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Abstract
We propose a new mechanism for symmetry breaking in which, apart from particle degrees
of freedom, topological degrees of freedom also emerge. In this method, a decomposition
for the fields of the Yang-Mills-Higgs theory is introduced and Lagrangian is written based
on new variables. This new Lagrangian does not change the dynamics of the theory, at least
at the classical level. We study the spontaneous symmetry breaking for this new Lagrangian
and show that how it works in Abelian and non-Abelian gauge theories. In the case of
Abelian gauge theory our method adds nothing new to the so-called Higgs mechanism.
However, in the non-Abelian case topological degrees of freedom, as classical fields, arise.
Finally, we reacquire our results considering a new definition for the vacuum.

Keywords Field decomposition · Higgs mechanism · Symmetry breaking

1 Introduction

Spontaneous symmetry breaking is at the heart of the Standard Model of particle physics.
It is an important component in understanding the origin of elementary particle masses.
According to Goldstone theorem [1], if a continuous global symmetry is broken sponta-
neously, for each broken group generator there must appear in the theory a massless particle
called Nambu-Goldstone boson. However, in the case of local symmetries, one can evade
Goldstone theorem using Higgs mechanism [2–4]. In this mechanism some gauge bosons
get mass and a massive spinless particle, Higgs particle, appears in the theory.

Shortly after discovering the Higgs mechanism in the 1960s, a new approach to quantum
field theory developed and became common in the 1970s. Some physicists began to inter-
pret some of the solutions of the classical field equations as candidates for particles of the
theory. This particles are different from the elementary particles that arise from the quanti-
zation of the fields. The main difference is the topological structure of this new, particle-like
solutions which differ from the vacuum. Interestingly, these solutions of the classical field
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equations, topological solitons, appear when spontaneous symmetry breaking occurs in the
quantum field theory level, for example, see the Nielsen-Olesen vortex solution in Abelian-
Higgs model [5] and ’t Hooft-Polyakov monopole solution in SU(2) Georgi-Glashow model
[6, 7]. In both cases, spontaneous symmetry breaking can occur and, on the other hand,
topological solutions exist. This induce the possibility of a new mechanism for symmetry
breaking in which, both particle and topological degrees of freedom can appear. The the-
ories which describe both topological and particle degrees of freedom is not new. Indeed,
there is a formulation of the pure Yang-Mills theory in terms of new variables reflecting the
topological degrees of freedom. This formulation is known as Cho decomposition in which
the Yang-Mills field is decomposed into other fields [8, 9].

Cho decomposition, along with Abelian projection [10], is a way to extract topologi-
cal degrees of freedom in the pure Yang-Mills theory. Unlike Abelian projection, which is
a partial gauge fixing method, in Cho decomposition topological defects emerge without
gauge fixing [11, 12]. It is supposed that topological degrees of freedom dominate the low-
energy limit of Yang-Mills theories. Indeed, there are many models in which the vacuum
of the Yang-Mills theory is filled with topological solitons such as vortices and monopoles.
These topological objects give structure to the vacuum and they can describe low energy
phenomena like color confinement which can not understood with perturbative methods
that is quantum particles and their interactions. In Cho’s restricted decomposition for SU(2)
Yang-Mills field, there are four degrees of freedom: two dynamical and two topological.
Cho’s decomposition has been developed by Faddeev and Niemi [13]. In Faddeev-Niemi
decomposition, knotlike solitons can appear in low-energy limit of SU(2) pure Yang-Mills
theory.

