is not so easy due to its definition. It is difficult to
obtain an analytical expression. According to the proposed scheme in [12], we choose the
method of von Neumann measurement:

ΠB
1 = ∣∣ϑ‖

〉 〈
ϑ‖
∣∣ ,ΠB

2 = |ϑ⊥〉 〈ϑ⊥| , (29)
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with
∣∣ϑ‖

〉 = cosϑ |gB〉 + eiϕ sinϑ |eB〉 , |ϑ⊥〉 = − cosϑ |eB〉 + e−iϕ sinϑ |gB〉 , (30)

where 0 ≤ ϑ ≤ 2π, 0 ≤ ϕ ≤ 2π .
Combining (9), (25), (26), (27), (29) and (30), we can obtain

p1 = sin2 ϑ (ρ11 + ρ33) + cos2 ϑ (ρ22 + ρ44)

+eiϕ sinϑ cosϑ (ρ21 + ρ43) + e−iϕ sinϑ cosϑ (ρ12 + ρ34) ,

p2 = sin2 ϑ (ρ22 + ρ44) + cos2 ϑ (ρ11 + ρ33)

−eiϕ sinϑ cosϑ (ρ21 + ρ43) − e−iϕ sinϑ cosϑ (ρ12 + ρ34) , (31)

and

ρA
1 = 1

p1

(
E11 E12
E21 E22

)
, ρA

2 = 1

p2

(
F11 F12
F21 F22

)
, (32)

with

E11 = sin2 ϑρ11 + cos2 ϑρ22 + eiϕ sinϑ cosϑρ21 + e−iϕ sinϑ cosϑρ12,

E12 = sin2 ϑρ13 + cos2 ϑρ24 + eiϕ sinϑ cosϑρ23 + e−iϕ sinϑ cosϑρ14,

E21 = sin2 ϑρ31 + cos2 ϑρ42 + eiϕ sinϑ cosϑρ41 + e−iϕ sinϑ cosϑρ32,

E22 = sin2 ϑρ33 + cos2 ϑρ44 + eiϕ sinϑ cosϑρ43 + e−iϕ sinϑ cosϑρ34,

F11 = sin2 ϑρ22 + cos2 ϑρ11 − eiϕ sinϑ cosϑρ21 − e−iϕ sinϑ cosϑρ12,

F12 = sin2 ϑρ24 + cos2 ϑρ13 − eiϕ sinϑ cosϑρ23 − e−iϕ sinϑ cosϑρ14,

F21 = sin2 ϑρ42 + cos2 ϑρ31 − eiϕ sinϑ cosϑρ41 − e−iϕ sinϑ cosϑρ32,

F22 = sin2 ϑρ44 + cos2 ϑρ33 − eiϕ sinϑ cosϑρ43 − e−iϕ sinϑ cosϑρ34.

(33)

By use of the above obtained results, we can discuss the dynamics behavior of the
quantum correlation and classical one in the considered system.

4 Numerical Results and Discussion

In this section, we will focus on the numerical calculation and then analyze the obtained
results. When the atoms are initially in different states (parameters θ, φ corresponding to
several fixed values) and the parameters of the field states for G, M and η take some fixed
values, the evolution behavior of GQD, C, QD and CC are analyzed in the four situations
respectively.

Case 1. We assume θ = π , and φ = −π , the two atoms are initially in a separate state
|Ψ1〉 = |Ψa(0)〉 = |gA, eB〉.

In Fig. 1, the time evolution of GQD, C, QD and CC is plotted as a function of gt with
θ = π, φ = −π, G = 1,M = 10, l = 0 for different values η = 0.3, 0.6, 0.9. For G=1,
it means that the atomic dipole-dipole coupling strength is equal to the atom-field one, and
l=0 indicates that Pólya state field reduces to binomial state field. These evolution curves of
GQD, C, QD and CC change in non-monotonous oscillating manner respectively. It has been
shown that the amount of the correlation (GQD, QD and CC) or the quantum entanglement
(C) is enhanced if we increase the value of the light field parameter η, and the changing
trend for GQD, QD or C is similar. However, the time behavior of the classical correlation
(CC) is different from that of the correlation (GQD, QD or C). The intense oscillations
of CC occur in certain time intervals in which the smaller fluctuations of GQD, QD or C
appear with the increasing η.
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Fig. 1 Time evolution of C (solid line), QD (solid line) and GQD (dot-dashed line), and CC (solid line)
versus gt with θ = π, φ = −π , G = 1,M = 10, l = 0 for a η = 0.3, b η = 0.6, c η = 0.9