In this paper, we introduce a procedure for decomposing both scalar field and gauge field
in U(1) and SU(2) Yang-Mills-Higgs theory. According to this decomposition, we rewrite
the Lagrangian based on new variables which does not change the Euler-Lagrange equa-
tions. Considering these new variables and using some constraints on the classical fields,
vacuum constraints, one can reobtain Cho’s restricted and extended theory from SU(2)
Yang-Mills-Higgs Lagrangian [14]. In our approach the topological field n which is the
orientation of the scalar field in color space, in addition to the particle degrees of free-
dom, appear in the Lagrangian. In Cho decomposition of SU(2) Yang-Mills field, the extra
degrees of freedom induced by n were puzzling. It was tried to demolish them by extra con-
straints [11, 12]. On the other hand, some authors interpret the field n as a dynamical field
[13]. However, these interpretations has been criticized in [15]. We consider this field as a
topological field which is present in the vacuum and makes it nontrivial and other degrees
of freedom are quantum fields in this vacuum which now has structure duo to the topo-
logical field n. It is remarkable that in reformulated Lagrangian, the topological field n is
present even after symmetry breaking. Albeit, topological field only appear in non-Abelian
theory. We show that topological field disappears in Abelian-Higgs model. Therefore, our
symmetry breaking approach leads to the same result as Higgs mechanism in the case of
Abelian theory. But, in non-Abelain case, our approach is different from Higgs. The vacuum
in Higgs approach is empty form topological fields, while vacuum in our method, for non-
Abelian case, is filled by topological field as a classical background. Hence, the vacuum of
a non-Abelain gauge theory is much peculiar than Abelain one.

Eventually, we reacquire our results for symmetry breaking in reformulated Yang-Mills-
Higgs theory considering a new definition for the vacuum. In Higgs mechanism, a constant
universal field as a vacuum expectation value, is present in whole space or vacuum. In
addition to this (constant) vacuum field, we also allow that gauge fields without matter
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source be present in the vacuum as classical (vacuum) fields. Our motivation is this classical
assumption that classical fields like electromagnetic and gravitational field can be extended
in whole space, and so vacuum is not necessarily empty of classical fields. It should be only
empty of matter fields or particles. In other words, classical fields as topological degrees of
freedom can be present and form the vacuum or space. We also suppose that, in addition
to the potential term of the Higgs sector, the kinetic term is minimum in the vacuum, too.
According to this assumption (vacuum) gauge field automatically would be without matter
source in Yang-Mills-Higgs theories. Quantum particles are excitations above these scalar
and gauge (vacuum) fields. Considering this revision of the vacuum, spontaneous symmetry
breaking leads to the same result of the reformulated Yang-Mills-Higgs theory and provides
another interpretation for our approach.

In the next section, Section 2, we introduce new variables for U(1) and SU(2) Yang-
Mills-Higgs theory. We write Lagrangian based on these new variables and show that
Euler-Lagrange equations do not change for these variables and therefore the dynamics of
the theory remains the same, at least at the classical level. In Section 3 we study sponta-
neous symmetry breaking for reformulated theory, and for the non-Abelian case, we show
that after symmetry breaking extra degrees of freedom appear in the theory. These extra
degrees of freedom are nothing but the topological ones and they should not be interpreted
as quantum fields associated with particles. They are simply classical background fields
which give structure to the vacuum and make it non-trivial. In Section 4, a new interpre-
tation for our results is presented and we reacquire the same results by redefinition of the
vacuum. Finally, the conclusion is given in Section 5.

2 Yang-Mills-Higgs Theory in New Variables

We first consider the Abelian-Higgs model with the following Lagrangian

L = 1

2
(Dμφ)∗(Dμφ) − V (φ∗φ) − 1

4
FμνF

μν . (1)

where

Dμφ = ∂μφ + igAμφ,

Fμν = ∂μAν − ∂νAμ,

V (φ∗φ) = λ

4
(φ∗φ − ν2)2, λ, ν > 0. (2)

Euler-Lagrange equations for this model are:

∂νF
μν = − ig

2
(φ∗(Dμφ) − φ(Dμφ)∗), (3)

DμDμφ = −λφ(φ∗φ − ν2). (4)

The scalar field is a complex field with two components where in polar coordinate can be
written as

φ(x) = ρ(x)eiθ(x). (5)

Substituting φ = ρeiθ in covariant derivative Dμφ, we get

Dμφ = eiθ ∂μρ + ρDμeiθ , (6)
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where

Dμeiθ = i(∂μθ + gAμ)eiθ ,

⇒ −ie−iθDμeiθ = ∂μθ + gAμ,

⇒ Aμ = − 1

g
∂μθ − i

g
e−iθDμeiθ (7)

Introducing the field Cμ so that

Cμ = − i

g
e−iθDμeiθ , (8)

we get

Aμ = − 1

g
∂μθ + Cμ. (9)

Note that (9) is the same as U(1) gauge transformation.
Now we change the variables of the model from old ones φ and Aμ to new ones ρ, θ ,

and Cμ where

φ = ρeiθ , Aμ = − 1

g
∂μθ + Cμ. (10)

In terms of new variables we have

Dμφ = (∂μρ + igCμρ)eiθ ,

DμDμφ = (∂μ∂μρ − g2CμCμρ + ig[ρ∂μCμ + 2Cμ∂μρ])eiθ ,

Fμν = ∂μCν − ∂νCμ, (11)

and the Euler-Lagrange equations will be

∂νF
μν = g2ρ2Cμ, (12)

∂μ∂μρ − g2CμCμρ = −λρ(ρ2 − ν2), (13)

ρ∂μCμ + 2Cμ∂μρ = 0. (14)

Note that (14) is not independent from (12):

∂μ∂νF
μν = g2ρ(ρ∂μCμ + 2Cμ∂μρ) = 0. (15)

In terms of new variables Lagrangian (1) will be

L = 1

2
∂μρ∂μρ + 1

2
g2ρ2CμCμ − λ

4
(ρ2 − ν2)2 − 1

4
FμνF

μν . (16)

Equations (12) and (13) can be obtained from the Lagrangian (16). Therefore, our refor-
mulation does not change the Euler-Lagrange equations. Interestingly, Lagrangian (16), as
well as Euler-Lagrange (12) and (13), does not contain the real field θ(x); it only con-
tains ρ(x) and Cμ(x). Hence, θ(x) is not a dynamical field and it does not contribute to
energy-momentum of the model.

Now we reformulate SU(2) Yang-Mills-Higgs model with the Lagrangian:

L = 1

2
Dμφ.Dμφ − V (φ.φ) − 1

4
Fμν .Fμν, (17)

where

Dμφ = ∂μφ + gAμ × φ,

Fμν = ∂μAν − ∂νAμ + gAμ × Aν,

V (φ.φ) = λ

4
(φ.φ − ν2)2, λ, ν > 0, (18)
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and the Euler-Lagrange equations are:

DνFμν = gφ × Dμφ, (19)

DμDμφ = −λφ(φ.φ − ν2). (20)

Since the scalar field φ is a vector in 3D internal space, therefore, it has a magnitude and a
direction and can be written as

φ = φn, (n.n = 1). (21)

Note that φ has the magnitude and dimension of φ, and n is a dimensionless unit field
having the direction of φ. Covariant derivative for φ = φn will be

Dμφ = (∂μφ)n + φDμn, (22)

where

Dμn = ∂μn + gAμ × n,

⇒ n × Dμn = n × ∂μn + gAμ − g(Aμ.n)n,

⇒ Aμ = (Aμ.n)n + 1

g
∂μn × n + 1

g
n × Dμn. (23)

Introducing two new variables, Aμ and Xμ, so that

Aμ = Aμ.n,

Xμ = 1

g
n × Dμn, (Xμ.n = 0), (24)

we get

Aμ = Aμn + 1

g
∂μn × n + Xμ. (25)

The (25) is the same as Cho extended decomposition for SU(2) Yang-Mills field [9].
Changing the variables of the model from the original ones φ and Aμ to the new ones φ,

n, Aμ and Xμ where

φ = φn,

Aμ = Aμn + 1

g
∂μn × n + Xμ, (26)

with these constraints
n.n = 1, Xμ.n = 0, (27)

we get

Dμφ = (∂μφ)n + gφXμ × n,

DμDμφ = (∂μ∂μφ − g2φXμ.Xμ)n + g

φ
[∂μ(φ2Xμ) + gφ2Aμn × Xμ] × n,

Fμν = ̂Fμν + ̂DμXν − ̂DνXμ + gXμ × Xν, (28)

where

̂Fμν = [(∂μAν − ∂νAμ) − 1

g
n.(∂μn × ∂νn)]n,

̂DμXν = ∂μXν + g(Aμn + 1

g
∂μn × n) × Xν . (29)
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Euler-Lagrange equations with respect to new variables are

DνFμν = g2φ2Xμ, (30)

∂μ∂μφ − g2φXμ.Xμ = −λφ(φ2 − ν2), (31)

Dμ[φ2Xμ] = 0. (32)

Note that (32) can be derived from (30):