In Fig. 2, the time evolution of GQD, C, QD and CC is plotted as a function of gt with
θ = π, φ = −π, G = 1, η = 0.5, l = 0.5 for different values M= 1,10,20. For l=0.5, the
light field state is in an intermediate one. In Fig. 2a, it can be seen that the evolution behavior
of the four quantities is periodical with period 2π . For the moments t = 2nπ(n = 1, 2, . . . ),
the values of GQD, C, QD and CC reach zero, which means that two atoms are in the states
of existing neither quantum correlation nor classical one. The Fig. 2b and c indicate that the
periodicity of GQD, C, QD or CC disappears and the oscillations of GQD, C, QD or CC in
time tend to become smaller irregular fluctuations, and the ranges of these quantities shift
down gradually as M increases.

In Fig. 3, the time evolution of GQD, C, QD and CC is plotted as a function of gt with
θ = π, φ = −π, M = 15, η = 0.5, l = 0 for different values G= 0,1,5. In Fig. 3a, for
the case that there is no interaction between the atoms, the time behavior of GQD, C, QD
and CC has been shown. In Fig. 3b and c, the time evolutions of GQD, C, QD and CC are
displayed with different coupling strength for G=1 (both of the coupling strength are equal)
and G=5 (the coupling strength between two atoms is stronger than that between two atoms
and field) respectively. Comparing Fig. 3a with Fig. 3b and c, it can be observed that the
ranges for the oscillating values of GQD, C, QD and CC become wider, and these curves
oscillate intensely at higher frequencies within the certain time intervals with the increased
parameter G. In addition, we can also see from Figs. 1, 2 and 3 that though two atoms are
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initially in the unentangled state, in which the initial values of four quantities are zero, both
the quantum correlations and entanglement between two atoms interacting with the Pólya
field state exist during their evolutions.

Case 2. In case of θ = π
3 , and φ = 0, the two atoms are initially in an entangled state of

the form |Ψ2〉 = |Ψa(0)〉 =
√
3
2 |eA, gB〉 − 1

2 |gA, eB〉.
In case 2, all the chosen parameters are the same as in case 1 except θ = π

3 , φ = 0. The
time evolution of GQD, C, QD and CC are shown in Figs. 4, 5 and 6. In Fig. 4, it is shown
that the evolution curves of QD are between 0.65 and 1, those of C from 0.85 to near 1, the
values of GQD are about 0.35 to 0.5, the range of CC is from 0.75 to near 1. They are the
irregular oscillating curves and vary slightly with the increased η. The evolution behavior
of GQD, C, QD or CC indicates that in these situations there exist the stronger quantum
correlations and classical ones between atoms during the time evolution.

Compared with Fig. 2a, one can see in Fig. 5a that the period of GQD, C, QD and CC still
keep at the fixed value 2π , the time evolution curves of them shift up and the oscillations of
the temporal evolution become flat. In Fig. 5b and c, it is observed that the values of C are
about 0.9, those of GQD are about 0.4. The temporal evolution curves of QD and CC tend
to fluctuate in the vicinity of 0.8. The oscillations of QD, C, and CC decay gradually to the
ones which have smaller fluctuations but the oscillating amplitude of GQD goes to a stable
value 0.4 with the enhanced M .
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In Fig. 6, we can see that the evolution curves of GQD, C, QD and CC keep almost in
a similar pattern such as Fig. 4, except when in the beginning time-interval and the middle
one the curves of them oscillate intensely with the increasing G during the observed time.

Case 3. In case of θ = π
3 , φ = π

2 , the two atoms are also initially in an entangled state

|Ψ3〉 = |Ψa(0)〉 =
√
3
2 |eA, gB〉 − i

2 |gA, eB〉.
In case 3, all the chosen parameters are the same as in case 1 except θ = π

3 , φ = π
2 .

In Fig. 7, it can be seen that the maximums of GQD, C, QD or CC appear almost at the
initial time t=0 and then the maximums of these quantities shift to the right slightly with
the increasing η. We can also observe that some local maximums of four quantities occur in
the fixed time intervals and they can be enhanced with the increasing η. The oscillation and
amplitudes of CC enhance within certain time intervals.

In Fig. 8, the periodic phenomena for the time evolution of GQD, C, QD and CC can
be still observed. It is worth noting that the maximum values of C, QD or CC reach close
to 1 while those of GQD are close to 0.5 at the moments t = 2nπ(n = 1, 2, . . .) and the
amplitudes of each oscillation decrease with the increasing parameter M .