DνFμν = g2φ2Xμ ⇒ DμDνFμν = g2Dμ[φ2Xμ] = 0, (33)

but (30) and (31) are independent equations. Lagrangian (17) based on new variables is:

L = 1

2
(∂μφ)(∂μφ) + 1

2
g2φ2Xμ.Xμ,

−1

4
Fμν .Fμν − λ

4
(φ2 − ν2)2. (34)

Variation with respect to the new variables Aμ, Xμ, and φ leads to the following Euler-
Lagrange equations, respectively:

n.DνFμν = 0, (35)

DνFμν = g2φ2Xμ, (36)

∂μ∂μφ − g2φXμ.Xμ = −λφ(φ2 − ν2), (37)

and variation with respect to n yields a trivial identity. Regarding Xμ.n = 0, one can also
see that (35) can be derived from (36). Hence, we left with (36) and (37) which are the same
as (30) and (31). This means that our reformulation has not changed the dynamics of the
model, at least at the classical level.

In this section we started with two models with Lagrangians (1) and (17) and refor-
mulated them with new variables. We also show that our reformulations lead to the same
Euler-Lagrange equations. Therefore, the dynamics of our reformulations is the same as the
original models. In the next section, we study spontaneous symmetry breaking for reformu-
lated Lagrangians, (16) and (34), and show that for the Abelian case, it leads to the same
result as the Higgs mechanism, while for the non-Abelain case, extra degrees of freedom
arise.

3 Symmetry Breaking in Reformulated Yang-Mills-Higgs Theory

Consider again the Lagrangian (1) for the Abelian-Higgs model. For this case we have
continuous degenerate vacuum state at φ∗φ = ν2. By choosing one of these degenerate
vacua, for example ν, and setting φ = ν+φ1+ iφ2, we get a Lagrangian in terms of the new
fields φ1 and φ2. Doing this, the gauge field Aμ becomes massive. The scalar field φ1 also
gets mass, but φ2 appears to be a massless field. However, the Nambu-Goldstone boson φ2,
can be eliminated by a gauge transformation . In this gauge, unitary gauge, the Lagrangian
contains only two massive physical fields, the gauge field with spin 1, and φ1 with spin 0.
This is the Higgs mechanism in which the φ2 field that in the case of spontaneous symmetry
breaking of the global symmetry became massless has disappeared, and in addition, the
gauge field has now acquired a mass.
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Now we study spontaneous symmetry breaking for the reformulation of the Lagrangian
(1). Consider our reformulated Lagrangian (16):

L = 1

2
∂μρ∂μρ + 1

2
g2ρ2CμCμ − λ

4
(ρ2 − ν2)2 − 1

4
FμνF

μν .

In this Lagrangian there is no continuous vacuum state. There are just two discrete vacuum
states ν and −ν. By choosing ν as the vacuum expectation value and putting ρ → ν +ρ we
get

L = −1

4
FμνF

μν + 1

2
m2

CCμCμ

+νg2ρCμCμ + g2

2
ρ2CμCμ

+1

2
∂μρ∂μρ − 1

2
m2

ρρ2 − λνρ3 − λ

4
ρ4, (38)

where mρ = √
2λν2 and mC = gν. This is the same result as the Higgs mechanism. The

difference is that we did not choose a special gauge, unitary gauge, in order to eliminate
Nambu-Goldstone boson. Indeed in Lagrangian (16) there is only one scalar field which
after spontaneous symmetry breaking becomes massive.

Spontaneous symmetry breaking for our reformulation of the Abelian-Higgs model
yielded the same result as the Higgs mechanism. However, in the case of SU(2) Yang-Mills-
Higgs model, Spontaneous symmetry breaking for our reformulated Lagrangian (34) leads
to new result. In this case apart from usual particle degrees of freedom which also appear
in Higgs mechanism, topological degrees of freedom as classical fields arise. In Lagrangian
(34):

L = 1

2
(∂μφ)(∂μφ) + 1

2
g2φ2Xμ.Xμ,

−1

4
Fμν .Fμν − λ

4
(φ2 − ν2)2,

there are two discrete degenerate vacuum states. We choose ν as the vacuum expectation
value and by setting φ → ν + φ Lagrangian becomes

L = −1

4
Fμν .Fμν + 1

2
m2

XXμ.Xμ

+νg2φXμ.Xμ + g2

2
φ2Xμ.Xμ

+1

2
∂μφ∂μφ − 1

2
m2

φφ2 − λνφ3 − λ

4
φ4, (39)

where mφ = √
2λν2 and mX = gν. Keep in mind that Lagrangian (34) as well as

Lagrangian (39) is invariant under following infinitesimal transformations:

δn = −a × n,

δXμ = −a × Xμ,

δAμ = 1

g
n.∂μa. (40)

In Lagrangian (39), apart from particle degrees of freedom, which are one massive scalar
φ, one massless vector Aμ, and two massive vectors Xμ, topological degrees of freedom
associated with n emerges. If n was not a function of space-time, then our result would
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become the same as the Higgs mechanism. It is also interesting that the potential part of the
Lagrangian (34):

V (φ,Aμ,Xμ) = λ

4
(φ2 − ν2)2 − 1

2
g2φ2Xμ.Xμ

+1

2
g2(AμAμXν .Xν − AμAνXν .Xμ)

+1

4
g2(Xμ × Xν).(Xμ × Xν), (41)

will be minimum for φ = ν and Xμ = 0; and since there is no constraint on Aμ it could get
any value. Note that Aμ behaves differently from φ and Xμ. These fields, φ and Xμ, can
take vacuum expectation value, 〈φ〉 = ν and 〈Xμ〉 = 0, while there is no vacuum constraint
on Aμ. In addition, according to (40), φ and Xμ transform the same under local rotation of
internal space, and again Aμ transforms in a different manner. Another difference between
φ, Xμ and Aμ is that Aμ unlike φ and Xμ remains massless after spontaneous symmetry
breaking. The Lagrangian (34) for the vacuum states, 〈φ〉 = ν and 〈Xμ〉 = 0, is

LV = −1

4
̂F
2
μν

= −1

4
[(∂μAν − ∂νAμ) − 1

g
n.(∂μn × ∂νn)]2. (42)

We call LV “vacuum Lagrangian” and we assume that massless field Aμ as well as topo-
logical field n can be present in the vacuum. Note that Lagrangian (42) is the same as the
Lagrangian of Cho’s restricted gauge theory [8] which is proposed to describe low energy
properties associated with vacuum structure of non-Abelian gauge theories.

Although the topological field n is not a dynamical field -variation of the Lagrangian
(34) with respect to n leads to a trivial identity- however, it carries energy and momentum
and contributes in vacuum energy. Notice that for the non-Abelain case, we have relaxed the
traditional condition Fμν = 0 for the vacuum. Observationally, the possibility of Fμν �= 0
is not strange – because of the cosmic microwave background radiation. There are many
motivations for the non-zero energy of the vacuum. For example, some models for color
confinement suppose that vacuum is filled with objects having energy such as vortices,
monopoles and knot-like solitons. Another motivation is the late time accelerating expan-
sion of the universe associated with dark energy. Efforts to interpret dark energy as quantum
fluctuations, zero point energy, have been drastically failed and therefore new approaches
are welcome. One of these new approaches is introducing a field, scalar or even vector
field, which is coupled to gravity and can explain accelerating expansion of the universe.
On the other hand, in classical physics, all objects are either (force) field or matter, and
the big difference between them is that classical (force) fields, electromagnetic and gravi-
tational fields, unlike matter, which is localized, can be everywhere outside of their matter
sources. Indeed, we can define classical vacuum as a space which is not empty in the sense
that (force) fields, unlike their matter sources, can be present there. Hence, vacuum (force)
fields are the solutions of field equations without matter source. In particle physics, gauge
fields play the role of force fields. Therefore, we propose that they are allowed in vacuum
without matter sources. In the next section we examine this proposal and we show that it
leads to the same result for the symmetry breaking.
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4 New Approach Based on Redefinition of the Vacuum

In gauge field theories, a vacuum solution is a solution of a field equation in which the
sources of the field are taken to be identically zero. For example, in Maxwell’s theory of
electromagnetism, a vacuum solution would represent the electromagnetic field in a region
of space where there are no electromagnetic sources:

∂μFμν = J ν = 0. (43)