In Fig. 9, one can find that each curve of GQD, C, QD or CC evolves in a non-monotonic
manner and all the evolution curves exhibit the different oscillations, moreover, the larger
the value of parameter G is, the more intensely the evolution curves oscillate within some
time intervals.
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Case 4. Suppose θ = π
2 , and φ = 0 or φ = π , the initial states of the

two atoms are |Ψ4〉 = |Ψa(0)〉 =
√
2
2 (|eA, gB〉 − |gA, eB〉) or |Ψ5〉 = |Ψa(0)〉 =√

2
2 (|eA, gB〉 + |gA, eB〉).
In case 4, all the chosen parameters are the same as in case 1 except θ = π

2 , φ = 0
or φ = π . Firstly, the time evolution of GQD, C, QD and CC is investigated as φ = 0.
The numerical results show that the values of QD, C and CC are always equal to 1, those
of GQD stay in 0.5, therefore, the time evolution of the four quantities is independent of
the atomic and field state parameters. It means that the two atoms always remain in the
maximum entangled state during the evolution. Secondly, the time evolutions of GQD, C,
QD and CC are considered as φ = π . From Fig. 10 it has been observed that the evolution
curves of GQD, C, QD and CC tend gradually to display the quasi-periodic behavior and
the oscillations of the evolution curves become more intense as η increases respectively. In
Fig. 11a, one can see that the time behavior of C, QD and CC is still periodical with 2π ,
the values of QD, C and CC are equal to 1 and these of GQD are 0.5 for the moments
t = 2nπ(n = 1, 2, . . .), which indicates that the states of two atoms are in the maximum
entangled state at the above-mentioned moments. Furthermore, Fig. 11b and c depict that
the amplitudes of the time evolution of GQD, C, QD and CC decay gradually to the smaller
values and there are the similar varying manners for these quantities with the increase of
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2 , φ = π,M = 15, η = 0.5, l = 0 for a G = 0, b G = 1, c G = 5

M . In addition, we can see in Fig. 12 that the evolution curves of GQD, C, QD and CC also
display more intense oscillating behavior with the increasing G. Compared the differences
as φ = 0 and φ = π , in spite of |Ψ4〉 and |Ψ5〉 being all initially in maximum entangled
states, the time evolution of the four quantities starting from the two initial states exhibit
quite distinct behavior during the wholly evolution process.

5 Conclusions

In conclusion, we explore the time evolution of the different correlations measured by the
geometrical quantum discord (GQD), concurrence (C), quantum discord (QD) and classical
correlation (CC) in a system of two entangled atoms interacting with a single-mode Pólya
field state. The effects of the probability parameter of the light field η, the maximum photon
number M , the relative coupling strength G on the time evolution of GQD, C, QD and CC
between two atoms in five atomic initial states are investigated respectively. It is shown
that though the atomic initial state is in a separate one, the time evolution of GQD, C and
QD can exhibit non zero quantum correlation behavior. For M=1, the time evolution curves
of four quantities oscillate with the same period 2π for five atomic initial states and the
considered states reach the maximum entangled ones at some fixed moments. Particularly,
as the two atoms are initially in the |Ψ4〉, the atomic states will always stay in the maximum
entangled ones during the whole evolution process. In addition, the evolution curves of CC
are generally different from these of GQD, C and QD, but the time evolution of GQD, C
and QD have the similar trends.
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33. Fu, H.C.: Pólya states of quantized radiation fields, their algebraic characterization and non-classical

properties. J. Phys. A: Math. Gen. 30, L83–L89 (1997)
34. Liu, T.K., Tao, Y., Shan, C.J., Liu, J.B.: Quantum correlation of two entangled atoms interacting with

the binomial optical field. Int. J. Theor. Phys. 55, 4219 (2016)
35. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
36. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient

conditions. Phys. Lett. A 223, 1–8 (1996)
37. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245

(1998)

International Journal of Theoretical Physics (2020) 59:2951–29652964



Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

International Journal of Theoretical Physics (2020) 59:2951–2965 2965


	Different Correlations in a System of Two Entangled Atoms Interacting with the Pólya State Field
	Abstract
	Introduction
	The Theoretical Model and its Solution
	Quantum Correlations Between the Two Atoms
	Numerical Results and Discussion
	Conclusions
	References