On the other hand, in (complex) scalar field theory the Lagrangian made of kinetic and
potential terms:

L = 1

2
∂μφ∗∂μφ − V (φ∗φ), (44)

and the vacuum state can be obtained by minimizing the potential term V (φ∗φ). If the
minimum occurs at φ∗φ = ν2, One should choose a vacuum state from the set of degenerate
vacua φV = νeiθV related to each other by rotation. This vacuum has chosen for all space-
time points and it is constant:

φV = constant . (45)

In addition, the physical fields φphys(x) are excitations above the vacuum

φ(x) → φV + φphys(x). (46)

Note that φV is a (constant) classical background field and φphys(x) is a quantum field
associated with particles. The Lagrangian based on the new field φphys(x) is not invari-
ant under the same transformation of the old field φ(x) → φ(x)eiθ . This phenomenon is
known as spontaneous symmetry breaking. According to the Goldstone theorem massless
particles, known as Nambu-Goldstone bosons, are unavoidable in spontaneously symmetry
broken scalar field theories [1]. However, Higgs and others pointed out that in gauge theo-
ries it is possible to evade Goldstone theorem [2–4]. In these theories, according to Higgs
mechanism, gauge fields can get mass and there is no room for Nambu-Goldstone boson.

Until now, there were two conditions for vacuum. One came from gauge field theory
(43), and the other was minimizing the potential term in scalar field theory. We consider
both of them as a definition of vacuum in gauge theory including both scalar and gauge
fields. We add another condition according to which one has to minimize the scalar part
of the Hamiltonian density derived from symmetric and gauge invariant energy-momentum
tensor (H = T00). This means that not only the potential, but also the kinetic term of the
scalar field should be minimized. Furthermore, vacuum states clearly should be a solution of
Euler-Lagrange equation and they can be a field in general, so we treat them as the classical
(background) fields and we relax the condition (45). Therefore, every space-time point can
have its own vacuum state, at least on cosmological scales.

Synoptically, we follow these steps in order to break the symmetry in gauge theories
including both scalar and gauge fields:

1- Scalar part of the Hamiltonian density HS = H(Dμφ, φ) should be minimized:

∂HS

∂φ
= ∂HS

∂(Dμφ)
= 0, (47)
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where the minimum exists if

∂2HS

∂φ2
> 0,

[

∂2HS

∂φ∂(Dμφ)

]2

− ∂2HS

∂φ2

∂2HS

∂(Dμφ)2
< 0. (48)

2- The source term in gauge field equation are taken to be zero:

DμFμν = Jν = 0. (49)

3- Every space-time point has its own vacuum. In other words, we have vacuum fields.
Moreover, the physical (quantum) fields, φphys(x)andAphys

μ (x), are excitations above the
(classical) vacuum fields φV (x)andAV

μ (x):

φ(x) → φV (x) + φphys(x),

Aμ(x) → AV
μ (x) + Aphys

μ (x). (50)

We have supposed that gauge fields with non-zero energy in principle can be present in
vacuum, so, in step 1, we only minimize the scalar part of the Hamiltonian density. Now we
are ready to see the consequences of our procedure for two examples: Abelian U(1) gauge
theory and non-Abelian SU(2) gauge theory.

For the Abelian case with Lagrangian (1), from the symmetric and gauge invariant
energy-momentum tensor, the scalar part of the Hamiltonian density is

HS = T S
00 = 1

2
(D0φ)∗(D0φ) + 1

2
(Diφ)∗(Diφ) + λ

4
(φ∗φ − ν2)2. (51)

where i run over the three spatial coordinate labels. Obviously the Hamiltonian density (51)
will be minimized (HS

min = 0) at

Dμφ = 0, φ∗φ = ν2, (52)

and according to (3) for Dμφ = 0 we get ∂νF
μν = 0. Vacuum fields should satisfy (52).

Note that condition Dμφ = 0 is by itself extremely strong. This condition leads to

φ∗φ = constant, (53)

Aμ = i

2gφ∗φ
(φ∗∂μφ − φ∂μφ∗) ⇒ Fμν = 0. (54)

It is remarkable that condition Dμφ = 0 alone leads to (53). According to (53) for non-
trivial vacuum φ �= 0 we get spontaneous symmetry breaking even without a potential
term in Lagrangian. According to Fμν = 0, vacuum energy density, which is the total
Hamiltonian density including both scalar and gauge fields, is zero. So we conclude that
vacuum of the Abelian gauge theory is structure-less and vacuum fields do not carry energy
and momentum in this case.

Working in polar co-ordinates φ(x) = ρ(x)eiθ(x), vacuum fields are:

ρV = νandAV
μ(x) = − 1

g
∂μθ(x). (55)

By substituting

ρ(x) → ν + ρ(x)andAμ(x) → − 1

g
∂μθ(x) + Aμ(x), (56)
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Lagrangian (1) will be

L = −1

4
FμνF

μν + 1

2
m2

AAμAμ

+1

2
∂μρ∂μρ − 1

2
m2

ρρ2 + couplingterms. (57)

where mρ = √
2λν2 and mA = gν. Lagrangian (57) contains two physical (quantum) fields

only, vector field Aμ(x) with spin 1, and scalar field ρ(x) with spin 0, and they are both
massive. Note that the vacuum field θ(x) has disappeared in this case and our result is in
agreement with the Higgs mechanism and our previous approach (38).

Now we consider the non-Abelian SU(2) gauge theory with the Lagrangian (17). The
scalar part of the Hamiltonian density is

HS = T S
00 = 1

2
(D0φ).(D0φ) + 1

2
(Diφ).(Diφ) + λ

4
(φ.φ − ν2)2. (58)

HS will be minimized (HS
min = 0) at

Dμφ = 0, φ.φ = ν2, (59)

and according to (19), the condition Dμφ = 0 implies DνFμν = 0.
Vacuum fields must fulfill (59). Regarding (21), condition Dμφ = 0 leads to

φ.φ = φ2 = constant, (60)

AV
μ = AV

μn + 1

g
∂μn × n, (61)

where AV
μ = AV

μ .n is an unconstrained four-vector. We should mention that the vacuum

form of gauge field AV
μ in (61) is proposed before with different motivation [8]. Again

according to the condition Dμφ = 0, for non-trivial vacuum φ �= 0, we can get spontaneous
symmetry breaking without a potential term. Unlike the Abelian case, now we can have
Fμν �= 0, so there exist vacuum energy density. Therefore vacuum of the non-Abelian gauge
theory has structure and vacuum fields carry energy and momentum.

Vacuum Lagrangian is

LV = −1

4
(FV

μν)
2, (62)

where

FV
μν =

[

(

∂μAV
ν − ∂νA

V
μ

)

− 1

g
n.(∂μn × ∂νn)

]

. (63)

By reparametrization of n

n =
⎛

⎝

sinα cos β
sinα sin β

cosα

⎞

⎠ , (64)

where α and β are fields, vacuum Lagrangian will be

LV = −1

4
(Aμν + Bμν)(A

μν + Bμν), (65)

where

Aμν = ∂μAV
ν − ∂νA

V
μ , (66)

Bμν = − 1

g
sinα(∂μα∂νβ − ∂να∂μβ). (67)
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Euler-Lagrange equations for vacuum fields AV
μ , α, and β are

∂μ(Aμν + Bμν) = 0, (68)

sinα∂μ[∂νβ(Aμν + Bμν)] = 0, (69)

∂μ[sinα∂να(Aμν + Bμν)] = 0, (70)

respectively. Note that according to (68), the other two equations, (69) and (70), do not lead
to new equations and there is only one equation for vacuum fields which is nothing but the
vacuum condition (49):

DμFμν = ∂μ(Aμν + Bμν) = 0. (71)

Now in order to obtain the complete Lagrangian we put

φ(x) → ν + φ(x), (72)

Aμ(x) → AV
μn + 1

g
∂μn × n + Aphys

μ (x), (73)

where
Aphys

μ (x) = A1
μn1 + A2

μn2 + A3
μn, (74)

and (n1, n2,n) forms an orthonormal basis for internal space. By substituting (72) and (73)
the Lagrangian (17) will be

L = −1

4
Fμν .Fμν + 1

2
m2

A

[

(

A1
μ

)2 +
(

A2
μ

)2
]

+νg2φ

[

(

A1
μ

)2 +
(

A2
μ

)2
]

+ g2

2
φ2

[

(

A1
μ

)2 +
(

A2
μ

)2
]

+1

2
∂μφ∂μφ − 1

2
m2

φφ2 − λνφ3 − λ

4
φ4, (75)

where mφ = √
2λν2 and mA = gν and

Fμν = ̂Fμν + ̂�μXν − ̂�νXμ + gXμ × Xν, (76)

with

̂Fμν =
[

FV
μν +

(

∂μA3
ν − ∂νA

3
μ

)]

n

Xμ = A1
μn1 + A2

μn2

̂�μXν = ∂μXν + g
(

AV
μ + A3

μn
)

× Xν . (77)

Lagrangian (75) is the same as (39) if we put Aμ = AV
μ + A3

μ. Apparently, In the final
Lagrangian n1 and n2 are also present, but this could not be a problem, because Lagrangian
(75), as well as vacuum LagrangianLV , is invariant under (infinitesimal) rotation of internal
basis:

δn1 = −a × n1, δn2 = −a × n2, δn = −a × n, (78)

and

δAV
μ = 1

g
n.∂μa, (79)

hence, one can eliminate n1 and n2 by choosing a gauge, unitary gauge, in which n and
AV

μ have only third component in the internal space. Note that Lagrangian (75) is invariant
under another transformation: AV

μ → AV
μ + Aμ and A3

μ → A3
μ − Aμ which Aμ is an

arbitrary four-vector. In fact, the interaction of AV
μ and A3

μ with other fields are the same
and they are not recognizable from each other in the full Lagrangian, therefore it is even
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possible to eliminate AV
μ by choosing Aμ = −AV

μ . In this case, in addition to particle
degrees of freedom, only dimensionless vacuum field n are present and this background
field can interact with quantum fields or particles. We again reached to the same result as
the previous section.

5 Conclusion

A novel approach for spontaneous symmetry breaking has been presented. We show that
Yang-Mill-Higgs theory based on new variables, which do not change the dynamic of the
theory at least at the classical level, leads to different result for symmetry breaking in
the non-Abelian case. In this case apart from particle degrees of freedom, quantum fields,
topological degrees of freedom as classical fields also emerge. We call these extra fields
“vacuum fields”. Although it is possible to quantize these fields, but if we treat them like
classical fields, then they do not change the particle degrees of freedom after symmetry
breaking. For example, in the non-Abelian case, before breaking of SU(2) symmetry we had
3 massive scalar fields φ and 3 massless vector fields Aμ with 3+3×2 = 9 total degrees of
freedom, and after symmetry breaking we have 1 massive scalar field φ, 1 massless vector
field A3

μ, and 2 massive vector fields A1
μ and A2

μ with 1+1× 2+2× 3 = 9. If we consider
vacuum fields as the particles and quantize them, the situation changes and extra degrees
of freedom appear in the particle spectrum. Besides, if we treat the vacuum fields as classi-
cal fields, and not operators, then commutators relations in quantum theory before and after
symmetry breaking do not change: for φi → φV

i +φ
phys
i we have [φi, φj ] = [φphys

i , φ
phys
j ]

because [φV
i , φV

j ] = 0. Note that our vacuum fields α, and β are massless fields and the vac-
uum sector of the theory is scale invariant. These fields, unlike any fields in particle physics,
are dimensionless fields. We can call these vacuum fields unparticle stuff, though the only
unparticle stuff that has been known in physics are classical fields or classical solutions
of the field equations known as topological fields. We emphasize that our vacuum fields
appeared because we simply do not consider one vacuum state for all space-time points and
the vacuum state itself is a function of space-time: φV (x) = νn(x). This possibility could be
true at least on cosmological scales. On the other hand, Higgs mechanism works very well
in particle physics, so the vacuum fields should be very little on elementary particle space-
time scales, but, they could have cosmological consequences in large scales. Indeed, there
are theories for both inflation and dark energy which scalar fields, take a crucial role. In our
approach, massless scalar fields arise which seems better candidate for inflation and dark
energy than massive Higgs field. In a subsequent paper [16] we will apply our approach to
the more realistic case, Standard Model of particle physics, and we study vacuum sector of
this model and discuss its cosmological consequences.
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